首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Ras proteins control the signalling pathways that are responsible for normal growth and malignant transformation. Raf protein kinases are direct Ras effector proteins that initiate the mitogen-activated protein kinase (MAPK) cascade, which mediates diverse biological functions such as cell growth, survival and differentiation. Here we show that prohibitin, a ubiquitously expressed and evolutionarily conserved protein is indispensable for the activation of the Raf-MEK-ERK pathway by Ras. The membrane targeting and activation of C-Raf by Ras needs prohibitin in vivo. In addition, direct interaction with prohibitin is required for C-Raf activation. C-Raf kinase fails to interact with the active Ras induced by epidermal growth factor in the absence of prohibitin. Moreover, in prohibitin-deficient cells the adhesion complex proteins cadherin and beta-catenin relocalize to the plasma membrane and thereby stabilize adherens junctions. Our data show an unexpected role of prohibitin in the activation of the Ras-Raf signalling pathway and in modulating epithelial cell adhesion and migration.  相似文献   

2.
Glycosylphosphatidylinositol-anchored proteins may be concentrated in membrane microdomains (lipid rafts) that are also enriched in cholesterol and sphingolipids. The glycosyl anchor of these proteins is a specific, high affinity receptor for the channel-forming protein aerolysin. We wished to determine if the presence of rafts promotes the activity of aerolysin. Treatment of T lymphocytes with methyl-beta-cyclodextrin, which destroys lipid rafts by sequestering cholesterol, had no measurable effect on the sensitivity of the cells to aerolysin; nor did similar treatment of erythrocytes decrease the rate at which they were lysed by the toxin. We also studied the rate of aerolysin-induced channel formation in liposomes containing glycosylphosphatidylinositol-anchored placental alkaline phosphatase, which we show is a receptor for aerolysin. In liposomes containing sphingolipids as well as glycerophospholipids and cholesterol, most of the enzyme was Triton X-100-insoluble, indicating that it was localized in rafts, whereas in liposomes prepared without sphingolipids, all of the enzyme was soluble. Aerolysin was no more active against liposomes containing rafts than against those that did not. We conclude that lipid rafts do not promote channel formation by aerolysin.  相似文献   

3.
Raf kinases are involved in regulating cellular signal transduction pathways in response to a wide variety of external stimuli. Upstream signals generate activated Ras-GTP, important for the relocalization of Raf kinases to the membrane. Upon full activation, Raf kinases phosphorylate and activate downstream kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. The Raf family of kinases has three members, Raf-1, B-Raf, and A-Raf. The ability of Raf-1 and B-Raf to bind phosphatidylserine (PS) and phosphatidic acid (PA) has been show to facilitate Raf membrane associations and regulate Raf kinase activity. We have characterized the lipid binding properties of A-Raf, as well as further characterized those of Raf-1. Both A-Raf and Raf-1 were found to bind to 3-, 4-, and 5-monophosphorylated phosphoinositides [PI(3)P, PI(4)P, and PI(5)P] as well as phosphatidylinositol 3,5-bisphosphate [PI(3,5)P(2)]. In addition, A-Raf also bound specifically to phosphatidylinositol 4,5- and 3,4-bisphosphates [PI(4,5)P(2) and PI(3,4)P(2)] and to PA. A mutational analysis of A-Raf localized the PI(4,5)P(2) binding site to two basic residues (K50 and R52) within the Ras binding domain. Additionally, an A-Raf mutant lacking the first 199 residues [i.e., the entire conserved region 1 (CR1) domain] bound the same phospholipids as full-length Raf-1. This suggests that a second region of A-Raf between amino acids 200 and 606 was responsible for interactions with the monophosphorylated PIs and PI(3,5)P(2). These results raise the possibility that Raf-1 and A-Raf bind to specific phosphoinositides as a mechanism to localize them to particular membrane microdomains rich in these phospholipids. Moreover, the differences in their lipid binding profiles could contribute to their proposed isoform-specific Raf functions.  相似文献   

4.
Ceramide is a membrane lipid involved in a number of crucial biological processes. Recent evidence suggests that ceramide is likely to reside and function within lipid rafts; ordered sphingolipid and cholesterol-rich lipid domains believed to exist within many eukaryotic cell membranes. Using lipid vesicles containing co-existing raft domains and disordered fluid domains, we find that natural and saturated synthetic ceramides displace sterols from rafts. Other raft lipids remain raft-associated in the presence of ceramide, showing displacement is relatively specific for sterols. Like cholesterol-containing rafts, ceramide-rich "rafts" remain in a highly ordered state. Comparison of the sterol-displacing abilities of natural ceramides with those of saturated diglycerides and an unsaturated ceramide demonstrates that tight lipid packing is critical for sterol displacement by ceramide. Based on these results, and the fact that cholesterol and ceramides both have small polar headgroups, we propose that ceramides and cholesterol compete for association with rafts because of a limited capacity of raft lipids with large headgroups to accommodate small headgroup lipids in a manner that prevents unfavorable contact between the hydrocarbon groups of the small headgroup lipids and the surrounding aqueous environment. Minimizing the exposure of cholesterol and ceramide to water may be a strong driving force for the association of other molecules with rafts. Furthermore, displacement of sterol from rafts by ceramide is very likely to have marked effects upon raft structure and function, altering liquid ordered properties as well as molecular composition. In this regard, certain previously observed physiological processes may be a result of displacement. In particular, a direct connection to the previously observed sphingomyelinase-induced displacement of cholesterol from plasma membranes in cells is proposed.  相似文献   

5.
Specialized membrane microdomains called rafts are thought to play a role in many types of cell-cell interactions and signaling. We have investigated the possibility that sea urchin eggs contain these specialized membrane microdomains and if they play a role in signal transduction at fertilization. A low density, TX-100 insoluble membrane fraction, typical of lipid rafts, was isolated by equilibrium gradient centrifugation. This raft fraction contained proteins distinct from cytoskeletal complexes. The fraction was enriched in tyrosine phosphorylated proteins and contained two proteins known to be involved in signaling during egg activation (an egg Src-type kinase and PLC gamma). This fraction was further characterized as a prototypical raft fraction by the release of proteins in response to in vitro treatment of the rafts with the cholesterol binding drug, methyl-beta-cyclodextrin (M beta CD). Furthermore, treatment of eggs with M beta CD inhibited fertilization, suggesting that egg lipid rafts play a physiological role in fertilization. Mol. Reprod. Dev. 59:294-305, 2001.  相似文献   

6.
During the past years, the notion of microdomains at the surface of cellular membranes has been developed. These are constituted by lipid rafts which involve sphingoglycolipids and cholesterol. To these rafts are associated proteins which have a lipid anchor or are transmembrane proteins. These lipid rafts target specific proteins at the plasma membrane surface and can remain associated with them. They are present in surface receptors and endocytosis occurs upon binding of the specific ligands. Thus these rafts participate to major aspects of cellular dynamics. These rafts are complex structures, insoluble in non-ionic detergents. According to the detergent used, many types of rafts can be isolated. Any alteration of cholesterol, sphingoglycolipids, or abnormalities of the proteins themselves, can lead to abnormal targeting at the membrane surface. It is possible that specific sphingoglycolipids are necessary to target specific proteins at the membrane surface. This may explain the complexity of the sphingoglycolipid molecules, both in relation to their oligosaccharide and to their ceramide structures. There is both a cellular and a tissue specificity of these constituents. Complex sphingoglycolipids are involved in cellular differentiation, cellular polarization, and modified in relation to cancer. Virus and bacteria can be linked to the sphingoglycolipids of these microdomains and alter cellular signaling and function. Sphingoglycolipids are involved in autoimmune diseases as antibody targets and in neurolipidoses which are genetic diseases involving their catabolism. The dynamics of the lipid rafts, in relation to cholesterol, can be altered in Niemann-Pick's disease type C and in Alzheimer's disease. Thus these microdomains are involved in many aspects related to normal and pathological cellular dynamics.  相似文献   

7.
Hemoglobin is encapsulated in liposomes of different lipid composition. The resulting dispersion consists primarily of multilamellar liposomes (hemosomes) of a wide particle size distribution (diameter ranging mainly between 0.1 and 1 micron). The encapsulation efficiency is significantly larger with liposomes containing negatively charged lipids as compared to liposomes made of phosphatidylcholine. The integrity of the phospholipid bilayer is maintained in the presence of hemoglobin. The reaction rate of CO binding to encapsulated hemoglobin is reduced compared to that of free hemoglobin, but it is still greater than that observed in red blood cells. Hemoglobin encapsulated in liposomes made from negatively charged phospholipids is less stable than hemoglobin entrapped in isoelectric phosphatidylcholine. The instability of hemoglobin is due to the protein interacting with the negatively charged lipid bilayer. This interaction leads in turn to hemoglobin denaturation, possibly involving the dissociation of the heme group from the heme-globin complex. The nature of the negatively charged phospholipid is important in promoting the interaction with hemoglobin, the effect being in the order phosphatidic acid greater than phosphatidylinositol congruent to phosphatidylglycerol greater than phosphatidylserine. The presence of equimolar amounts of cholesterol in the phospholipid bilayer has a stabilizing effect on hemoglobin. This effect is pronounced with saturated phospholipids, but it is also observed, though to a lesser extent, with unsaturated ones, indicating that the bilayer fluidity has a modulating effect. The presence of cholesterol possibly interferes with secondary interactions following the binding of hemoglobin to the negatively charged lipid bilayer.  相似文献   

8.
Although the high presence of cholesterol in nerve terminals is well documented, specific roles of this lipid in transmitter release have remained elusive. Since cholesterol is a highly enriched component in the membrane microdomains known as lipid rafts, it is probable that these domains are very important in synaptic function. The extraction of lipid rafts using Brij 98 at 37 degrees C avoids the formation of nonspecific membrane aggregates at low temperature, allowing the isolation of more physiologically relevant lipid rafts. In the present work, we examine, by means of buoyancy analysis in sucrose gradients after solubilization of the membranes with Brij 98 or with Lubrol WX, the presence of proteins involved in exocytosis in detergent-resistant membranes (DRM) using rat brain synaptosomes as a neurological model. Significant proportions of the proteins tested in the present work, which are involved in neurotransmitter release, are found in Brij 98 raft fractions, demonstrating that significant pools of synaptic proteins are segregated in specific parts of the membrane at physiological temperature. On the other hand, Lubrol WX is unable to solubilize the major fraction of the proteins tested. Treatment of synaptosomes with methyl-beta-cyclodextrin (mbetaCD) causes alteration in the buoyancy properties of proteins initially present in Brij- as well as in Lubrol-resistant membranes, indicating the cholesterol-dependency of both kinds of microdomains. Finally, we detect the depolarization-induced enhancement of the cholesterol-dependent association of syntaxin 1 with Brij 98-rafts, under the same conditions in which prolonged neurotransmitter release is stimulated.  相似文献   

9.
The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.  相似文献   

10.
Absolute binding free energy calculations and free energy decompositions are presented for the protein-protein complexes H-Ras/C-Raf1 and H-Ras/RalGDS. Ras is a central switch in the regulation of cell proliferation and differentiation. In our study, we investigate the capability of the molecular mechanics (MM)-generalized Born surface area (GBSA) approach to estimate absolute binding free energies for the protein-protein complexes. Averaging gas-phase energies, solvation free energies, and entropic contributions over snapshots extracted from trajectories of the unbound proteins and the complexes, calculated binding free energies (Ras-Raf: -15.0(+/-6.3)kcal mol(-1); Ras-RalGDS: -19.5(+/-5.9)kcal mol(-1)) are in fair agreement with experimentally determined values (-9.6 kcal mol(-1); -8.4 kcal mol(-1)), if appropriate ionic strength is taken into account. Structural determinants of the binding affinity of Ras-Raf and Ras-RalGDS are identified by means of free energy decomposition. For the first time, computationally inexpensive generalized Born (GB) calculations are applied in this context to partition solvation free energies along with gas-phase energies between residues of both binding partners. For selected residues, in addition, entropic contributions are estimated by classical statistical mechanics. Comparison of the decomposition results with experimentally determined binding free energy differences for alanine mutants of interface residues yielded correlations with r(2)=0.55 and 0.46 for Ras-Raf and Ras-RalGDS, respectively. Extension of the decomposition reveals residues as far apart as 25A from the binding epitope that can contribute significantly to binding free energy. These "hotspots" are found to show large atomic fluctuations in the unbound proteins, indicating that they reside in structurally less stable regions. Furthermore, hotspot residues experience a significantly larger-than-average decrease in local fluctuations upon complex formation. Finally, by calculating a pair-wise decomposition of interactions, interaction pathways originating in the binding epitope of Raf are found that protrude through the protein structure towards the loop L1. This explains the finding of a conformational change in this region upon complex formation with Ras, and it may trigger a larger structural change in Raf, which is considered to be necessary for activation of the effector by Ras.  相似文献   

11.
Abstract

Golgi-Associated Plant Pathogenesis-Related protein 1 (GAPR-1) is a mammalian protein that belongs to the superfamily of plant pathogenesis-related proteins group 1 (PR-1). GAPR-1 strongly associates with lipid rafts at the cytosolic leaflet of the Golgi membrane. The myristoyl moiety at the N-terminus of GAPR-1 contributes to membrane binding but is not sufficient for stable membrane anchorage. GAPR-1 is positively charged at physiological pH, which allows for additional membrane interactions with proteins or lipids. To determine the potential contribution of lipids to membrane binding of GAPR-1, we used a liposome binding assay. Here we report that non-myristoylated GAPR-1 stably binds liposomes that contain the negatively charged lipids phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, or phosphatidic acid. GAPR-1 displays the highest preference for phosphatidic acid-containing liposomes. In contrast, lysozyme, which contains a similar surface charge, did not bind to these liposomes, except for a weak membrane association with PA-containing liposomes. Interestingly, GAPR-1 binds to phosphatidylinositol with unusual characteristics. Denaturation or organic extraction of GAPR-1 does not result in dissociation of phosphatidylinositol from GAPR-1. The association of phosphatidylinositol with GAPR-1 results in a diffuse gel-shift in SDS-PAGE. Mass spectrometric analysis of gel-shifted GAPR-1 showed the association of up to 3 molecules of phosphatidylinositol with GAPR-1. These results suggest that the lipid composition contributes to the GAPR-1 binding to biological membranes.  相似文献   

12.
Summary The plasma membrane is not a uniform two-dimensional space but includes various types of specialized regions containing specific lipids and proteins. These include clathrin-coated pits and caveolae. The existence of other cholesterol- and glycosphingolipid-rich microdomains has also been proposed. The aim of this review is to illustrate that these latter domains, also called lipid rafts, may be the preferential interaction sites between a variety of toxins, bacteria, and viruses and the target cell. These pathogens and toxins have hijacked components that are preferentially found in rafts, such as glycosylphosphatidylinositol-anchored proteins, sphingomyelin, and cholesterol. These molecules not only allow binding of the pathogen or toxin to the proper target cell but also appear to potentiate the toxic action. We briefly review the structure and proposed functions of cholesterol- and glycosphingolipid-rich microdomains and then describe the toxins and pathogens that interact with them. When possible the advantage conferred by the interaction with microdomains will be discussed.Abbreviation GPI glycosylphosphatidylinositol  相似文献   

13.
The GTP-binding protein Ras plays a central role in the regulation of various cellular processes, acting as a molecular switch that triggers signaling cascades. Only Ras bound to GTP is able to interact strongly with effector proteins like Raf kinase, phosphatidylinositol 3-kinase, and RalGDS, whereas in the GDP-bound state, the stability of the complex is strongly decreased, and signaling is interrupted. To determine whether this process is only controlled by the stability of the complex, we used computer-aided protein design to improve the interaction between Ras and effector. We challenged the Ras·Raf complex in this study because Raf among all effectors shows the highest Ras affinity and the fastest association kinetics. The proposed mutations were characterized as to their changes in dynamics and binding strength. We demonstrate that Ras-Raf interaction can only be improved at the cost of a loss in specificity of Ras·GTP versus Ras·GDP. As shown by NMR spectroscopy, the Raf mutation A85K leads to a shift of Ras switch I in the GTP-bound as well as in the GDP-bound state, thereby increasing the complex stability. In a luciferase-based reporter gene assay, Raf A85K is associated with higher signaling activity, which appears to be a mere matter of Ras-Raf affinity.  相似文献   

14.
Shoc2/SUR-8 positively regulates Ras/ERK MAP kinase signaling by serving as a scaffold for Ras and Raf. Here, we examined the role of Shoc2 in the spatio-temporal regulation of Ras by using a fluorescence resonance energy transfer (FRET)-based biosensor, together with computational modeling. In epidermal growth factor-stimulated HeLa cells, RNA-mediated Shoc2 knockdown reduced the phosphorylation of MEK and ERK with half-maximal inhibition, but not the activation of Ras. For the live monitoring of Ras binding to Raf, we utilized a FRET biosensor wherein Ras and the Ras-binding domain of Raf were connected tandemly and sandwiched with acceptor and donor fluorescent proteins for the FRET measurement. With this biosensor, we found that Shoc2 was required for the rapid interaction of Ras with Raf upon epidermal growth factor stimulation. To decipher the molecular mechanisms underlying the kinetics, we developed two computational models that might account for the action of Shoc2 in the Ras-ERK signaling. One of these models, the Shoc2 accelerator model, provided a reasonable explanation of the experimental observations. In this Shoc2 accelerator model, Shoc2 accelerated both the association and dissociation of Ras-Raf interaction. We propose that Shoc2 regulates the spatio-temporal patterns of the Ras-ERK signaling pathway primarily by accelerating the Ras-Raf interaction.  相似文献   

15.
In the present study, we investigated the role of membrane cholesterol in the function of glutamate transporters. Depletion of membrane cholesterol by methyl-beta-cyclodextrin resulted in reduced Na(+)-dependent glutamate uptake in primary cortical cultures. Glial glutamate transporter EAAT2-mediated uptake was more sensitive to this effect. Cell surface biotinylation and immunostaining experiments revealed that the loss of cholesterol significantly altered the trafficking of EAAT2 to the plasma membrane as well as their membrane distribution. These effects were also observed in neuronal glutamate transporter EAAT3 but to a lesser extent. Furthermore, the treatment of mouse brain plasma membrane vesicles with methyl-beta-cyclodextrin resulted in a significant reduction in glutamate uptake, suggesting that cholesterol depletion has a direct effect on the function of the glutamate transporters. Plasma membrane cholesterol is localized within discreet microdomains known as lipid rafts. Analyses of purified lipid raft microdomains revealed that a large portion of total EAAT2 and a minor portion of total EAAT1, EAAT3, and EAAT4 were associated with lipid rafts. Artificial aggregation of lipid rafts in vivo resulted in the formation of larger EAAT2-immunoreactive clusters on the cell surface. The purified lipid raft-associated fractions were capable of Na(+)-dependent glutamate uptake. Our data suggest that the glutamate transporters, especially EAAT2, are associated with cholesterol-rich lipid raft microdomains of the plasma membrane and that the association with these cholesterol-rich microdomains is important for excitatory amino acid transporter localization and function.  相似文献   

16.
Lipid rafts are membrane microdomains rich in cholesterol and glycosphingolipids that have been implicated in the regulation of intracellular protein trafficking. During exocytosis, a class of proteins termed SNAREs mediate secretory granule-plasma membrane fusion. To investigate the role of lipid rafts in secretory granule exocytosis, we examined the raft association of SNARE proteins and SNARE complexes in rat basophilic leukemia (RBL) mast cells. The SNARE protein SNAP-23 co-localized with a lipid raft marker and was present in detergent-insoluble lipid raft microdomains in RBL cells. By contrast, only small amounts (<20%) of the plasma membrane SNARE syntaxin 4 or the granule-associated SNARE vesicle-associated membrane protein (VAMP)-2 were present in these microdomains. Despite this, essentially all syntaxin 4 and most of VAMP-2 in these rafts were present in SNARE complexes containing SNAP-23, while essentially none of these complexes were present in nonraft membranes. Whereas SNAP-23 is membrane anchored by palmitoylation, the association of the transmembrane protein syntaxin 4 with lipid rafts was because of its binding to SNAP-23. After stimulating mast cells exocytosis, the amount of syntaxin 4 and VAMP-2 present in rafts increased twofold, and these proteins were now present in raft-associated phospho-SNAP-23/syntaxin 4/VAMP-2 complexes, revealing differential association of SNARE fusion complexes during the process of regulated exocytosis.  相似文献   

17.
The effects of phospholipid-oxidation state and vesicle composition on lipid peroxidation in hemolysate-containing liposomes (hemosomes) were studied by the thiobarbituric acid assay. Liposomes (hemosomes) were prepared from egg phosphatidylcholine (PC) with either low (PC0.08) or high (PC0.66) oxidation indices reflecting low and high conjugated diene/lipid hydroperoxy contents. Thiobarbituric acid reactivity was negligible over 6 h at 38 degrees C in buffer-containing (control) liposomes prepared from PC0.08, whereas it was slightly increased in those prepared from PC0.66. Encapsulated hemolysate had no effect in PC0.08 liposomes, but significantly increased thiobarbituric acid reactivity in those prepared from PC0.66. Inclusion of either phosphatidylethanolamine or phosphatidylinositol in the membrane further increased lipid peroxidation in hemosomes prepared from PC0.66, whereas phosphatidic acid and phosphatidylserine were inhibitory. Inclusion of cholesterol in the membrane had no effect in PC0.66 hemosomes, but significantly inhibited lipid peroxidation in the presence of phosphatidylethanolamine or phosphatidylinositol. The effects of phosphatidic acid and cholesterol were dose-dependent. Co-incorporation of cholesterol and phosphatidic acid or phosphatidylserine in the membrane resulted in almost complete elimination of hemoglobin (Hb)-induced lipid peroxidation. Lysophosphatidic acid had similar effect as phosphatidic acid, whereas lysophosphatidylserine exerted inhibition only in the presence of phosphatidylethanolamine. The rate of lipid peroxidation showed no correlation with the amount of encapsulated Hb, neither with the oxidation indices nor the polyunsaturated fatty acid contents of negatively charged phospholipids. The above findings suggest a possible role for the high cholesterol content and preferential localization of phosphatidylserine in the inner bilayer leaflet of erythrocyte membrane in protecting against Hb-induced lipid peroxidation in the membrane.  相似文献   

18.
Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.  相似文献   

19.
Antibodies to liposomal phosphatidylserine and phosphatidic acid   总被引:1,自引:0,他引:1  
Polyclonal antisera to phosphatidylserine or phosphatidic acid were induced in rabbits by injecting liposomes containing phosphatidylserine or phosphatidic acid and lipid A. Adsorption of antisera with liposomes containing different phospholipids revealed that some degree of reactivity with one or more phospholipids other than the immunizing phospholipid was often observed. However, cross-reactivity with other phospholipids was not a universal phenomenon, and one antiserum to phosphatidylserine failed to cross-react (i.e., was not adsorbed) with liposomes containing other phospholipids. All of the antisera were inhibited by soluble phosphorylated haptens (e.g., phosphocholine but not choline), but one of the antisera to phosphatidylserine was inhibited both by phosphoserine and by serine alone. Liposomal membrane composition influenced the activity of antiserum to phosphatidylserine. Regardless of whether unsaturated (beef brain) or saturated (dimyristoyl) phosphatidylserine was used in the immunizing liposomes, the antisera reacted more vigorously with liposomes containing unsaturated than saturated phosphatidylserine. We conclude that liposomes containing lipid A can serve as vehicles for stimulating polyclonal antisera to phosphatidylserine and phosphatidic acid. Although cross-reactivity with certain other phospholipids can be observed, sera from selected animals apparently can exhibit a high degree of specific activity to the immunizing phospholipid antigen.  相似文献   

20.
Growth factor receptors have been shown to be localized to lipid rafts and caveolae. Consistent with a role for these cholesterol-enriched membrane domains in growth factor receptor function, the binding and kinase activities of growth factor receptors are susceptible to regulation by changes in cholesterol content. Furthermore, knockouts of caveolin-1, the structural protein of caveolae, have confirmed that this protein, and by implication caveolae, modulate the ability of growth factor receptors to signal. This article reviews the findings pertinent to the relationship between growth factor receptors, lipid rafts and caveolae and presents a model for understanding the disparate observations regarding the role of membrane microdomains in the regulation of growth factor receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号