首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
DNA topoisomerases are enzymes that control DNA topology by cleaving and rejoining DNA strands and passing other DNA strands through the transient gaps. Consequently, these enzymes play a crucial role in the regulation of the physiological function of the genome. Beyond their normal functions, topoisomerases are important cellular targets in the treatment of human cancers. In this review we summarize current protocols for extracting and purifying DNA topoisomerases, and for separating subtypes and isoforms of these enzymes. Furthermore, we discuss methods for measuring the catalytic activity of topoisomerases and for monitoring the molecular effects of topoisomerase-directed antitumor drugs in cell-free assays.  相似文献   

4.
DNA topoisomerases are the enzymes responsible for maintaining the topological states of DNA. In order to change the topology of DNA, topoisomerases pass one or two DNA strands through transient single or double strand breaks in the DNA phosphodiester backbone. It has been proposed that both type IA and type II enzymes change conformation dramatically during the reaction cycle in order to accomplish these transformations. In the case of Escherichia coli DNA topoisomerase I, it has been suggested that a 30 kDa fragment moves away from the rest of the protein to create an entrance into the central hole in the protein. Structures of the 30 kDa fragment reveal that indeed this fragment can change conformation significantly. The fragment is composed of two domains, and while the domains themselves remain largely unchanged, their relative arrangement can change dramatically.  相似文献   

5.
6.
DNA topoisomerases control the topology of DNA (e.g., the level of supercoiling) in all cells. Type IIA topoisomerases are ATP-dependent enzymes that have been shown to simplify the topology of their DNA substrates to a level beyond that expected at equilibrium (i.e., more relaxed than the product of relaxation by ATP-independent enzymes, such as type I topoisomerases, or a lower-than-equilibrium level of catenation). The mechanism of this effect is currently unknown, although several models have been suggested. We have analyzed the DNA relaxation reactions of type II topoisomerases to further explore this phenomenon. We find that all type IIA topoisomerases tested exhibit the effect to a similar degree and that it is not dependent on the supercoil-sensing C-terminal domains of the enzymes. As recently reported, the type IIB topoisomerase, topoisomerase VI (which is only distantly related to type IIA enzymes), does not exhibit topology simplification. We find that topology simplification is not significantly dependent on circle size in the range ∼ 2-9 kbp and is not altered by reducing the free energy available from ATP hydrolysis by varying the ADP:ATP ratio. A direct test of one model (DNA tracking; i.e., sliding of a protein clamp along DNA to trap supercoils) suggests that this is unlikely to be the explanation for the effect. We conclude that geometric selection of DNA segments by the enzymes is likely to be a primary source of the effect, but that it is possible that other kinetic factors contribute. We also speculate whether topology simplification might simply be an evolutionary relic, with no adaptive significance.  相似文献   

7.
In all organisms, type II DNA topoisomerases are essential for untangling chromosomal DNA. We have determined the structure of the DNA-binding core of the Methanococcus jannaschii DNA topoisomerase VI A subunit at 2.0 A resolution. The overall structure of this subunit is unique, demonstrating that archaeal type II enzymes are distinct from other type II topoisomerases. However, the core structure contains a pair of domains that are also found in type IA and classic type II topoisomerases. Together, these regions may form the basis of a DNA cleavage mechanism shared among these enzymes. The core A subunit is a dimer that contains a deep groove that spans both protomers. The dimer architecture suggests that DNA is bound in the groove, across the A subunit interface, and that the two monomers separate during DNA transport. The A subunit of topoisomerase VI is homologous to the meiotic recombination factor, Spo11, and this structure can serve as a template for probing Spo11 function in eukaryotes.  相似文献   

8.
In the past few years, two new DNA topoisomerases have been discovered in bacteria, bringing the total number of DNA topoisomerases in E. coli to four. Two classes of topoisomerases, type 1 and type 2, are distinguishable by their amino acid homology and their apparent reaction mechanism. Of the four E. coli topoisomerases, there are two type 1 and two type 2 enzymes. In eukaryotes, the existence of multiple type 1 and type 2 enzymes has also become apparent. The existence of these multiple enzymes provokes a question whose answer has both evolutionary and physiological implications: are these topoisomerases functionally redundant, or have they acquired sufficient specialization that they now perform unique biological reactions? In bacteria, there is evidence for both specialization and redundancy in the functions of topoisomerases.  相似文献   

9.
Type II DNA topoisomerases (Topo II) are essential enzymes implicated in key nuclear processes. The recent discovery of a novel kind of Topo II (DNA topoisomerase VI) in Archaea led to a division of these enzymes into two non-homologous families, (Topo IIA and Topo IIB) and to the identification of the eukaryotic protein that initiates meiotic recombination, Spo11. In the present report, we have updated the distribution of all Topo II in the three domains of life by a phylogenomic approach. Both families exhibit an atypical distribution by comparison with other informational proteins, with predominance of Topo IIA in Bacteria, Eukarya and viruses, and Topo IIB in Archaea. However, plants and some Archaea contain Topo II from both families. We confront this atypical distribution with current hypotheses on the evolution of the three domains of life and origin of DNA genomes.  相似文献   

10.
11.
Huai Q  Colandene JD  Chen Y  Luo F  Zhao Y  Topal MD  Ke H 《The EMBO journal》2000,19(12):3110-3118
NAE:I is transformed from DNA endonuclease to DNA topoisomerase and recombinase by a single amino acid substitution. The crystal structure of NAE:I was solved at 2.3 A resolution and shows that NAE:I is a dimeric molecule with two domains per monomer. Each domain contains one potential DNA recognition motif corresponding to either endonuclease or topoisomerase activity. The N-terminal domain core folds like the other type II restriction endonucleases as well as lambda-exonuclease and the DNA repair enzymes MutH and Vsr, implying a common evolutionary origin and catalytic mechanism. The C-terminal domain contains a catabolite activator protein (CAP) motif present in many DNA-binding proteins, including the type IA and type II topoisomerases. Thus, the NAE:I structure implies that DNA processing enzymes evolved from a few common ancestors. NAE:I may be an evolutionary bridge between endonuclease and DNA processing enzymes.  相似文献   

12.
The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea   总被引:6,自引:0,他引:6  
Abstract: Hyperthermophilic archaea exhibit a unique pattern of DNA topoisomerase activities. They have a peculiar enzyme, reverse gyrase, which introduces positive superturns into DNA at the expense of ATP. This enzyme has been found in all hyperthermophiles tested so far (including Bacteria) but never in mesophiles. Reverse gyrases are formed by the association of a helicase-like domain and a 5'-type I DNA topoisomerase. These two domains might be located on the same polypeptide. However, in the methanogenic archaeon Methanopyrus kandleri , the topoisomerase domain is divided between two subunits. Besides reverse gyrase, Archaea contain other type I DNA topoisomerases; in particular, M. kandleri harbors the only known procaryotic 3'-type I DNA topoisomerase (Topo V). Hyperthermophilic archaea also exhibit specific type II DNA topoisomerases (Topo II), i.e. whereas mesophilic Bacteria have a Topo II that produces negative supercoiling (DNA gyrase), the Topo II from Sulfolobus and Pyrococcus lack gyrase activity and are the smallest enzymes of this type known so far. This peculiar pattern of DNA topoisomerases in hyperthermophilic archaea is paralleled by a unique DNA topology, i.e. whereas DNA isolated from Bacteria and Eucarya is negatively supercoiled, plasmidic DNA from hyperthermophilic archaea are from relaxed to positively supercoiled. The possible evolutionary implications of these findings are discussed in this review. We speculate that gyrase activity in mesophiles and reverse gyrase activity in hyperthermophiles might have originated in the course of procaryote evolution to balance the effect of temperature changes on DNA structure.  相似文献   

13.
Bacterial topoisomerases I are generally composed of two domains as follows: a core domain, which contains all the conserved motifs involved in the trans-esterification reactions, and a carboxyl-terminal domain, highly variable in size and sequence. In the present work, we have addressed the question of the respective roles of the two domains in the different steps of the topoisomerization cycle. For this purpose, we prepared various recombinant topoisomerases from two model enzymes: topoisomerase I from the hyperthermophilic bacterium Thermotoga maritima and topoisomerase I from Escherichia coli. We compared the properties of the two core domains to that of the topoisomerases formed by combining the core domain of one enzyme to the carboxyl-terminal domain of the other. We found that, contrary to E. coli (Lima, C. D., Wang, J. C., and Mondragon, A. (1993) J. Mol. Biol. 232, 1213-1216), the core domain from T. maritima (TmTop65) is able to sustain by itself a complete topoisomerization cycle, although with low efficiency. Fusion of TmTop65 to the entire carboxyl-terminal domain from E. coli considerably increases binding efficiency, thermal stability, and DNA relaxation activity. Moreover, the chimera predominantly acquires the cleavage specificity of E. coli full-length topoisomerase. For the chimera obtained by fusion of the T. maritima carboxyl-terminal domain to the core EcTop67, very low DNA relaxation activity and binding are recovered, but formation of a covalent DNA adduct is impaired. Taken together, our results show that the presence and the nature of the carboxyl-terminal domain of bacterial topoisomerases I strongly determine their DNA binding efficiency and cleavage specificity but is not strictly required for strand passage.  相似文献   

14.
ATP-dependent Lon proteases are multi-domain enzymes found in all living organisms. All Lon proteases contain an ATPase domain belonging to the AAA(+) superfamily of molecular machines and a proteolytic domain with a serine-lysine catalytic dyad. Lon proteases can be divided into two subfamilies, LonA and LonB, exemplified by the Escherichia coli and Archaeoglobus fulgidus paralogs, respectively. The LonA subfamily is defined by the presence of a large N-terminal domain, whereas the LonB subfamily has no such domain, but has a membrane-spanning domain that anchors the protein to the cytoplasmic side of the membrane. The two subfamilies also differ in their consensus sequences. Recent crystal structures for several individual domains and sub-fragments of Lon proteases have begun to illuminate similarities and differences in structure-function relationships between the two subfamilies. Differences in orientation of the active site residues in several isolated Lon protease domains point to possible roles for the AAA(+) domains and/or substrates in positioning the catalytic residues within the active site. Structures of the proteolytic domains have also indicated a possible hexameric arrangement of subunits in the native state of bacterial Lon proteases. The structure of a large segment of the N-terminal domain has revealed a folding motif present in other protein families of unknown function and should lead to new insights regarding ways in which Lon interacts with substrates or other cellular factors. These first glimpses of the structure of Lon are heralding an exciting new era of research on this ancient family of proteases.  相似文献   

15.
16.
17.
Summary Intermediate filaments are composed of a family of proteins that evolved from a common ancestor. The proteins consist of three domains: a central, alpha-helical domain similar in all intermediate filaments, bracketed by two domains that are variable in length and structure. Within the intermediate-filament family, several subfamilies have been recognized by immunologic and nucleic acid hybridization techniques. In this paper we present the sequence of the genomic DNA coding for a 65-kilodalton human keratin and compare it with the sequences of other intermediate-filament proteins. While the central, alpha-helical domains of these proteins show homologies that indicate a common ancestor, the sequences of the variable terminal domains indicate that the variable domains evolved through a series of tandem duplications and possibly by gene-conversion mechanisms.  相似文献   

18.
Evolution of the nuclear receptor gene superfamily.   总被引:54,自引:6,他引:48       下载免费PDF全文
V Laudet  C Hnni  J Coll  F Catzeflis    D Sthelin 《The EMBO journal》1992,11(3):1003-1013
  相似文献   

19.
20.
Escherichia coli topoisomerases I and III can decatenate double-stranded DNA (dsDNA) molecules containing single-stranded DNA regions or nicks as well as relax negatively supercoiled DNA. Although the proteins share a mechanism of action and have similar structures, they participate in different cellular processes. Whereas topoisomerase III is a more efficient decatenase than topoisomerase I, the opposite is true for DNA relaxation. In order to investigate the differences in the mechanism of these two prototypical type IA topoisomerases, we studied DNA decatenation at the single-molecule level using braids of intact dsDNA and nicked dsDNA with bulges. We found that neither protein decatenates an intact DNA braid. In contrast, both enzymes exhibited robust decatenation activity on DNA braids with a bulge. The experiments reveal that a main difference between the unbraiding mechanisms of these topoisomerases lies in the pauses between decatenation cycles. Shorter pauses for topoisomerase III result in a higher decatenation rate. In addition, topoisomerase III shows a strong dependence on the crossover angle of the DNA strands. These real-time observations reveal the kinetic characteristics of the decatenation mechanism and help explain the differences between their activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号