首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylethanolamine of 15 degrees C-grown Tetrahymena pyriformis (NT-I) cells contains more polyunsaturated fatty acids than 39.5 degrees C-grown cells. This increase in unsaturation is due to an increase in linoleic (C18 : 2) and linolenic (C18 : 3) acids, and a decrease in myristic (C14 : 0), palmitic (C16 : 0), palmitoleic (C16 : 1) and heptadecanoic (C17 : 0) acids. Compared with 39.5 degrees C-grown cells, the proportion of palmitic acid (C16 : 0) decreased in the 1-position as does at the 2-position in 15 degrees C-grown cells. On the contrary, there is a significant increase in linoleic (C18 : 2 delta 9, 12) and gamma-linolenic (gamma-C18 : 3) acids in the 1- and 2-positions, respectively. Phosphatidylethanolamine has been subfractionated into seven different diglyceride species. In 15 degrees C cells, the amounts of fractions 2 (1-linolenoyl-2-linoleoyl) and 3 (1-linolenoyl-2-palmitoleoyl, 1-linolenoyl-2-oleoyl) increased while there was a great decrease in subfraction 7 (1-myristoyl-2-palmitoleoyl, 1-palmitoyl-2-palmitoleoyl). Since subfractions 1 and 2 contain over 70% linoleic (C18 : 2) and linolenic (C18 : 3) acids, these fractions might be composed mainly of 1-linolenoyl-2-linolenoyl and 1-linolenoyl-2-linoleoyl molecular species at 15 degrees C. These data support evidence that phosphatidylethanolamine would play a principal role as an acceptor of acyl chains for temperature acclimation.  相似文献   

2.
Rat hepatocytes in primary culture were incubated with a mixture of linoleic and arachidonic acid at various total fatty acid/serum albumin molar ratios. Mixed fatty acids were taken up at the same rate and distributed with the same pattern as fatty acids added separately. The rates of total uptake, incorporation into hepatocyte and secreted triacylglycerols and beta-oxidation were linearly related to the fatty acid/albumin ratios, whereas the rate of incorporation into phospholipids was saturable. Neither the uptake rate nor the distribution of both fatty acids considered together varied with the arachidonic acid/linoleic acid molar ratio. Changes in this ratio and in the uptake rate led to significant variations in the respective fate of the fatty acids. The preferential channelling of arachidonic acid versus linoleic acid into beta-oxidation and phosphatidylinositol was greatest at a low uptake rate and then decreased as the uptake rose. Conversely, the preferential channelling of arachidonic acid versus linoleic acid into phosphatidylcholine, but not phosphatidylethanolamine, increased with the uptake rate. Moreover, both arachidonic acid and linoleic acid were preferentially incorporated into the 1-palmitoyl molecular species of phosphatidylcholine and phosphatidylethanolamine at a low uptake rate, and of phosphatidylcholine at a high uptake rate. This could be related to the synthesis of biliary phosphatidylcholine, of which 1-palmitoyl-2-linoleoyl and 1-palmitoyl-2-arachidonoyl are the main molecular species. Linoleic and arachidonic acid were selectively distributed into distinct metabolic pools of triacylglycerol, the intrahepatocyte pool which preferentially incorporated linoleic acid at a low uptake rate and the secreted pool in which the relative enrichment of arachidonic acid increased with the uptake rate. This strengthens the central role of hepatic secretion in the supply of arachidonic acid to peripheral tissues.  相似文献   

3.
The hydrogenation of unsaturated phospholipids by palladium di(sodium alizarine monosulphonate) activated for 5 min under H2 proceeded rapidly at 20 degrees C and 1 atm. H2. Multibilayer liposomes of dioleoyl- and dilinolenoylphosphatidylcholine were hydrogenated at similar rates while dilinoleoyl- and 1-palmitoyl-2-oleoylphosphatidylcholine were hydrogenated at slightly slower rates. The reduction of polyunsaturated fatty acids gave rise to a variety of natural and unnatural positional cis and trans isomers which were largely reduced further to saturated fatty acids as the hydrogenation continued. Dioleoylphosphatidylethanolamine was attacked by the catalyst more slowly at 20 degrees C than was the equivalent phosphatidylcholine molecular species. Experiments conducted using mixtures of phosphatidylethanolamine and phosphatidylcholine in varying proportions also suggested that phospholipids are slightly more susceptible to catalytic hydrogenation in the bilayer phase than in the hexagonalII phase. Understanding the sequence of hydrogenation reactions involving these one and two component lipid preparations is useful in interpreting the action of the palladium catalyst on living cells under the same mild conditions.  相似文献   

4.
Rats were given a diet containing 1% bis(2-ethylhexyl)phthalate (DEHP) for 3 weeks, and their hepatic lipids analyzed. Phosphatidylcholines increased by 20%, while other phospholipid classes and cholesterol remained unchanged and triglycerides fell. The composition of molecular species of phosphatidylcholines was changed. Thus, the hepatic content of the major species, 1-palmitoyl-2-oleoyl-, 1-palmitoyl-2-arachidonoyl- and 1-stearoyl-2-arachidonoylphosphatidylcholines, rose by about 150%, 90% and 70%, respectively. The content of the other major species, 1-palmitoyl-2-linoleoyl- and 1-stearoyl-2-linoleoylphosphatidylcholine fell by about 20% and 30%, respectively. The content of alkyl-acyl analogues of phosphatidylcholines increased by about 70%, but the composition of molecular species remained the same. The composition of molecular species of phosphatidylinositols was also unchanged. Thus, the analyses show that DEHP can induce selective changes in molecular species of certain phospholipids in the liver. This could be important for the functioning of membrane structures in the hepatocyte.  相似文献   

5.
The principal lipids associated with the electron transport membrane of Haemophilus parainfluenzae are phosphatidylethanolamine (78%), phosphatidylmonomethylethanolamine (0.4%), phosphatidylglycerol (18%), phosphatidylcholine (0.4%), phosphatidylserine (0.4%), phosphatidic acid (0.2%), and cardiolipin (3.0%). Phospholipids account for 98.4% of the extractible fatty acids. There are no glycolipids, plasmalogens, alkyl ethers, or lipo amino acid esters in the membrane lipids. Glycerol phosphate esters derived from the phospholipids by mild alkaline methanolysis were identified by their staining reactions, mobility on paper and ion-exchange column chromatography, and by the molar glycerol to phosphate ratios. Eleven diacyl phospholipids can be separated by two-dimensional thin-layer chromatography. Each lipid served as a substrate for phospholipase D, and had a fatty acid to phosphate ratio of 2:1. Each separated diacyl phospholipid was deacylated and the glycerol phosphate ester was identified by paper chromatography in four solvent systems. Of the 11 separated phospholipids, 3 were phosphatidylethanolamines, 2 were phosphatidylserines, and 2 were phosphatidylglycerols. Phosphatidylcholine, cardiolipin, and phosphatidic acid were found at a single location. Phosphatidylmonomethylethanolamine was found with the major phosphatidylethanolamine. Three distinct classes of phospholipids are separable according to their relative fatty acid compositions. (i) The trace lipids consist of two phosphatidylethanolamines, two phosphatidylserines, phosphatidylcholine, phosphatidic acid, and a phosphatidylglycerol. Each lipid represents less than 0.3% of the total lipid phosphate. These lipids are characterized by high proportions of the short (C(10) to C(14)) and long (C(19) to C(22)) fatty acids with practically no palmitoleic acid. (ii) The major phospholipids (93% of the lipid phosphate) are phosphatidylethanolamine, phosphatidylmonomethylethanolamine, and phosphatidylglycerol. These lipids contain a low proportion of the short (C(19)) fatty acids. Palmitic and palmitoleic acids represent over 80% of the total fatty acids. (iii) The fatty acid composition of the cardiolipin is intermediate between the other two classes. Both palmitoleic and the longer fatty acids represent a significant proportion of the total fatty acid.  相似文献   

6.
Model membranes composed of cholesterol plus one of two phosphatidylcholines (PC), each containing a saturated and a dienoic acyl chain, have been studied by differential scanning calorimetry. The gel to liquid-crystalline phase transition temperature of 1-palmitoyl-2-linoleoyl PC was -19.5 degrees C and that of 1-stearoyl-2-linoleoyl PC was -13.7 degrees C. The addition of cholesterol to the phosphatidylcholines in aqueous dispersion resulted in the progressive removal of the phase transition as observed by differential scanning calorimetry. Per mole of sterol in the membrane, cholesterol was more effective at reducing the enthalpy change of the phase transitions of these bilayers containing dienoic phosphatidylcholines than it is in eliminating the transition of membranes made with other phospholipids that contain more saturated chains. No transitions in membranes made with palmitoyl-linoleoyl PC or stearoyl-linoleoyl PC could be detected calorimetrically when 17 mol% cholesterol was present.  相似文献   

7.
The phospholipid composition and the distribution of phospholipids over the two leaflets of the membrane have been investigated for rabbit and horse erythrocyte membranes. Phosphatidylcholine (PC) comprises 39.4% and 41.3% of the total phospholipid complement of the rabbit and horse erythrocytes, respectively. In both membranes the distribution of this phospholipid is asymmetric: 70% of the PC is present in the outer layer of the rabbit membrane and 60% in that of the horse. The major species of this phospholipid class are the (1-palmitoyl-2-oleoyl)- and the (1-palmitoyl-2-linoleoyl)PC. The disaturated species, (1,2-dipalmitoyl)PC, is present in limited amounts only. Partial replacement of the native PC from intact erythrocytes was accomplished with a purified PC specific transfer protein from bovine liver. Replacement of the native PC species with (1-palmitoyl-2-oleoyl)PC up to 40% of the total PC complement had no effect on the osmotic fragility, the shape and the in vivo survival time of both erythrocyte species. Replacement of the native PC in both rabbit and horse erythrocytes with (1,2-dipalmitoyl)PC up to 20% gave rise to an increased osmotic fragility, a shape change from discocytic to echinocytic and a significant reduction in survival time measured after reinjection of the modified cells. At 30% replacement with (1,2-dipalmitoyl)PC the resulting spheroechinocytes appeared to be cleared from the circulation within 24 h after reinjection. The conclusion can be drawn that the repair mechanisms which may exist in vivo are insufficient to cope with the drastic changes in properties of the erythrocyte membrane which are induced by replacing more than 15% of the native PC by the dipalmitoyl species.  相似文献   

8.
The effect of an oxidized form of cholesterol, 3β-hydroxy-5-oxo-5,6-secocholestan-6-al on the thermotropic and structural properties of phospholipid membranes was investigated by differential scanning calorimetry and X-ray diffraction and compared with that of cholesterol. The phospholipids studied included 1-palmitoyl-2-oleoylphosphatidylserine, dipalmitoleoylphosphatidylethanolamine, 1-palmitoyl-2-oleoylphosphatidylethanolamine, dipalmitoleoylphosphatidylcholine, 1-palmitoyl-2-oleoylphosphatidylcholine. Depending on the constituent phospholipids, the oxidized cholesterol is observed to shift phase transitions, disrupt stacking, modify interbilayer spacings and promote increased negative membrane curvature. We determined by absorption spectroscopy that the amino group of phosphatidylserine forms a Schiff base with the aldehyde group of the 3β-hydroxy-5-oxo-5,6-secocholestan-6-al as was previously found for the amino group of phosphatidylethanolamine. This result strengthens the biologically significant finding that not only amino groups of proteins but also amino groups of phospholipids are able to form a Schiff base with oxidized cholesterol. The marked triangular shape of the Schiff base complex with phosphatidylethanolamine may explain how 3β-hydroxy-5-oxo-5,6-secocholestan-6-al can promote increased negative curvature in the hexagonal phase, as compared to cholesterol, even though its increased polarity would favor a location closer to the interface with water.  相似文献   

9.
The effect of choline deficiency on the composition and biosynthesis of the major membrane phospholipids was examined in adrenal medullary cells maintained in suspension cultures. The amount and proportions of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in these cells were not affected by the removal of choline from the culture media. However, the rate of biosynthesis of choline at the phosphatide level by the stepwise methylation of PE increased twofold within 24 h after choline was removed from the culture media, while ethanolamine incorporation into PE was increased by 50%. In contrast, the rate of incorporation of labeled choline into PC, presumably via CDP-choline, was virtually identical in cells that had been preincubated in the presence or absence of 1 mM choline. These results demonstrate that cultured cells of neural origin are capable of compensating for lack of exogenous choline by forming choline at the phosphatide level through the sequential methylation of PE. The hypolipidemic drug, DH-990, when added to the culture media, inhibited conversion of phosphatidylmonomethylethanolamine (PME) to PC, but had no effect on the N-methylation of PE. This differential effect indicates that the initial N-methylation of PE is catalyzed by an enzyme that is distinguishable from the enzyme(s) catalyzing the conversion of PME to PC.  相似文献   

10.
High-throughput lipidomic profiling provides a sensitive approach for discovering minor lipid species. By using an advance in electrospray ionization tandem mass spectrometry, a large set of phospholipid molecular species(126 species)with high resolution were identified from Arabidopsis seedling;of them 31 species are newly identified(16 are unique in plants),including 13 species of phosphatidic acid(PA), nine phosphatidylcholine, six phosphatidylinositol and three phosphatidylserine. Further analysis of the lipidomic profile reveals dynamics of phospholipids and distinct species alterations during seedling development. PA molecules are found at the lowest levels in imbibition and follow an increasing trend during seedling growth, while phosphatidylethanolamine(PE) molecules show the opposite pattern with highest levels at imbibition and a general decreasing trend at later stages. Of PA molecular species, 34:2-, 34:3-, 36:4-, 36:5-, 38:3- and 38:4-PA increase during radicle emergence, and 34:2- and 34:3-PA reach highest levels during hypocotyl and cotyledon emergence from the seed coat. Conversely, molecular species of PE show higher levels in imbibition and decrease in later stages. These results suggest the crucial roles of specific molecular species and homeostasis of phospholipid molecules in seedling growth and provide insights into the mechanisms of how phospholipid molecules are involved in regulating plant development.  相似文献   

11.
We have determined the effect of two exercise-training intensities on the phospholipid profile of both glycolytic and oxidative muscle fibers of female Sprague-Dawley rats using electrospray-ionization mass spectrometry. Animals were randomly divided into three training groups: control, which performed no exercise training; low-intensity (8 m/min) treadmill running; or high-intensity (28 m/min) treadmill running. All exercise-trained rats ran 1,000 m/session for 4 days/wk for 4 wk and were killed 48 h after the last training bout. Exercise training was found to produce no novel phospholipid species but was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in glycolytic (white vastus lateralis) than in oxidative (red vastus lateralis) muscle fibers. The largest observed change was a decrease of approximately 20% in the abundance of 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine [PE(18:0/22:6); P < 0.001] ions in both the low- and high-intensity training regimes in glycolytic fibers. Increases in the abundance of 1-oleoyl-2-linoleoyl phopshatidic acid [PA(18:1/18:2); P < 0.001] and 1-alkenylpalmitoyl-2-linoleoyl phosphatidylethanolamine [plasmenyl PE (16:0/18:2); P < 0.005] ions were also observed for both training regimes in glycolytic fibers. We conclude that exercise training results in a remodeling of phospholipids in rat skeletal muscle. Even though little is known about the physiological or pathophysiological role of specific phospholipid molecular species in skeletal muscle, it is likely that this remodeling will have an impact on a range of cellular functions.  相似文献   

12.
The lipid composition of the plasma membrane isolated from leaves of spring oat (Avena sativa L. cv Ogle) was vastly different from that of winter rye (Secale cereale L. cv Puma). The plasma membrane of spring oat contained large proportions of phospholipids (28.8 mol% of the total lipids), cerebrosides (27.2 mol%), and acylated sterylglucosides (27.3 mol%) with lesser proportions of free sterols (8.4 mol%) and sterylglucosides (5.6 mol%). In contrast, the plasma membrane of winter rye contained a greater proportion of phospholipids (36.6 mol%), and there was a lower proportion of cerebrosides (16.4 mol%); free sterols (38.1 mol%) were the predominant sterols, with lesser proportions of sterylglucosides (5.6 mol%) and acylated sterylglucosides (2.9 mol%). Although the relative proportions of individual phospholipids, primarily phosphatidylcholine and phosphatidylethanolamine, and the molecular species of these two phospholipids were similar in oat and rye, the relative proportions of di-unsaturated species of these two phospholipids were substantially lower in oat than in rye. The relative proportions of sterol species in oat were different from those in rye; the molecular species of cerebrosides were similar in oat and rye, with only slight differences in the proportions of the individual species. After 4 weeks of cold acclimation, the proportion of phospholipids increased significantly in both oat (from 28.8 to 36.8 mol%) and rye (from 36.6 to 43.3 mol%) as a result of increases in the proportions of phosphatidylcholine and phosphatidylethanolamine. For both oat and rye, the relative proportions of di-unsaturated species increased after cold acclimation, but the increase was greater in rye than in oat. In both oat and rye, this increase occurred largely during the first week of cold acclimation. During the 4 weeks of cold acclimation, there was a progressive decrease in the proportion of cerebrosides in the plasma membrane of rye (from 16.4 to 10.5 mol%), but there was only a small decrease in oat (from 27.2 to 24.2 mol%). In both oat and rye, there were only small changes in the proportions of free sterols and sterol derivatives during cold acclimation. Consequently, the proportions of both acylated sterylglucosides and cerebrosides remained substantially higher in oat than in rye after cold acclimation. The relationship between these differences in the plasma membrane lipid composition of oat and rye and their freezing tolerance is presented.  相似文献   

13.
Phospholipid turnover in soybean tissue cultures   总被引:4,自引:4,他引:0       下载免费PDF全文
Moore TS 《Plant physiology》1977,60(5):754-758
The degradation rates of phospholipids in soybean (Glycine max L. Merrill) suspension cultures were studied by pulse-chase experiments. The only chloroform-soluble product of incorporation of radioactive choline was phosphatidylcholine, the bulk of which had a half-life of 36 hours. Ethanolamine was incorporated primarily into phosphatidylethanolamine, phosphatidylcholine at an intermediate level, and phosphatidylmonomethylethanolamine to a small extent. The phosphatidylethanolamine decayed in a triphasic fashion with half-lives of 12, 34, and 136 hours. Phosphatidylcholine in this case increased in radioactivity up to day 4 and thereafter declined with a 92-hour half-life. The radioactivity rose slightly to day 4 in phosphatidylmonomethylethanolamine after an initial rapid decline. When serine was used as a substrate, half-lives similar to those obtained with ethanolamine were obtained. Phosphatidylcholine contained the greatest amount of label, however, with phosphatidylethanolamine containing slightly less, and phosphatidylserine contained the least. Data also are presented for glycerol and acetate phospholipid product degradation.  相似文献   

14.
Long-chain polyunsaturated fatty acids (PUFAs) accumulate in mammalian testis during puberty and are essential for fertility. To investigate whether lysophospholipid acyltransferases determine the PUFA composition of testicular phospholipids during pubertal development, we compared their mRNA expression, in vitro activity, and specificity with the lipidomic profile of major phospholipids. The accumulation of PUFAs in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine correlated with an induced lysophosphatidic acid acyltransferase (LPAAT)3 mRNA expression, increased microsomal LPAAT3 activity, and shift of LPAAT specificity to PUFA-coenzyme A. LPAAT3 was induced during germ cell maturation, as shown by immunofluorescence microscopy. Accordingly, differentiation of mouse GC-2spd(ts) spermatocytes into spermatides up-regulated LPAAT3 mRNA, increased the amount of polyunsaturated phospholipids, and shifted the specificity for the incorporation of deuterium-labeled docosahexaenoic acid toward phosphatidylcholine and phosphatidylethanolamine. Stable knockdown of LPAAT3 in GC-2spd(ts) cells significantly decreased microsomal LPAAT3 activity, reduced levels of polyunsaturated phosphatidylethanolamine species, and impaired cell proliferation/survival during geneticin selection. We conclude that the induction of LPAAT3 during germ cell development critically contributes to the accumulation of PUFAs in testicular phospholipids, thereby possibly affecting sperm cell production.  相似文献   

15.
(1) Krebs II ascites cells were taken as a model of the neoplastic cells to investigate the transverse distribution of phospholipids in the plasma membrane. The experimental procedure was based on non-lytic degradation of phospholipids in the intact cell by Naja naja phospholipase A2 and Staphylococcus aureus sphingomyelinase C and on phospholipid analysis of purified plasma membranes. It was shown that the three major phospholipids, i.e., phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, are randomly distributed between the two halves of the membranes, whereas phosphatidylserine remains located in the inner leaflet. (2) The membrane localization of phosphatidylcholine and phosphatidylethanolamine subclasses (diacyl, alkylacyl and alkenylacyl) was also examined, using a new procedure of ether-phospholipid determination. The method involves a selective removal of diacyl species by guinea pig pancreas phospholipase A1 and of alkenylacyl species by acidolysis. This analysis revealed a 50% increase of ether phospholipids in the plasma membrane as compared to the whole cell (36.5 and 23.1% of total phospholipid, respectively). Furthermore, a strong membrane asymmetry was demonstrated for the three phosphatidylcholine subclasses, since 1-alkyl-2-acyl-sn-glycerol-3-phosphocholine (alkylacyl-GPC) was entirely found in the inner leaflet, whereas both diacyl- and alkenylacyl-GPC displayed an external localization. The same pattern was observed for phosphatidylethanolamine subclasses, except for 1-alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine, which was found randomly distributed. These results are discussed in relation to the process of cell malignant transformation and to the biosynthesis of platelet-activating factor (PAF-acether or 1-alkyl-2-acetyl-GPC).  相似文献   

16.
The outer membrane of Escherichia coli K-12 contained a smaller proportion of phospholipid molecular species with two unsaturated fatty acyl chains than did the cytoplasmic membrane. Proportions of phospholipid molecular species in the outer and cytoplasmic membranes changed in response to temperature changes. As the temperature increased, the content of 1-palmitoyl-2-cis-9,10-methylenehexadecanoyl species increased. Translocation of phospholipids from the cytoplasmic membrane to the outer membrane and synthesis of various molecular species were observed.  相似文献   

17.
Phospholipids isolated from the plasma of monkeys fed a diet enriched in fish oil were poor substrates for cholesteryl ester (CE) synthesis by the lecithin:cholesterol acyltransferase (LCAT) reaction relative to those from animals fed a lard containing diet when the phospholipids were used for the preparation of recombinant particles by cholate dialysis (Parks, J. S., B. C. Bullock, and L. L. Rudel. 1989. J. Biol. Chem. 264: 2545-2551). The purpose of the present study was to directly test the influence of eicosapentaenoic acid (20:5 n-3) and docosahexaenoic acid (22:6 n-3) in the sn-2 position of phosphatidylcholine (PC) on the activity of LCAT. PC species containing 1-palmitoyl-2-oleoyl PC (POPC), 1-palmitoyl-2-linoleoyl PC (PLPC), 1-palmitoyl-2-arachidonoyl PC (PAPC), 1-palmitoyl-2-eicosapentaenoyl PC (PEPC), or 1-palmitoyl-2-docosahexaenoyl PC (PDPC) were purchased or synthesized and made into recombinant particles of uniform size and composition with [14C]cholesterol and apoA-I using the cholate dialysis procedure. The recombinant particles (PC:cholesterol:apoA-I molar ratio = 42:1.9:1) exhibited the following order of reactivity towards purified human LCAT in vitro: POPC greater than PLPC greater than PEPC = PAPC greater than PDPC. The apparent Vmax/Km for recombinant particles containing PEPC and PDPC was 17% and 7% that of particles containing POPC, respectively. There was a linear decrease in CE formation when the percentage of PEPC or PDPC was increased from 0 to 100% relative to POPC in recombinant particles with a constant PC:cholesterol:apoA-I molar ratio, suggesting that the PEPC and PDPC were competitive inhibitors of the LCAT reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The CDP-ethanolamine branch of the Kennedy pathway is the major route for the formation of ethanolamine-derived phospholipids, including diacyl phosphatidylethanolamine and alkenylacyl phosphatidylethanolamine derivatives, known as plasmalogens. Ethanolamine phospholipids are essential structural components of the cell membranes and play regulatory roles in cell division, cell signaling, activation, autophagy, and phagocytosis. The physiological importance of plasmalogens has not been not fully elucidated, although they are known for their antioxidant properties and deficiencies in a number of inherited peroxisomal disorders. This review highlights important aspects of ethanolamine phospholipid metabolism and reports current molecular information on 1 of the regulatory enzymes in their synthesis, CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Pcyt2 is encoded by a single, nonredundant gene in animal species that could be alternatively spliced into 2 potential protein products. We describe properties of the mouse and human Pcyt2 genes and their regulatory promoters and provide molecular evidence for the existence of 2 distinct Pcyt2 proteins. The goal is to obtain more insight into Pcyt2 catalytic function and regulation to facilitate a better understanding of the production of ethanolamine phospholipids via the CDP-ethanolamine branch of the Kennedy pathway.  相似文献   

19.
Murine neuroblastoma cells (clone N-2A) grown in suspension (spinner cells) or attached on a plastic surface (monolayer cells) were used in studies of the phospholipid and cholesterol composition of whole cells, primary plasma membranes, plasma membranes internalized during phagocytosis of polystyrene latex beads, mitochondria and microsomes. Monolayer cells contained higher concentrations of total phospholipid, phosphatidylserine and phosphatidylcholine, and lower concentration of phosphatidylethanolamine than spinner cells. The cholesterol levels and the relative proportions of the various phospholipids were similar in both cell types except phosphatidylethanolamine and sphingomyelin whose proportions were lower in monolayer cells. The primary plasma membranes of the two cell types differed significantly in the relative proportions of all phospholipids, except sphingomyelin, and the phospholipid to protein and the cholesterol to protein ratios were all higher in the membranes of spinner cells. In contrast to these results, all the phospholipid to protein and the cholesterol to protein ratios of the internalized plasma membranes were higher in monolayer than in spinner cells, and the proportions of all phospholipids, except phosphatidylethanolamine, were similar in both cell types. The membrane distributions of individual phospholipids and cholesterol were inferred from comparison of the phospholipid and cholesterol compositions of primary plasma membranes and plasma membranes internalized during phagocytosis of polystyrene beads. The results are consistent with a non-random distribution of most phospholipids in both spinner and monolayer cells, but the patterns of these distributions were different in the two cell types. With regard to cholesterol the results are compatible with a random or a heterogeneous distribution. All the phospholipid to protein ratios of the mitochondrial fraction of both cell types were lower than those of the plasma membranes. However, these ratios of the microsomal fraction were higher than those of the plasma membranes of monolayer cells, whereas they were comparable, with a few exceptions, to those of spinner cell membranes. The cholesterol to phospholipid molar ratios of plasma membranes were 6.4 and 4.3 fold greater than those of the mitochondrial and microsomal fractions, respectively.  相似文献   

20.
The glycerophospholipids of cultures of Neurospora crassa were extracted, deacylated, and analyzed. In addition to a wild-type strain, several auxotrophic mutant strains were examined: chol-1 (defective S-adenosylmethionine: phosphatidylethanolamine methyltransferase), chol-2 (defective S-adenosyl methionine:phosphatidylmonomethylethanolamine (dimethylethanolamine) methyltransferase), and inos (defective myoinositol-1-phosphate phosphatase). In addition, a double mutant strain, chol-1;chol-2, was constructed. Cultures of the mutant strains grown with concentrations of supplement(s) just adequate to support growth had bizarre phospholipid compositions. By appropriate choice of mutant and supplement(s), it was possible to vary the relative level of every phospholipid of the organism, with the exception of cardiolipin. The maximum ranges encountered for the zwitterionic species, expressed as per cent of total phospholipid phosphorus, were lecithin (0.9 to 53.1%), phosphatidyldimethylethanolamine (0.0 to 55.5%), phosphatidylmonomethylethanolamine (0.0 to 53.9%), and phosphatidylethanolamine (9.8 to 43.3%). For the anionic species, the ranges were phosphatidylserine (1.7 to 10.4%) and phosphatidylinositol (3.6 to 25.1%). Despite the wide variation of the relative proportions of the individual phospholipid species, five quantities remained constant: the cardiolipin content, the total phospholipid content, the total content of the zwitterionic species, the total content of the anionic species, and the ratio of the zwitterionic to anionic totals. The data suggest the existence of an internal compensation mechanism, the net effect of which is maintenance of a fairly constant contribution by the phospholipid components to the over-all membrane charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号