首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinkovska, Sophia, and Debra A. Kirby.Intracerebroventricular propranolol prevented vascular resistanceincreases on arousal from sleep apnea. J. Appl.Physiol. 82(5): 1637-1643, 1997.Despite theincreased risk of sudden cardiac death associated with sleep apnea,little is known about mechanisms controlling cardiovascular responsesto sleep apnea and arousal. Chronically instrumented pigs were used toinvestigate the effects of airway obstruction (AO) duringrapid-eye-movement (REM) and non-REM (NREM) sleep and arousal on meanarterial pressure (MAP), heart rate (HR), cardiac output (CO), andtotal peripheral resistance (TPR). A stainless steelcannula was implanted in the lateral cerebral ventricle. During REMsleep, HR was 133 ± 10 beats/min, MAP was 65 ± 3 mmHg, CO was1,435 ± 69 ml/min, and TPR was 0.046 ± 0.004 mmHg · ml1 · min.During AO, CO decreased by 90 ± 17 ml/min(P < 0.05). On arousal from AO, MAPincreased by 15 ± 3 mmHg, HR increased by 10 ± 3 beats/min, andTPR increased by 0.008 ± 0.001 mmHg · ml1 · min(all P < 0.05). Changes during NREMwere similar but were more modest during AO. After theintracerebroventricular administration of propranolol (50 µg/kg; a-adrenoreceptor blocking agent), decreases in CO during AO andincreases in HR during arousal were intact, but increases in MAP andTPR were no longer significant. These data suggest thatvascular responses to AO during sleep may be regulated in part by-adrenergic receptors in the central nervous system.

  相似文献   

2.
Videbaek, Regitze, and Peter Norsk. Atrialdistension in humans during microgravity induced by parabolic flights.J. Appl. Physiol. 83(6):1862-1866, 1997.The hypothesis was tested that human cardiacfilling pressures increase and the left atrium is distended during 20-speriods of microgravity (µG) created by parabolic flights, comparedwith values of the 1-G supine position. Left atrial diameter(n = 8, echocardiography) increasedsignificantly during µG from 26.8 ± 1.2 to 30.4 ± 0.7 mm(P < 0.05). Simultaneously, centralvenous pressure (CVP; n = 6, transducer-tipped catheter) decreased from 5.8 ± 1.5 to 4.5 ± 1.1 mmHg (P < 0.05), and esophageal pressure (EP; n = 6) decreased from1.5 ± 1.6 to 4.1 ± 1.7 mmHg (P < 0.05). Thus transmural CVP(TCVP = CVP  EP; n = 4)increased during µG from 6.1 ± 3.2 to 10.4 ± 2.7 mmHg(P < 0.05). It is concluded thatshort periods of µG during parabolic flights induce an increase inTCVP and left atrial diameter in humans, compared with the resultsobtained in the 1-G horizontal supine position, despite a decrease inCVP.

  相似文献   

3.
Fritsch-Yelle, Janice M., Peggy A. Whitson, Roberta L. Bondar, and Troy E. Brown. Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight.J. Appl. Physiol. 81(5):2134-2141, 1996.Postflight orthostatic intolerance isexperienced by virtually all astronauts but differs greatly in degreeof severity. We studied cardiovascular responses to upright posture in40 astronauts before and after spaceflights lasting up to 16 days. Weseparated individuals according to their ability to remain standingwithout assistance for 10 min on landing day. Astronauts who could notremain standing on landing day had significantly smaller increases inplasma norepinephrine levels with standing than did those who couldremain standing (105 ± 41 vs. 340 ± 62 pg/ml;P = 0.05). In addition, they hadsignificantly lower standing peripheral vascular resistance (23 ± 3 vs. 34 ± 3 mmHg · l1 · min;P = 0.02) and greater decreases insystolic (28 ± 4 vs. 11 ± 3 mmHg;P = 0.002) and diastolic (14 ± 7 vs. 3 ± 2 mmHg; P = 0.0003) pressures. The presyncopal group also hadsignificantly lower supine (16 ± 1 vs. 21 ± 2 mmHg · l1 · min;P = 0.04) and standing (23 ± 2 vs.32 ± 2 mmHg · l1 · min;P = 0.038) vascular resistance, supine(66 ± 2 vs. 73 ± 2 mmHg; P = 0.008) and standing (69 ± 4 vs. 77 ± 2 mmHg;P = 0.007) diastolic pressure, andsupine (109 ± 3 vs. 114 ± 2 mmHg; P = 0.05) and standing (99 ± 4 vs. 108 ± 3 mmHg; P = 0.006) systolic pressures before flight. This is the first study toclearly document these differences among presyncopal and nonpresyncopalastronauts after spaceflight and also offer the possibility ofpreflight prediction of postflight susceptibility. These resultsclearly point to hypoadrenergic responsiveness, possibly centrallymediated, as a contributing factor in postflight orthostaticintolerance. They may provide insights into autonomic dysfunction inEarthbound patients.

  相似文献   

4.
Isnard, Richard, Philippe Lechat, Hanna Kalotka, HafidaChikr, Serge Fitoussi, Joseph Salloum, Jean-Louis Golmard, Daniel Thomas, and Michel Komajda. Muscular blood flow response to submaximal leg exercise in normal subjects and in patients with heartfailure. J. Appl. Physiol. 81(6):2571-2579, 1996.Blood flow to working skeletal muscle is usuallyreduced during exercise in patients with congestive heart failure. Anintrinsic impairment of skeletal muscle vasodilatory capacity has beensuspected as a mechanism of this muscle underperfusion during maximalexercise, but its role during submaximal exercise remains unclear.Therefore, we studied by transcutaneous Doppler ultrasonography thearterial blood flow in the common femoral artery at rest and during asubmaximal bicycle exercise in 12 normal subjects and in 30 patientswith heart failure. Leg blood flow was lower in patientsthan in control subjects at rest [0.29 ± 0.14 (SD) vs. 0.45 ± 0.14 l/min, P < 0.01], at absolute powers and at the same relative power (2.17 ± 1.06 vs. 4.39 ± 1.4 l/min, P < 0.001). Because mean arterial pressure was maintained, leg vascularresistance was higher in patients than in control subjects at rest (407 ± 187 vs. 247 ± 71 mmHg · l1 · min,P < 0.01) and at thesame relative power (73 ± 49 vs. 31 ± 13 mmHg · l1 · min,P < 0.01) but not at absolutepowers. Although the magnitude of increase in leg blood flow correctedfor power was similar in both groups (31 ± 10 vs. 34 ± 10 ml · min1 · W1),the magnitude of decrease of leg vascular resistance corrected forpower was higher in patients than in control subjects (5.9 ± 3.3 vs. 1.9 ± 0.94 mmHg · l1 · min · W1,P < 0.001). These results suggestthat the ability of skeletal muscle vascular resistance to decrease isnot impaired and that intrinsic vascular abnormalities do not limitvasodilator response to submaximal exercise in patients with heartfailure.

  相似文献   

5.
Baroreceptor control of the cutaneous active vasodilator system   总被引:2,自引:0,他引:2  
Crandall, C. G., J. M. Johnson, W. A. Kosiba, and D. L. Kellogg, Jr. Baroreceptor control of the cutaneous activevasodilator system. J. Appl. Physiol.81(5): 2192-2198, 1996.We sought to identify whether reductionsin cutaneous active vasodilation during simulated orthostasis could beassigned solely to cardiopulmonary or to carotid baroreflexes byunloading cardiopulmonary baroreceptors with low levels of lower bodynegative pressure (LBNP) or unloading carotid baroreceptors withexternal pressure applied over the carotid sinus area [carotidpressure (CP)]. Skin blood flow was measured at a site at whichadrenergic function was blocked via bretylium tosylate iontophoresisand at an unblocked site. During LBNP of 5 and10 mmHg in hyperthermia, neither heart rate (HR) nor cutaneousvascular conductance (CVC) at either site changed (P > 0.05 for both), whereas forearmvascular conductance (FVC) was reduced (5 mmHg: from 21.6 ± 4.8 to 19.8 ± 4.1 FVC units, P = 0.05; 10 mmHg: from 22.3 ± 4.0 to 19.3 ± 3.7 FVC units,P = 0.002). LBNP of 30 mmHg inhyperthermia reduced CVC at both sites (untreated: from 51.9 ± 5.7 to 43.2 ± 5.1% maximum, P = 0.02;bretylium tosylate: from 60.9 ± 5.4 to 53.2 ± 4.4% maximum, P = 0.02), reduced FVC (from 23.2 ± 3.6 to 18.1 ± 3.3 FVC units; P = 0.002), and increased HR (from 83 ± 4 to 101 ± 3 beats/min; P = 0.003). Pulsatile CP (45 mmHg) did not affect FVC or CVC during normothermia or hyperthermia (P > 0.05). However, HR and mean arterial pressure were elevated during CPin both thermal conditions (both P < 0.05). These results suggest that neither selective low levels ofcardiopulmonary baroreceptor unloading nor selective carotidbaroreceptor unloading can account for the inhibition of cutaneousactive vasodilator activity seen with simulated orthostasis.

  相似文献   

6.
Edwards, N., I. Wilcox, O. J. Polo, and C. E. Sullivan.Hypercapnic blood pressure response is greater during the luteal phase of the menstrual cycle. J. Appl.Physiol. 81(5): 2142-2146, 1996.We investigatedthe cardiovascular responses to acute hypercapnia during the menstrualcycle. Eleven female subjects with regular menstrual cycles performedhypercapnic rebreathing tests during the follicular and luteal phasesof their menstrual cycles. Ventilatory and cardiovascular variableswere recorded breath by breath. Serum progesterone and estradiol weremeasured on each occasion. Serum progesterone was higher during theluteal [50.4 ± 9.6 (SE) nmol/l] than during thefollicular phase (2.1 ± 0.7 nmol/l;P < 0.001), but serum estradiol didnot differ (follicular phase, 324 ± 101 pmol/l; luteal phase, 162 ± 71 pmol/l; P = 0.61). Thesystolic blood pressure responses during hypercapnia were 2.0 ± 0.3 and 4.0 ± 0.5 mmHg/Torr (1 Torr = 1 mmHg rise inend-tidal PCO2) during the follicularand luteal phases, respectively, of the menstrual cycle(P < 0.01). The diastolic bloodpressure responses were 1.1 ± 0.2 and 2.1 ± 0.3 mmHg/Torrduring the follicular and luteal phases, respectively(P < 0.002). Heart rate responses did not differ during the luteal (1.7 ± 0.3 beats · min1 · Torr1)and follicular phases (1.4 ± 0.3 beats · min1 · Torr1;P = 0.59). These data demonstrate agreater pressor response during the luteal phase of the menstrual cyclethat may be related to higher serum progesterone concentrations.

  相似文献   

7.
Lang, Chim C., Don B. Chomsky, Javed Butler, Shiv Kapoor,and John R. Wilson. Prostaglandin production contributes toexercise-induced vasodilation in heart failure. J. Appl. Physiol. 83(6): 1933-1940, 1997.Endothelial release of prostaglandins may contribute toexercise-induced skeletal muscle arteriolar vasodilation in patientswith heart failure. To test this hypothesis, we examined the effect ofindomethacin on leg circulation and metabolism in eight chronic heartfailure patients, aged 55 ± 4 yr. Central hemodynamics and legblood flow, determined by thermodilution, and leg metabolic parameterswere measured during maximum treadmill exercise before and 2 h afteroral administration of indomethacin (75 mg). Leg release of6-ketoprostaglandin F1 was alsomeasured. During control exercise, leg blood flow increased from 0.34 ± 0.03 to 1.99 ± 0.19 l/min(P < 0.001), legO2 consumption from 13.6 ± 1.8 to 164.5 ± 16.2 ml/min (P < 0.001), and leg prostanoid release from 54.1 ± 8.5 to267.4 ± 35.8 pg/min (P < 0.001).Indomethacin suppressed release of prostaglandinF1(P < 0.001) throughout exercise anddecreased leg blood flow during exercise(P < 0.05). This was associated witha corresponding decrease in leg O2 consumption (P < 0.05) and a higher level offemoral venous lactate at peak exercise(P < 0.01). These data suggest thatrelease of vasodilatory prostaglandins contributes to skeletal musclearteriolar vasodilation in patients with heart failure.

  相似文献   

8.
Rapid eyemovements during rapid-eye-movement (REM) sleep are associated withrapid, shallow breathing. We wanted to know whether thiseffect persisted during increased respiratory drive byCO2. In eight healthy subjects, werecorded electroencephalographic, electrooculographic, andelectromyographic signals, ventilation, and end-tidalPCO2 during the night. InspiratoryPCO2 was changed to increaseend-tidal PCO2 by 3 and 6 Torr. During normocapnia, rapid eye movements were associated with a decreasein total breath time by 0.71 ± 0.19 (SE) s(P < 0.05) because of shortenedexpiratory time (0.52 ± 0.08 s,P < 0.001) and with a reduced tidalvolume (89 ± 27 ml, P < 0.05) because of decreased rib cage contribution (75 ± 18 ml, P < 0.05). Abdominal (11 ± 16 ml, P = 0.52) and minuteventilation (0.09 ± 0.21 ml/min, P = 0.66) did not change. Inhypercapnia, however, rapid eye movements were associated with afurther shortening of total breath time. Abdominal breathing was alsoinhibited (79 ± 23 ml, P < 0.05), leading to a stronger inhibition of tidal volume and minuteventilation (1.84 ± 0.54 l/min,P < 0.05). We conclude thatREM-associated respiratory changes are even more pronounced duringhypercapnia because of additional inhibition of abdominal breathing.This may contribute to the reduction of the hypercapnic ventilatory response during REM sleep.

  相似文献   

9.
To simulate theimmediate hemodynamic effect of negative intrathoracic pressure duringobstructive apneas in congestive heart failure (CHF), without inducingconfounding factors such as hypoxia and arousals from sleep, eightawake patients performed, at random, 15-s Mueller maneuvers (MM) attarget intrathoracic pressures of 20 (MM 20) and40 cmH2O (MM 40),confirmed by esophageal pressure, and 15-s breath holds, as apneic timecontrols. Compared with quiet breathing, at baseline, before theseinterventions, the immediate effects [first 5 cardiac cycles(SD), P values refer to MM 40compared with breath holds] of apnea, MM 20, and MM 40 were, for left ventricular (LV) systolic transmural pressure (Ptm), 1.0 ± 1.9, 7.2 ± 3.5, and 11.3 ± 6.8 mmHg(P < 0.01); for systolic bloodpressure (SBP), 2.9 ± 2.6, 5.5 ± 3.4, and 12.1 ± 6.8 mmHg (P < 0.01); and forstroke volume (SV) index, 0.4 ± 2.8, 4.1 ± 2.8, and6.9 ± 2.3 ml/m2(P < 0.001), respectively.Corresponding values over the last five cardiac cycles were for LVPtm6.4 ± 4.4, 5.4 ± 6.6, and 4.5 ± 9.1 mmHg (P < 0.01); for SBP6.9 ± 4.2, 8.2 ± 7.7, and 24.2 ± 6.9 mmHg (P < 0.01); and for SVindex 0.4 ± 2.1, 5.2 ± 2.8, and 9.2 ± 4.8 ml/m2(P < 0.001), respectively.Thus, in CHF patients, the initial hemodynamic response to thegeneration of negative intrathoracic pressure includes an immediateincrease in LV afterload and an abrupt fall in SV. The magnitude ofresponse is proportional to the intensity of the MM stimulus. By theend of a 15-s MM 40, LVPtm falls below baseline values, yet SVand SBP do not recover. Thus, when 40cmH2O intrathoracic pressure issustained, additional mechanisms, such as a drop in LV preload due toventricular interaction, are engaged, further reducing SV. The neteffect of MM 40 was a 33% reduction in SV index (from 27 to 18 ml/min2), and a 21% reductionin SBP (from 121 to 96 mmHg). Obstructive apneas can have adverseeffects on systemic and, possibly, coronary perfusion in CHF throughdynamic mechanisms that are both stimulus and timedependent.

  相似文献   

10.
Young[n = 5, 30 ± 5 (SD) yr] andmiddle-aged (n = 4, 58 ± 4 yr) menand women performed single-leg knee-extension exercise inside a wholebody magnetic resonance system. Two trials were performed 7 days apartand consisted of two 2-min bouts and a third bout continued toexhaustion, all separated by 3 min of recovery.31P spectra were used to determinepH and relative concentrations ofPi, phosphocreatine (PCr), and-ATP every 10 s. The subjects consumed 0.3 g · kg1 · day1of a placebo (trial 1) or creatine(trial 2) for 5 days before eachtrial. During the placebo trial, the middle-aged group had a lowerresting PCr compared with the young group (35.0 ± 5.2 vs. 39.5 ± 5.1 mmol/kg, P < 0.05) and alower mean initial PCr resynthesis rate (18.1 ± 3.5 vs. 23.2 ± 6.0 mmol · kg1 · min1,P < 0.05). After creatinesupplementation, resting PCr increased 15%(P < 0.05) in the young group and30% (P < 0.05) in the middle-aged group to 45.7 ± 7.5 vs. 45.7 ± 5.5 mmol/kg, respectively. Mean initial PCr resynthesis rate also increased in the middle-aged group(P < 0.05) to a level not differentfrom the young group (24.3 ± 3.8 vs. 24.2 ± 3.2 mmol · kg1 · min1).Time to exhaustion was increased in both groups combined after creatinesupplementation (118 ± 34 vs. 154 ± 70 s,P < 0.05). In conclusion, creatinesupplementation has a greater effect on PCr availability andresynthesis rate in middle-aged compared with youngerpersons.

  相似文献   

11.
To determine whether dynamiccerebral autoregulation is impaired during orthostatic stress, cerebralblood flow (CBF) velocity in the middle cerebral artery (transcranialDoppler) and mean arterial pressure (MAP; Finapres) were measuredcontinuously in 12 healthy subjects during ramped maximal lower bodynegative pressure (LBNP) to presyncope. Velocity andpressure were averaged over 6-min periods of stable data at rest andduring LBNP to examine steady-state cerebral hemodynamics. Beat-to-beatvariability of velocity and pressure were quantified by a "variationindex" (oscillatory amplitude/steady-state mean value) and by powerspectral analysis. The dynamic relationship between changes in pressureand velocity was evaluated by the estimates of transfer and coherencefunction. The results of the study were as follows.Steady-state MAP remained relatively constant during LBNP, whereas CBFvelocity decreased progressively by 6, 15, and 21% at 30,40, and 50 mmHg LBNP, respectively(P < 0.05 compared withbaseline). At the maximal level of LBNP (30 s beforepresyncope) MAP decreased by 9.4% in association with a prominentreduction in velocity by 24% (P < 0.05 compared with baseline). The variation index of pressure increasedsignificantly from 3.8 ± 0.3% at baseline to 4.5 ± 0.6% at50 mmHg LBNP in association with an increase in the variation index of velocity from 6.0 ± 0.6 to 8.4 ± 0.7%(P < 0.05). Consistently, the low-(0.07-0.20 Hz) and high-frequency (0.20-0.30 Hz) power ofvariations in pressure and velocity increased significantly at highlevels of LBNP (P < 0.05) inassociation with an increase in transfer function gain (24% at50 mmHg, P < 0.05). We conclude that the damping effects ofautoregulation on variations in CBF velocity are diminishedduring orthostatic stress in association with substantial falls insteady-state CBF velocity. We suggest that these changes may contributein part to the development of presyncope.

  相似文献   

12.
Lang, Sally A., and Michael B. Maron.Effect of neuropeptide Y on hemodynamics of the rabbit lung.J. Appl. Physiol. 84(2): 618-623, 1998.We evaluated the effect of neuropeptide Y (NPY) on thehemodynamics of the isolated rabbit lung perfused at constant flow andoutflow pressure. Doses of108 and10 7 M NPY increasedpulmonary arterial pressure (Ppa) from 11.5 ± 1.0 (SE) mmHg to,respectively, 16.4 ± 1.5 and 26.0 ± 3.8 mmHg (P < 0.05, n = 5 mmHg lungs), with 78 ± 4%of the increase at 107 Mresulting from an increased arterial resistance. At the latter dose,pulmonary capillary pressure increased from 5.8 ± 0.9 to 9.4 ± 1.0 mmHg (P < 0.05). Whenadministered in the presence of norepinephrine,108 and107 M NPY(n = 6) produced extreme increases inPpa to 66.1 ± 20.5 and 114.7 ± 25.5 mmHg, respectively, thatwere due primarily to an increased arterial resistance. To determinethe significance of circulating NPY as a pulmonary vasoactive agent, wemeasured plasma NPY-like immunoreactivity in anesthetized rabbits after massively activating the sympathetic nervous system with veratrine. NPY-like immunoreactivity increased from 74 ± 10 to 111 ± 10 (SE) pM (P < 0.05). Thus,although NPY is a potent vasoconstrictor in the rabbit lung, it is notlikely that plasma NPY concentrations rise sufficiently, even aftermassive sympathetic nervous system activation, to produce pulmonaryvasoconstriction in the intact rabbit.

  相似文献   

13.
Dietz, Niki M., John R. Halliwill, John M. Spielmann, LoriA. Lawler, Bettina G. Papouchado, Tamara J. Eickhoff, and Michael J. Joyner. Sympathetic withdrawal and forearm vasodilation duringvasovagal syncope in humans. J. Appl.Physiol. 82(6): 1785-1793, 1997.Our aim was todetermine whether sympathetic withdrawal alone can account for theprofound forearm vasodilation that occurs during syncope in humans. Wealso determined whether either vasodilating 2-adrenergic receptors ornitric oxide (NO) contributes to this dilation. Forearm blood flow wasmeasured bilaterally in healthy volunteers(n = 10) by using plethysmographyduring two bouts of graded lower body negative pressure (LBNP) tosyncope. In one forearm, drugs were infused via a brachial arterycatheter while the other forearm served as a control. In the controlarm, forearm vascular resistance (FVR) increased from 77 ± 7 unitsat baseline to 191 ± 36 units with 40 mmHg of LBNP(P < 0.05). Mean arterial pressurefell from 94 ± 2 to 47 ± 4 mmHg just before syncope, and allsubjects demonstrated sudden bradycardia at the time of syncope. At theonset of syncope, there was sudden vasodilation and FVR fell to 26 ± 6 units (P < 0.05 vs. baseline). When the experimental forearm was treated withbretylium, phentolamine, and propranolol, baseline FVR fell to 26 ± 2 units, the vasoconstriction during LBNP was absent, and FVR fellfurther to 16 ± 1 units at syncope(P < 0.05 vs. baseline). During thesecond trial of LBNP, mean arterial pressure again fell to 47 ± 4 mmHg and bradycardia was again observed. Treatment of the experimentalforearm with the NO synthase inhibitorNG-monomethyl-L-arginine in additionto bretylium, phentolamine, and propranolol significantly increasedbaseline FVR to 65 ± 5 units but did not prevent the marked forearmvasodilation during syncope (FVR = 24 ± 4 vs. 29 ± 8 units inthe control forearm). These data suggest that the profound vasodilationobserved in the human forearm during syncope is not mediated solely bysympathetic withdrawal and also suggest that neither2-adrenergic-receptor-mediated vasodilation nor NO is essential to observe this response.

  相似文献   

14.
Age alters the cardiovascular response to direct passive heating   总被引:7,自引:0,他引:7  
Duringdirect passive heating in young men, a dramatic increase in skin bloodflow is achieved by a rise in cardiac output (c) andredistribution of flow from the splanchnic and renal vascular beds. Toexamine the effect of age on these responses, seven young (Y; 23 ± 1 yr) and seven older (O; 70 ± 3 yr) men were passively heated withwater-perfused suits to their individual limit of thermal tolerance.Measurements included heart rate (HR), c (byacetylene rebreathing), central venous pressure (via peripherally inserted central catheter), blood pressures (by brachial auscultation), skin blood flow (from increases in forearm blood flow by venous occlusion plethysmography), splanchnic blood flow (by indocyanine green clearance), renal blood flow (byp-aminohippurateclearance), and esophageal and mean skin temperatures.c wassignificantly lower in the older than in the young men (11.1 ± 0.7 and 7.4 ± 0.2 l/min in Y and O, respectively, at the limit ofthermal tolerance; P < 0.05),despite similar increases in esophageal and mean skin temperatures andtime to reach the limit of thermal tolerance. A lower stroke volume (99 ± 7 and 68 ± 4 ml/beat in Y and O, respectively, P < 0.05), most likely due to anattenuated increase in inotropic function during heating, was theprimary factor for the lower c observed inthe older men. Increases in HR were similar in the young and older men;however, when expressed as a percentage of maximal HR, the older menrelied on a greater proportion of their chronotropic reserve to obtainthe same HR response (62 ± 3 and 75 ± 4% maximal HR in Y andO, respectively, P < 0.05). Furthermore, the older men redistributed less blood flow from thecombined splanchnic and renal circulations at the limit of thermaltolerance (960 ± 80 and 720 ± 100 ml/min in Y and O,respectively, P < 0.05). As a resultof these combined attenuated responses, the older men had asignificantly lower increase in total blood flow directed to the skin.

  相似文献   

15.
Halliwill, John R., Lori A. Lawler, Tamara J. Eickhoff,Michael J. Joyner, and Sharon L. Mulvagh. Reflex responses toregional venous pooling during lower body negative pressure in humans.J. Appl. Physiol. 84(2): 454-458, 1998.Lower body negative pressure is frequently used to simulateorthostasis. Prior data suggest that venous pooling in abdominal orpelvic regions may have major hemodynamic consequences. Therefore, we developed a simple paradigm for assessing regional contributions tovenous pooling during lower body negative pressure. Sixteen healthy menand women underwent graded lower body negative pressure protocols to 60 mmHg while wearing medical antishock trousers to prevent venous poolingunder three randomized conditions:1) no trouser inflation (control),2) only the trouser legs inflated, and 3) the trouser legs andabdominopelvic region inflated. Without trouser inflation, heart rateincreased 28 ± 4 beats/min, mean arterial pressure fell 3 ± 2 mmHg, and forearm vascular resistance increased 51 ± 9 units at 60 mmHg lower body negative pressure. With inflation of eitherthe trouser legs or the trouser legs and abdominopelvic region, heartrate and mean arterial pressure did not change during lower bodynegative pressure. By contrast, although the forearm vasoconstrictorresponse to lower body negative pressure was attenuated by inflation ofthe trouser legs (forearm vascular resistance 33 ± 10 units,P < 0.05 vs. control), attenuation was greater with the inflation of the trouser legs and abdominopelvic region (forearm vascular resistance 16 ± 5 units,P < 0.05 vs. control and trouserlegs-only inflation). Thus the hemodynamic consequences of pooling inthe abdominal and pelvic regions during lower body negative pressureappear to be less than in the legs in healthy individuals.

  相似文献   

16.
Mostoufi-Moab, Sogol, Eric J. Widmaier, Jacob A. Cornett,Kristen Gray, and Lawrence I. Sinoway. Forearm training reduces the exercise pressor reflex during ischemic rhythmic handgrip. J. Appl. Physiol. 84(1): 277-283, 1998.We examined the effects of unilateral, nondominant forearmtraining (4 wk) on blood pressure and forearm metabolites duringischemic and nonischemic rhythmic handgrip (30 1-s contractions/min at25% maximal voluntary contraction). Contractions were performed by 10 subjects with the forearm enclosed in a pressurized Plexiglas tank toinduce ischemic conditions. Training increased the endurance time inthe nondominant arm by 102% (protocol1). In protocol 2,tank pressure was increased in increments of 10 mmHg/min to +50 mmHg.Training raised the positive-pressure threshold necessary to engage thepressor response. In protocol 3,handgrip was performed at +50 mmHg and venous blood samples wereanalyzed. Training attenuated mean arterial pressure (109 ± 5 and98 ± 4 mmHg pre- and posttraining, respectively, P < 0.01), venous lactate (2.9 ± 0.4 and 1.8 ± 0.3 mmol/l pre- and posttraining, respectively,P < 0.01), and the pH response (7.21 ± 0.02 and 7.25 ± 0.01, pre- and posttraining, respectively, P < 0.01). However, deep venousO2 saturation was unchanged.Training increased the positive-pressure threshold for metaboreceptorengagement, reduced metabolite concentrations, and reduced meanarterial pressure during ischemic exercise.

  相似文献   

17.
Crawford, Paul, Peter A. Good, Eric Gutierrez, Joshua H. Feinberg, John P. Boehmer, David H. Silber, and Lawrence I. Sinoway. Effects of supplemental oxygen on forearm vasodilation in humans.J. Appl. Physiol. 82(5):1601-1606, 1997.Supplemental O2 reduces cardiac output andraises systemic vascular resistance in congestive heart failure. Inthis study, 100% O2 was given tonormal subjects and peak forearm flow was measured. Inexperiment 1, 100%O2 reduced blood flow andincreased resistance after 10 min of forearm ischemia (flow 56.7 ± 7.9 vs. 47.8 ± 6.7 ml · min1 · 100 ml1;P < 0.02; vascular resistance 1.7 ± 0.2 vs. 2.4 ± 0.4 mmHg · min · 100 ml · ml1;P < 0.03). Inexperiment 2, lower body negativepressure (LBNP; 30 mmHg) and venous congestion (VC) simulatedthe high sympathetic tone and edema of congestive heart failure.Postischemic forearm flow and resistance were measured under fourconditions: room air breathing (RA); LBNP+RA; RA+LBNP+VC; and 100%O2+LBNP+VC. LBNP and VC did notlower peak flow. However, O2raised minimal resistance (2.3 ± 0.4 RA; 2.8 ± 0.5 O2+LBNP+VC,P < 0.04). When O2 alone(experiment 1) was compared withO2+LBNP+VC(experiment 2), no effect of LBNP+VCon peak flow or minimum resistance was noted, although the return rateof flow and resistance toward baseline was increased.O2 reduces peak forearm flow evenin the presence of LBNP and VC.

  相似文献   

18.
Schneider, H., C. D. Schaub, K. A. Andreoni, A. R. Schwartz,R. L. Smith, J. L. Robotham, and C. P. O'Donnell. Systemic andpulmonary hemodynamic responses to normal and obstructed breathing during sleep. J. Appl. Physiol. 83(5):1671-1680, 1997.We examined the hemodynamic responses to normalbreathing and induced upper airway obstructions during sleep in acanine model of obstructive sleep apnea. During normal breathing,cardiac output decreased (12.9 ± 3.5%,P < 0.025) from wakefulness tonon-rapid-eye-movement sleep (NREM) but did not change from NREM torapid-eye-movement (REM) sleep. There was a decrease(P < 0.05) in systemic (7.2 ± 2.1 mmHg) and pulmonary (2.0 ± 0.6 mmHg) arterial pressures fromwakefulness to NREM sleep. In contrast, systemic (8.1 ± 1.0 mmHg,P < 0.025), but not pulmonary,arterial pressures decreased from NREM to REM sleep. During repetitiveairway obstructions (56.0 ± 4.7 events/h) in NREM sleep, cardiacoutput (17.9 ± 3.1%) and heart rate (16.2 ± 2.5%) increased(P < 0.05), without a change instroke volume, compared with normal breathing during NREM sleep. Duringsingle obstructive events, left (7.8 ± 3.0%,P < 0.05) and right (7.1 ± 0.7%, P < 0.01)ventricular outputs decreased during the apneic period. However, left(20.7 ± 1.6%, P < 0.01) andright (24.0 ± 4.2%, P < 0.05)ventricular outputs increased in the postapneic period because of anincrease in heart rate. Thus 1) thesystemic, but not the pulmonary, circulation vasodilates during REMsleep with normal breathing; 2)heart rate, rather than stroke volume, is the dominant factormodulating ventricular output in response to apnea; and3) left and right ventricular outputs oscillate markedly and in phase throughout the apnea cycle.

  相似文献   

19.
Haskell, Andrew, Ethan R. Nadel, Nina S. Stachenfeld, KeiNagashima, and Gary W. Mack. Transcapillary escape rate of albuminin humans during exercise-induced hypervolemia. J. Appl. Physiol. 83(2): 407-413, 1997.To test thehypotheses that plasma volume (PV) expansion 24 h after intenseexercise is associated with reduced transcapillary escape rate ofalbumin (TERalb) and that localchanges in transcapillary forces in the previously active tissues favorretention of protein in the vascular space, we measured PV,TERalb, plasma colloid osmoticpressure (COPp), interstitialfluid hydrostatic pressure (Pi), and colloid osmotic pressure in legmuscle and skin and capillary filtration coefficient (CFC) in the armand leg in seven men and women before and 24 h after intense uprightcycle ergometer exercise. Exercise expanded PV by 6.4% at 24 h (43.9 ± 0.8 to 46.8 ± 1.2 ml/kg, P < 0.05) and decreased total protein concentration (6.5 ± 0.1 to6.3 ± 0.1 g/dl, P < 0.05) andCOPp (26.1 ± 0.8 to 24.3 ± 0.9 mmHg, P < 0.05), although plasmaalbumin concentration was unchanged. TERalb tended to decline (8.4 ± 0.5 to 6.5 ± 0.7%/h, P = 0.11) and was correlated with the increase in PV(r = 0.69,P < 0.05). CFC increased in the leg(3.2 ± 0.2 to 4.3 ± 0.5 µl · 100 g1 · min1 · mmHg1,P < 0.05), and Pi showed a trend toincrease in the leg muscle (2.8 ± 0.7 to 3.8 ± 0.3 mmHg, P = 0.08). These datademonstrate that TERalb isassociated with PV regulation and that local transcapillary forcesin the leg muscle may favor retention of albumin in the vascular spaceafter exercise.

  相似文献   

20.
González-Alonso, José, RicardoMora-Rodríguez, Paul R. Below, and Edward F. Coyle.Dehydration markedly impairs cardiovascular function inhyperthermic endurance athletes during exercise. J. Appl. Physiol. 82(4): 1229-1236, 1997.Weidentified the cardiovascular stress encountered by superimposingdehydration on hyperthermia during exercise in the heat and themechanisms contributing to the dehydration-mediated stroke volume (SV)reduction. Fifteen endurance-trained cyclists [maximalO2 consumption(O2 max) = 4.5 l/min] exercised in the heat for 100-120 min and either became dehydrated by 4% body weight or remained euhydrated by drinkingfluids. Measurements were made after they continued exercise at 71%O2 max for 30 minwhile 1) euhydrated with anesophageal temperature (Tes) of38.1-38.3°C (control); 2)euhydrated and hyperthermic (39.3°C);3) dehydrated and hyperthermic withskin temperature (Tsk) of34°C; 4) dehydrated withTes of 38.1°C and Tsk of 21°C; and5) condition4 followed by restored blood volume. Compared withcontrol, hyperthermia (1°C Tesincrease) and dehydration (4% body weight loss) each separatelylowered SV 7-8% (11 ± 3 ml/beat;P < 0.05) and increased heart ratesufficiently to prevent significant declines in cardiac output.However, when dehydration was superimposed on hyperthermia, thereductions in SV were significantly (P < 0.05) greater (26 ± 3 ml/beat), and cardiac output declined 13% (2.8 ± 0.3 l/min). Furthermore, mean arterialpressure declined 5 ± 2%, and systemic vascular resistanceincreased 10 ± 3% (both P < 0.05). When hyperthermia wasprevented, all of the decline in SV with dehydration was due to reducedblood volume (~200 ml). These results demonstrate that thesuperimposition of dehydration on hyperthermia during exercise in theheat causes an inability to maintain cardiac output and blood pressurethat makes the dehydrated athlete less able to cope with hyperthermia.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号