首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of leaf age and of shading on photosynthetic rateand on other leaf parameters of potato (Solanum tuberosum L.)were studied using a portable gas exchange system. A rapid decreasein the rate of photosynthesis during leaf senescence was observed.This was accompanied by an increase in stomatal resistance,and as a result a fairly constant level of sub-stomatal CO2concentration was maintained at all leaf ages. The reductionin the photosynthetic rate in older leaves was therefore assumedto be essentially mesophyllic in origin, whereas the stomatalresponse was probably secondary. Canopy density significantly affected the rate of photosyntheticreduction with leaf age. Leaves maintained under high radiationintensities manifested a slower decline in their photosyntheticrate, especially in the early stages of their senescence, thanleaves kept under shade conditions. The latter leaves were foundto be more adapted to low radiation intensities, as indicatedby changes in their chlorophyll a:b ratio and specific leafweight Solanum tuberosum L, potato, photosynthetic rate, mesophyll, stomata, leaf age, radiation intensity, chlorophyll a:b ratio  相似文献   

2.
Measurements of the rate of photosynthesis of plants of Solanumtuberosum L. var. King Edward were made, using 14CO2, at weeklyintervals throughout their growth in a controlled environment.Leaf area and dry weight of sections of the plant were alsodetermined. The results are discussed in relation to existingtheories that photosynthesis can be limited by carbohydrateaccumulation in the leaves, and stimulated by the initiationof tubers.  相似文献   

3.
Effect of several parameters on inhibition of potato (Solanum tuberosum) invertase by its endogenous proteinaceous inhibitor was determined using homogeneous preparations of both proteins. The inhibitor and invertase formed an inactive complex with an observed association rate constant at pH 4.70 and 37°C of 8.82 × 102 per molar per second and a dissociation rate constant of 3.3 × 10−3 per minute. The inhibitor appeared to bind to invertase in more than one step. Initial interaction (measured by loss of invertase activity) was rapid, relatively weak, readily reversible (Ki of 2 × 10−6 molar) and noncompetitive with substrate at pH 4.70. Initial interaction was probably followed by isomerization to a tighter (Ki of 6.23 × 10−8 molar) complex, which dissociated slowly with a half-time of 3.5 hour. Interaction between enzyme and inhibitor appeared to be of ionic character and essentially pH independent between pH 3.5 and 7.4.  相似文献   

4.
Effect of High Temperature on Photosynthesis in Potatoes   总被引:1,自引:0,他引:1  
The effect of high temperatures on the rate of photosynthesiswas studied in several potato varieties. Temperatures of upto 38 °C did not cause a reduction in the photosynthesisof plants that had been grown at these temperatures for longperiods prior to measurement. Higher temperatures of 40–42°C, or the transfer of plants from daytime temperature regimesof 22 °C to 32 °C, caused a reduction in net photosynthesis.This reduction was found to be essentially mesophyllic in origin.High temperature was found to be associated with a decreasein stomatal resistance, an increase in transpiration, and alarger difference between air and leaf temperatures. Dark respirationrates and compensation points for CO2 concentration were alsogreater at the high temperatures. It was concluded that thepotato crop can be adopted to grow and have an adequate rateof photosynthesis even at relatively high temperatures. Source-sinkrelationships, which were modified by the later formation oftubers at higher temperatures, did not affect photosynthesisin this study. Varietal differences in resistance to heat stresswere observed, with the clone Cl-884 showing a more efficientcapacity for photosynthesis at temperatures up to 40 °Cthan many commonly grown varieties. High temperature, photosynthesis, potato, Solanum tuberosum L  相似文献   

5.
MARSHALL  B.; VOS  J. 《Annals of botany》1991,68(1):33-39
Measurements of the rate of light-saturated photosynthesis (Pmax)were made on terminal leaflets of potato plants growing in cropssupplied with 0, 3, 6, 12, 24 and 36 g N m–2. Measurementswere made between 100 and 154 d after planting. Two types ofleaf were selected—the fourth leaf on the second-levelbranch (L4, B1) and the youngest terminal leaflet that was measurable(LYM). Later, the total nitrogen concentration of each leaflet(NL) was measured. A linear regression between Pmax and NL,common to both leaf positions, explained 68.5% of the totalvariation. With L4, B1 leaves there was a significant improvementin the proportion of variation explained when regressions withseparate intercepts and a common slope were fitted to individualfertilizer treatments. These results suggest that an increasingproportion of leaf nitrogen was not associated with the performanceof the photosynthetic system with increasing nitrogen supply.This separation between nitrogen treatments was not as clearfor LYM leaves. Stomatal conductance to transfer of water vapourwas neither influenced by leaf position nor directly by nitrogensupply. Rather conductance declined in parallel with the declinein photosynthetic capacity. Solanum tuberosum, potato, nitrogen, photosynthesis, stomatal conductance, leaf  相似文献   

6.
The qualitative and quantitative compositions of leaf cuticular waxes from potato (Solanum tuberosum) varieties were studied. The principal components of the waxes were very long chain n-alkanes, 2-methylalkanes and 3-methylalkanes (3.1-4.6 microg cm(-2)), primary alcohols (0.3-0.7 microg cm(-2)), fatty acids (0.3-0.6 microg cm(-2)), and wax esters (0.1-0.4 microg cm(-2)). Methyl ketones, sterols, beta-amyrin, benzoic acid esters and fatty acid methyl, ethyl, isopropyl and phenylethyl esters were found for the first time in potato waxes. The qualitative composition of the waxes was quite similar but there were quantitative differences between the varieties studied. A new group of cuticular wax constituents consisting of free 2-alkanols with odd and even numbers of carbon atoms ranging from C25 to C30 was identified.  相似文献   

7.
The peripheral benzodiazepine receptor (PBR), an internal protein of the mammalian mitochondrial membrane, is involved in several metabolic functions such as steroidogenesis, oxidative phosphorylation, and regulation of cell proliferation. Here we report the presence of PBRs in parenchymal and meristematic tissues of potato (Solanum tuberosum). PBRs are heterogeneously distributed in potato and are highly expressed in meristematic cells. In particular the receptor protein is mainly localised in the meristematic nuclear subcellular preparation. This 30-36 kDa protein, which corresponds to PBR, is increased, indeed, in meristematic compared to the parenchymal tissue. This suggests an involvement of this receptor in the regulation of cell plant growth. In addition, the demonstration that PBRs are also present in vegetables supports the hypothesis of a highly conserved receptor system during phylogenesis.  相似文献   

8.
Storage temperatures greater than 4 °C (that is, heat-unit accumulation) increase respiration and accelerate physiological aging of seed tubers. The degree of apical dominance is a good indicator of physiological age (PAGE). As seed age advances, apical dominance decreases, resulting in more stems, greater tuber set, and shifts in tuber size distribution. Herein we provide evidence that tuber respiration rate may constitute the “pacemaker” of aging. Tubers exposed to a brief high-temperature age-priming treatment initially in storage, followed by holding at 4 °C for the remainder of a 190–200-day storage period, maintained a higher basal metabolic (respiration) rate throughout storage compared with tubers stored the entire season at 4 °C. Tubers thus “remembered” the age-priming treatment as reflected by their elevated respiration rate. Moreover, reducing the respiration rate of age-primed seed by subsequently storing it at 3.5 % O2 (4 °C) until planting significantly attenuated the effects of the aging treatment on apical dominance, tuber set, and size distribution. The effect of the age-priming treatment on the magnitude of the respiratory response was the same whether given at the beginning or toward the end of storage. However, moving the age-priming treatment progressively later in the storage season effectively decreased its impact on plant growth and development. These results underscore the importance of time in the aging process. Exposure of seed to a high-temperature age-priming treatment at the beginning or end of storage elevated respiration (the pacemaker) to the same extent; however, the timing of these treatments resulted in vastly different physiological ages. The longer the respiration rate of tubers remains at an elevated level, the greater their PAGE at planting. Thus, an accurate but impractical measure of PAGE may be the respiratory output from vine kill to subsequent planting. Respiration appears to be the pacemaker of PAGE and production, and storage conditions that affect respiration may “set the clock speed” that will ultimately determine the PAGE at planting.  相似文献   

9.
Internodes, leaves and tuber slices from potato (Solanum tuberosum), genotype 1024-2, were subjected to particle bombardment. Transient expression was optimized using the uidA and the luc reporter genes that encode #-glucuronidase (GUS) and luciferase, respectively. Stable transformation was achieved using the neomycin phosphotransferase (nptII) gene, which confers resistance to the antibiotic kanamycin. The influence of biological parameters (tissue type, growth period before bombardment, pre- and post-bombardment osmoticum treatment) and physical parameters (helium pressure, tissue distance) that are known to possibly affect stable transformation were investigated. Putative transgenic plants, which rooted in media containing kanamycin, were obtained from all of the tissues tested although there were large differences in the efficiency: internodes (0.77 plants per bombarded explant), microtuber slices (0.10 plants per bombarded explant) and leaves (0.02 plants per bombarded explant). Southern blot analysis of putative transgenic plants confirmed the integration of the transgenes into plant DNA. The results indicate that an efficient particle bombardment protocol is now available for both transient and stable transformation of potato internodal segments, thus contributing to an enhanced flexibility in the delivery of transgenes to this important food crop.  相似文献   

10.
11.
12.
Light interception, stomatal conductance and chlorophyll fluorescence were measured in potato ( Solanum tuberosum L.) grown either irrigated, or droughted from the time of plant emergence. Compared with the irrigated treatment, drought reduced both light interception and stomatal conductance. In both treatments, the yields of variable fluorescence in the dark- and light-adapted states (Fy/Fm and F'v/F'm, respectively) were negatively correlated with photosynthetic photon flux density (PPFD) and mirrored daytime changes in PPFD. Photochemical quenching was positively correlated with PPFD, but the dominant effect of F'v/F'm resulted in a decrease in the quantum yield of photosystem II (PSII) electron transport with increasing PPFD.
Drought had no significant effect on the functioning of PSII and the balance between photochemical and non-photochemical quenching was unaffected. Non-photochemical quenching was not increased by drought and the quantum yield of PSII electron transport was unaffected. It is concluded that, in leaves of droughted plants, excess energy, resultant of stomatal limitation of photosynthesis, was dissipated by photochemical quenching such as increased photorespiration.  相似文献   

13.
Individual leaves of potato (Solanum tuberosum L. W729R), a C3 plant, were subjected to various irradiances (400-700 nm), CO2 levels, and temperatures in a controlled-environment chamber. As irradiance increased, stomatal and mesophyll resistance exerted a strong and some-what paralleled regulation of photosynthesis as both showed a similar decrease reaching a minimum at about 85 neinsteins·cm−2·sec−1 (about ½ of full sunlight). Also, there was a proportional hyperbolic increase in transpiration and photosynthesis with increasing irradiance up to 85 neinsteins·cm−2·sec−1. These results contrast with many C3 plants that have a near full opening of stomata at much less light than is required for saturation of photosynthesis.  相似文献   

14.
cDNA cloning and expression of a potato (Solanum tuberosum) invertase   总被引:10,自引:0,他引:10  
A cDNA clone encoding an invertase isoenzyme has been isolated from a potato leaf cDNA library. The deduced amino acid sequence shows significant similarities to previously characterised invertases. The highest degree of overall similarity, including the signal peptide sequence, is to carrot cell wall invertase, suggesting that the potato gene encodes an apoplastic enzyme. Expression of the gene, as determined by RT-PCR, is detected in stem and leaf tissue, and at lower levels in tuber, but is absent from roots.  相似文献   

15.
Potatoes are a cheap and easily available source for the preparation of beta 1,2-xylosidase. The soluble enzyme was purified from potato tubers by ammonium sulfate precipitation, hydrophobic interaction chromatography, affinity gel blue chromatography, ion exchange and size exclusion chromatography yielding a glycoprotein with a molecular weight of 39-40 kDa, an isoelectric point of 5.1 and a typical plant N-glycosylation pattern. The enzyme releases xylose residues beta1,2-linked to the beta-mannose of an N-glycan core, if the 3-position of this mannose is not occupied. It showed an optimal enzymatic activity at pH 4.0-4.5 and at a temperature of 50 degrees C. The activity was reduced in the presence of Ni(2+) and Cu (2+) and slightly increased by the addition of Mn(2+) or Ca(2+). At 37 degrees C the cleavage of xylose from p-nitrophenyl-beta-xylopyranoside or appropriate pyridylaminated N-glycans was proportional to the time of incubation over a period of 8 h and increased with time for at least 24 h. N-Methoxycarbonylpentyl-1,5-dideoxy-1,5-iminoxylitol inhibits the enzyme effectively. Sequencing of the N-terminus showed a high homology to a number of isoforms of patatin, the main protein of potato tubers. This enzyme will be an important tool for the analysis of N-glycans and in the modification of N-glycans for immunological studies.  相似文献   

16.
Ethylene, applied as ethephon, inhibited the elongation of etiolated, axillary potato shoots cultured in vitro and it stimulated radial growth along the whole length of these shoots. The same phenomena were observed when ACC, the precursor of ethylene, was added to the medium, whereas silver ions reversed these effects. However, tuber formation in vitro was suppressed by ethephon. This indicates a dual role of ethylene in the induction of tuber formation in potatoes: it had a positive effect by blocking the elongation of stolons and it suppressed tuber initiation.  相似文献   

17.
The potential of microsatellite markers for use in genetical studies in potato (Solanum tuberosum) was evaluated. Database searches revealed that microsatellite sequences were present in the non-coding regions of 24 potato genes. Twenty-two sets of primers were designed and products successfully amplified using 19 primer pairs. These were tested against a panel of 18 tetraploid potato cultivars. Four pairs of primers designed to amplify microsatellites from tomato were also used. Seven (including 2 of the tomato sequences) failed to reveal any variation in the accessions tested. Sixteen primer pairs did reveal polymorphism, detecting between 2 and 19 alleles at each locus. Of these, 3 gave rise to complex band patterns, suggesting that multiple polymorphic loci were being amplified using a single primer pair. Heterozygosity values ranged from 0.408 to 0.921. Phenetic analysis of the derived information allowed a dendrogram to be constructed depicting the relationships between the 18 potato cultivars. The potential of microsatellite markers for genetic analysis and satutory applications in potato is discussed in the context of these results. Furthermore, the potential of crossspecies amplification is highlighted as an additional source of microsatellite markers for genetic research in potato.  相似文献   

18.
Single-node cuttings of potato cultivars Jemseg, Katahdin, Russet Burbank and Superior were cultured on a multiplication medium containing MS salts and no growth regulators. Cultures were exposed to 8 h (SD) and 16 h (LD) photoperiodic regimes. The subsequent plantlets were excised and single node cuttings from each photoperiodic regime were placed under SD or LD on a second medium containing growth regulators which promoted tuberization. Production of microtubers was strongly influenced by genotype and by photoperiodic treatments. Superior produced stunted plantlets and some microtubers under SD conditions in the multiplication medium. The number of microtubers formed by Jemseg was not influenced by photoperiod. However, Katahdin and Russet Burbank formed fewer microtubers under LD-LD conditions compared to LD-SD, SD-SD and SD-LD regimes. Compared with the other regimes, LD-SD photoperiod generally promoted microtuber formation with larger diameters and significantly (p<0.05) greater fresh weight. The intensity of the tuberization stimulus was affected by daylength, and this was characterized by microtubers with secondary tubers, the growth of more than one axillary microtuber, and microtubers subtended by stolons. The maturity group of the potato cultivars and photoperiodic regime in vitro strongly influenced the production of microtubers. These results can be employed to adapt light regimes for multiplication and tuberization to the specific requirements for cultivars from different maturity groups, and thus increase the efficiency of potato multiplication protocols.  相似文献   

19.
Vitamin E (tocopherol) is a powerful antioxidant essential for human health and synthesized only by photosynthetic organisms. The effects of over-expression of tocopherol biosynthetic enzymes have been studied in leaves and seeds, but not in a non-photosynthetic, below-ground plant organ. Genetic and molecular approaches were used to determine if increased levels of tocopherols can be accumulated in potato (Solanum tuberosum L.) tubers through metabolic engineering. Two transgenes were constitutively over-expressed in potato: Arabidopsis thaliana p-hydroxyphenylpyruvate dioxygenase (At-HPPD) and A. thaliana homogentisate phytyltransferase (At-HPT). α-Tocopherol levels in the transgenic plants were determined by high-performance liquid chromatography. In potato tubers, over-expression of At-HPPD resulted in a maximum 266% increase in α-tocopherol, and over-expression of At-HPT yielded a 106% increase. However, tubers from transgenic plants still accumulated approximately 10- and 100-fold less α-tocopherol than leaves or seeds, respectively. The results indicate that physiological and regulatory constraints may be the most limiting factors for tocopherol accumulation in potato tubers. Studying regulation and induction of tocopherol biosynthesis should reveal approaches to more effectively engineer crops with enhanced tocopherol content.  相似文献   

20.
The biological containment of the potato (Solanum tuberosum) was assessed by establishing the crossability of this tuberous crop with the related wild non-tuberous species in The Netherlands, black nightshade (S. nigrum) and bittersweet (S. dulcamara). To circumvent crossability barriers, genotypes with different ploidy number were employed and crosses were performed under different environmental conditions. S. dulcamara was shown to be incongruent with potato at all ploidy levels, while S. nigrum displayed unilateral incompatibility. If S. nigrum was emasculated and used as female, fertilization by potato pollen resulted in berry set and seed development. Emasculation of S. nigrum was essential in this cross, because analysis of the fertilization process demonstrated that this species is highly self-compatible and potato pollen was outcompeted by pollen of S. nigrum. The hybrid seeds derived from this cross did not mature and appeared not to be viable. By application of the technique of embryo rescue of immature embryos, hybrid plants could be obtained. However, these hybrid plants proved to be sterile. These data demonstrate that gene flow by pollen dispersal from potato to its most common wild relatives in Western Europe is highly unlikely. The potato is thus a naturally contained species in this part of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号