首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of leaf age and of shading on photosynthetic rateand on other leaf parameters of potato (Solanum tuberosum L.)were studied using a portable gas exchange system. A rapid decreasein the rate of photosynthesis during leaf senescence was observed.This was accompanied by an increase in stomatal resistance,and as a result a fairly constant level of sub-stomatal CO2concentration was maintained at all leaf ages. The reductionin the photosynthetic rate in older leaves was therefore assumedto be essentially mesophyllic in origin, whereas the stomatalresponse was probably secondary. Canopy density significantly affected the rate of photosyntheticreduction with leaf age. Leaves maintained under high radiationintensities manifested a slower decline in their photosyntheticrate, especially in the early stages of their senescence, thanleaves kept under shade conditions. The latter leaves were foundto be more adapted to low radiation intensities, as indicatedby changes in their chlorophyll a:b ratio and specific leafweight Solanum tuberosum L, potato, photosynthetic rate, mesophyll, stomata, leaf age, radiation intensity, chlorophyll a:b ratio  相似文献   

2.
MARSHALL  B.; VOS  J. 《Annals of botany》1991,68(1):33-39
Measurements of the rate of light-saturated photosynthesis (Pmax)were made on terminal leaflets of potato plants growing in cropssupplied with 0, 3, 6, 12, 24 and 36 g N m–2. Measurementswere made between 100 and 154 d after planting. Two types ofleaf were selected—the fourth leaf on the second-levelbranch (L4, B1) and the youngest terminal leaflet that was measurable(LYM). Later, the total nitrogen concentration of each leaflet(NL) was measured. A linear regression between Pmax and NL,common to both leaf positions, explained 68.5% of the totalvariation. With L4, B1 leaves there was a significant improvementin the proportion of variation explained when regressions withseparate intercepts and a common slope were fitted to individualfertilizer treatments. These results suggest that an increasingproportion of leaf nitrogen was not associated with the performanceof the photosynthetic system with increasing nitrogen supply.This separation between nitrogen treatments was not as clearfor LYM leaves. Stomatal conductance to transfer of water vapourwas neither influenced by leaf position nor directly by nitrogensupply. Rather conductance declined in parallel with the declinein photosynthetic capacity. Solanum tuberosum, potato, nitrogen, photosynthesis, stomatal conductance, leaf  相似文献   

3.
The appearance and growth of individual leaves were examinedin crops of potato (Solanum tuberosum L.) grown either fullyirrigated or droughted from plant emergence. The rate of appearance of leaves was increased and the durationof growth decreased in leaves of the droughted crop in 1986but not in 1987. In droughted crops, leaf growth rate was correlatedwith afternoon measurements of leaf water potential (1) andturgor (P), being reduced in comparison with that in irrigatedcrops when 1 and P were less than –0.28 and 0.5 MPa respectively.Leaf growth was highly correlated to soil moisture deficit (SMD)and declined rapidly when the SMD was greater than 16 mm. Key words: Solanum tuberosum, leaf growth, leaf appearance, drought, irrigation  相似文献   

4.
Intercellular deformations, caused by increasing levels of compressionapplied by a pressure chamber to an organ covered with a plasticsealant and evaluated according to the internal atmosphere removalrate, were observed in carrots (Daucus carota L. sativa), potatoes(Solanum tuberosum L.) and sweet-potatoes (Ipomea batatas L.Lam). The maximum internal gas volume removed in these kineticassays was close to the intercellular air volume (Vg) measuredby the pycnometric method. Presumably a compression larger thanthe average organ turgor was required to remove all Vg and abovethis point the cells should become completely flattened againsteach other. The intercellular deformation caused by a compressingload, observed by constant pressure volumetry, induced a reductionin the endogenous O2 concentration at the stressed area, accordingto polarographic measurements. Cellular deformations and eventualVg flooding caused by water movement from the symplasm to theapoplasm of externally compressed organs were distinct fromthe usual pressure chamber assays, where all cells are exposedto homogeneous gas pressurization, without the development offorces to cause large cellular deformation and intercellularflooding. These gas transport restrictions were suggested aspotential causes for post harvest deterioration in fragile commoditiessubjected to compression.Copyright 1995, 1999 Academic Press Carrot, compression, Daucus carota, gas volumetry, Ipomea batatas, oxygen, porosity, potato, pressure chamber, Solanum tuberosum, stress, sweet-potato, turgor, suction  相似文献   

5.
This study investigated the interaction of NaCl-salinity andelevated atmospheric CO2 concentration on gas exchange, leafpigment composition, and leaf ultrastructure of the potentialcash crop halophyte Aster tripolium. The plants were irrigatedwith five different salinity levels (0, 25, 50, 75, 100% seawatersalinity) under ambient and elevated (520 ppm) CO2. Under salineconditions (ambient CO2) stomatal and mesophyll resistance increased,leading to a significant decrease in photosynthesis and wateruse efficiency (WUE) and to an increase in oxidative stress.The latter was indicated by dilations of the thylakoid membranesand an increase in superoxide dismutase (SOD) activity. Oxidativestress could be counteracted by thicker epidermal cell wallsof the leaves, a thicker cuticle, a reduced chlorophyll content,an increase in the chlorophyll a/b ratio and a transient declineof the photosynthetic efficiency. Elevated CO2 led to a significantincrease in photosynthesis and WUE. The improved water and energysupply was used to increase the investment in mechanisms reducingwater loss and oxidative stress (thicker cell walls and cuticles,a higher chlorophyll and carotenoid content, higher SOD activity),resulting in more intact thylakoids. As these mechanisms canimprove survival under salinity, A. tripolium seems to be apromising cash crop halophyte which can help in desalinizingand reclaiming degraded land. Key words: Aster tripolium, cash crop halophyte, elevated CO2, gas exchange, oxidative stress, photosynthesis, salt tolerance, ultrastructure, water use efficiency Received 29 July 2008; Revised 8 October 2008 Accepted 9 October 2008  相似文献   

6.
Net photosynthesis rate (Pn), stomatal conductance to CO2 andresidual conductance to CO2 were measured in the last six leaves(the sixth or flag leaf and the preceding five leaves) of Triticumaestivum L. cv. Kolibri plants grown in Mediterranean conditions.Recently fully expanded leaves of well-watered plants were alwaysused. Measurements were made at saturating photosynthetic photonflux density, and at ambient CO2 and O2 levels. The specificleaf area, total organic nitrogen content, some anatomical characteristics,and other parameters, were measured on the same leaves usedfor gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure wasobserved with increasing leaf insertion levels. Furthermore,mesophyll cell volume per unit leaf area (Vmes/A) decreasedby 52·6% from the first leaf to the flag leaf. Mesophyllcell area per unit leaf area also decreased, but only by 24·5%.However, nitrogen content per unit mesophyll cell volume increasedby 50·6% from the first leaf to the flag leaf. This increasecould be associated to an observed higher number of chloroplastcross-sections per mm2 of mesophyll cell cross-sectional areain the flag leaf: values of 23000 in the first leaf and 48000in the flag leaf were obtained. Pn per unit leaf area remainedfairly constant at the different insertion levels: values of33·83±0·93 mg dm–2 h–1 and32·32±1·61 mg dm–2 h–1 wereobtained for the first leaf and the flag leaf, respectively.Residual conductance, however, decreased by 18·2% fromthe first leaf to the flag leaf. Stomatal conductance increasedby 41·7%. The steadiness in Pn per unit leaf area across the leaf insertionlevels could be mainly accounted for by an opposing effect betweena decrease in Vmes/A and a more closely packed arrangement ofphotosynthetic apparatus. Adaptative significance of structuralchanges with increasing leaf insertion levels and the steadinessin Pn per unit leaf area was studied. Key words: Photosynthesis, structure, wheat  相似文献   

7.
Rumex obtusifolius plants were grown for several months in daylitenvironment chambers (Solardomes) force-ventilated with aircontaining 350 or 600 µ;mol mol–1 C02. ElevatedCO2 was found to accelerate the natural ontogenic decline inphotosynthesis, but did not reduce leaf duration. In both CO2treatments photosynthetic rates declined progressively withincreasing leaf age, the decline being greater for plants grownin elevated C02 such that rates became lower than in ambientCO2. The degree of CO2-induced photosynthetic down-regulationas determined by A/C1 analysis was found to be dependent onleaf age. The major contribution to the decline in photosynthesiswas likely to be a reduction in Rubisco activity as changesin stomataland mesophyll limitations were small. Instantaneouswater use efficiency (WUE1) was greater for plants in elevatedCO2, but these values declined rapidly with leaf age, whereasin ambient CO2 values were always lower, but were maintainedfor longer. Growth analysis indicated an increased root:-shootratio for plants grown in elevated CO2, this occurring almostentirely as a result of increased root growth. Greater rootproliferation and increased WUE1, are characteristics whichshould give this persistent and troublesome weed an increasedcompetitive advantage under projected conditions of climatechange Key words: tusifoliu, elevated CO2, gas exchange, leaf age, senescence  相似文献   

8.
The carbon balance and changes in leaf structure in Clusia minorL., were investigated in controlled conditions with regardto nitrogen supply and responses to low and high photosyntheticallyactive radiation (PAR). Nitrogen deficiency and high PAR ledto the production of smaller leaves with higher specific leafdry weight (SLDW) and higher leaf water content, but with lowerchlorophyll content. Nitrogen and PAR levels at growth alsoaffected CO2 exchange and leaf area. In – N conditions,total daily net CO2 uptake and leaf area accumulation were slightlyless for high-PAR-grown plants. In contrast, high-PAR-grownplants supplied with nitrogen showed about a 4-fold higher totaldaily CO2 uptake and about twice the total leaf area of low-PAR-grownplants. Although total daily net CO2 uptake of +N plants wasonly slightly higher than –N plants under the low PARlevel, –N plants produced almost three times more leafarea but with lower SLDW. Under well-watered conditions, low-PAR-grownplants showed only CO2 evolution during the night and malicacid levels decreased. However, there was considerable night-timeaccumulation of titratable protons due to day/night changesin citric acid levels. High-PAR-grown plants showed net CO2uptake, malate and citrate accumulation during the dark period.However, most of the CO2 fixed at night probably came from respiratoryCO2. Positive night-time CO2 exchange was readily observed forlow-PAR-grown plants when they were transferred to high PARconditions or when they were submitted to water stress. In plantsgrown in high and low PAR, CAM leads to a substantial increasein daily water use efficiency for water-stressed plants, althoughtotal net CO2 uptake decreased.  相似文献   

9.
MENZEL  C. M. 《Annals of botany》1983,52(5):697-702
Warm temperatures (35°C day/30°C night) which inhibittuberization in potato (Solanum tuberosum L., cv. Sebago) increasedgibberellin activity in crude extracts from buds, but not frommature leaves, as determined by the lettuce hypocotyl bioassay.Changes in the growth of tubers and stolons indicate the occurrenceof basipetal movement of GA3 applied to the terminal bud ora mature leaf. 14C labelling from GA3 or mevalonic acid injectedjust below the terminal bud was recovered in the lower shoot,stolons and tubers, but the amount transported was greater atcool temperatures (20/15°C). It is concluded that high temperaturespromote the synthesis of gibberellin in the buds rather thantransport to the stolons. Solanum tuberosum L., potato, tuberization, gibberellin  相似文献   

10.
The possible roles of oxygen and carbon dioxide treatments inthe presence or absence of ethylene on tuber dormancy releasein potato (Solanum tuberosumL.) were examined. Using two gascompositions (I: 60% CO2–20% O2–20% N2and II: 20%CO2–40% O2–40% N2), the phase of tuber dormancyand previous storage temperature were demonstrated to be importantparameters for dormancy release by these gas mixtures. Gas Icaused decreased abscisic acid (ABA) levels within 24 h regardlessof previous storage temperature, although this effect was reversible.Exogenous C2H4, an effective dormancy release agent, also causeddecreased ABA levels within 24 h. It also enhanced dormancyrelease and further promoted ABA losses by gas I. Gas II treatmentled to slight reductions in ABA levels that were further decreasedby C2H4. Sprout length was modelled successfully by multipleregression analysis in terms of glucose and ABA levels withinthe apical eye tissues of Russet Burbank tubers immediatelyafter, and regardless of, previous gas treatments or storagetemperatures. Solanum tuberosum,potato, abscisic acid, ethylene, carbon dioxide, oxygen, dormancy.  相似文献   

11.
Gas exchange measurements were undertaken on 2-year-old plantsof Clusia rosea. The plants were shown to have the ability toswitch from C3-photosynthesis to CAM and vice versa regardlessof leaf age and, under some conditions, CO2 was taken up continuously,throughout the day and night. The light response was saturatedby 120 µmol m–2 s–1 typical of a shade plant. Gas exchange patterns in response to light, water and VPD wereexamined. All combinations of daytime and night-time CO2 uptakewere observed, with rates of CO2 uptake ranging from 2 to 11µmol m–2 s–1 depending upon water status andlight. Categorization of this plant asC3, CAM or an intermediateis impossible. Differing VPD affected the magnitude of changesfrom CAM to C3-photosynthesis (0 to 0.5 and 0 to 6.0 µmolm–2 s–1 CO2, respectively) when plants were watered.Under well-watered conditions, but not under water stress, highPPFD elicited changes from CAM to C3 gas exchange. This is unusualnot only for a shade plant but also for a plant with CAM. Itis of ecological importance for C. rosea, which may spend theearly years of its life as an epiphyte or in the forest understorey,to be able to maximize photosynthesis with minimal water loss. Key words: Clusia rosea, CAM, C3, stress  相似文献   

12.
Two Phaseolus vulgaris L. cultivars were grown at 20/15, 25/20,and 30/25 °C day/night temperatures in growth chambers witha 16 h thermoperiod corresponding to the photoperiod. When thefirst trifoliolate leaf was fully expanded rates of CO2 exchange(CER) were measured at 27 °C and saturating light usinginfrared gas analysis. Stomatal (rs) and mesophyll resistances,CO2 compensation points, activities of the enzymes ribulosebisphosphate carboxylase (RuBPCase), glycolate oxidase (GAO),malate dehydrogenase (MDH), and fructose-1, 6 diphosphate (FDP),chlorophyll content, Hill activities, and leaf anatomy at boththe light and electron microscope level were also investigatedin these leaves. Rates of CO2 exchange in the light, transpiration rate, andchlorophyll content increased with increasing growth temperaturewhile leaf thickness, specific leaf weight, RuBPCase activity,compensation point, and stomatal resistance decreased. Mesophyllresistance also decreased when calculated assuming zero chloroplastCO2 concentration (rm, o), but not when calculated assuminga chloroplast CO2 concentration equal to the CO2 compensationconcentration (rm, g). Average leaf size was maximal in 25/20°C plants while dark respiration, MDH activity, stomataldensity, and starch were minimal. The activities of GAO andFDP and Hill activity were not affected by temperature pretreatment.  相似文献   

13.
The ontogenic changes in several component processes of photosynthesiswere measured in chickpeas. Gas exchange characteristics ofintact leaves were studied to analyse the effects of ambientconditions under which chickpeas are usually grown. The CO2assimilation rate per unit leaf area remained fairly high duringthe vegetative stage, reaching a peak at early pod-fill anddeclining subsequently throughout pod development. The intercellularCO2 partial pressure (C1) remained more or less constant (195µbar) during vegetative growth and the early stages ofseed-filling. With falling RWC and PAR interception, the stomatalconductance declined more rapidly than the CO2 assimilationrate resulting in a value of C1 less than that normally existingunder ambient conditions. From the A/C1-analysis, CO2 assimilationduring pod-filling appears to be limited by the RuBP-regenerationcapacity because the carboxylation efficiency and in vitro RuBPCaseactivity were initially unaffected. However, as leaves aged,the carboxylation efficiency and in vitro RuBPCase activitydecreased abruptly with increasing leaf temperatures above 30°C, and the C1 was greater than normally existing values(195 µbar), suggesting an increased mesophyll limitationof photosynthesis. It is suggested that a decline in the CO2assimilation rate of leaves during pod development and an acceleratedsenescence are induced by adverse ambient conditions, particularlyplant water stress and high leaf temperature. Key words: Cicer arietinum L., gas exchange, photosynthesis, ribulose-1,5-bisphosphate carboxylase  相似文献   

14.
The effects of night-time temperature, leaf-to-air vapour pressuredeficit (VPD) and water stress on CO2 recycling in Bromeliahumilis Jacq. grown under two light and nitrogen regimes wereinvestigated. At night-time temperatures above 30°C, integratednet dark CO2 uptake was severely reduced and CO2 for malatesynthesis was mainly derived from dark respiration. At 35°C,up to 84% of the CO2 liberated by dark respiration was refixedinto malic acid. Below 30 °C only nitrogen deficient plantsshowed significant recycling. No significant differences wereobserved between high and low light grown plants in CO2 recycling.A doubling of leaf-to-air VPD from 7-46 Pa kPa–1 to 15.49Pa kPa–1 resulted in a 2- to 20-fold decrease in leafconductance and about 50 to 65% reduction in integrated darkCO2 uptake. However, about twice as much CO2 was recycled atthe higher VPD as in the lower. Ten days of water stress resultedin 80 to 100% recycling of respiratory CO2. Under high VPD andwater stress treatments, the amount of water potentially savedthrough recycling of CO2 reached 2- to 6-fold of the actualtranspiration. In general, nitrogen deficient plants had higherper cent recycling of respiratory CO2 in response to high night-timetemperature, increased VPD or water stress. The results emphasizethe ecological relevance of carbon recycling in CAM plants. Key words: Bromelia humilis, CAM, PPFD, dark respiration, temperature, VPD, water stress  相似文献   

15.
The internal conductance to CO2 supply from substomatal cavitiesto sites of carboxylation poses a large limitation to photosynthesis.It is known that internal conductance is decreased by soil waterdeficits, but it is not known if it is affected by atmosphericwater deficits (i.e. leaf to air vapour pressure deficit, VPD).The aim of this paper was to examine the responses of internalconductance to atmospheric and soil water deficits in seedlingsof the evergreen perennial Eucalyptus regnans F. Muell and theherbaceous plants Solanum lycopersicum (formerly Lycopersiconesculentum) Mill. and Phaseolus vulgaris L. Internal conductancewas estimated with the variable J method from concurrent measurementsof gas exchange and fluorescence. In all three species steady-statestomatal conductance decreased by 30% as VPD increased from1 kPa to 2 kPa. In no species was internal conductance affectedby VPD despite large effects on stomatal conductance. In contrast,soil water deficits decreased stomatal conductance and internalconductance of all three species. Decreases in stomatal andinternal conductance under water deficit were proportional,but this proportionality differed among species, and thus therelationship between stomatal and internal conductance differedamong species. These findings indicate that soil water deficitsaffect internal conductance while atmospheric water deficitsdo not. The reasons for this distinction are unknown but areconsistent with soil and atmospheric water deficits having differingeffects on leaf physiology and/or root–shoot communication. Key words: Carbon dioxide, drought, internal conductance, mesophyll conductance, photosynthesis, stomatal conductance, transfer conductance, vapour pressure deficit, water deficit Received 11 October 2007; Revised 9 November 2007 Accepted 15 November 2007  相似文献   

16.
In this paper we report for the first time the occurrence ofan inducible weak CAM in leaves of Talinwn triangulare (Jacq.)Willd. This plant is a terrestrial perennial deciduous herbwith woody stems and succulent leaves which grows under fullexposure and in the shade in northern Venezuela. Plants grownin a greenhouse (‘sun’ plants) and a growth cabinet(‘shade’ plants) with daily irrigation showed CO2uptake only during the daytime (maximum rate, 4?0 µmolm–2 s–1) and a small acid accumulation during thenight (6?0 µmol H+g–1 FW). Twenty-four hours aftercessation of irrigation, no CO2 exchange was observed duringpart of the night. Dark fixation reached a maximum (1?0 µmolCO2 m–2 s–1, 100 µmol H+ g–1 FW) onday 9 of drought. By day 30 almost no gas exchange was observed,while acid accumulation was still 10 µmol H+ g–1FW. Rewatering reverted the pattern of CO2 exchange to thatof a C3 plant within 24 h. Daytime and night-time phosphoenolpyruvatecarboxylase activity increased up to 100% (shade) and 62% (sun)of control values after 10 and 15 d of drought, respectively.Light compensation point and saturating irradiance were similarin well-watered sun and shade plants, values being characteristicof sun plants. CAM seems to be important for the tolerance ofplants of this species to moderately prolonged (up to 2 months)periods of drought in conditions of full exposure as well asshade, and also for regaining high photosynthetic rates shortlyafter irrigation. Key words: Talinum triwigulare, inducible CAM, PEP-C activity, recycling  相似文献   

17.
Aster kantoensis Kitam., an endangered plant species of thefamily Compositae, is a local endemic to the gravelly floodplainsof a few rivers in central Japan. The successful growth of A.kantoensis is mainly restricted to sparsely vegetated siteswhere, due to lack of continuous vegetation, high radiant energyinput results in stressful conditions with excessive light andheat. To reveal the ecophysiological characteristics which enablethe species to cope with such environmental stresses, we measuredleaf temperature, shoot architecture and photosynthetic andtranspirational responses together with the microclimate ofthe natural habitat. Even under sunny summer conditions, theleaf temperature of A. kantoensis was much lower (35–39°C)than the soil surface temperature (max. 60°C). The relationshipbetween leaf position (height from the ground) and leaf temperatureshowed that the caulescent rosette form of A. kantoensis helpsavoid leaf overheating. Moreover, in situ gas exchange measurementsrevealed that the high transpirational capacity (as high as10 mmol H2O m-2s-1) was effective in controlling leaf temperature,as long as the soil water supply was not severely limited. Sinceit has effective mechanisms to avoid the multiple stresses indigenousto its gravelly floodplain habitat, A. kantoensis can maintaina high photosynthetic rate (up to 30 µmol CO2m-2s-1) withoutany midday depression under sunny summer conditions. Copyright2000 Annals of Botany Company Aster kantoensis Kitam., gravelly floodplain, high light stress, leaf temperature, photosynthesis, shoot architecture, transpiration  相似文献   

18.
A simple technique for comparing and quantifying the ventilationcapacity of vessels used for plant tissue culture is described.Ethylene was injected into culture vessels and its rate of lossmonitored by gas chromatography. From the resulting exponentialdecay curves, the time in hours for half the ethylene to belost (t50) was calculated and used to compare different containersand sealing methods. Cultures of Ficus lyrata Warb. and Gerberajamesonii Bolus grown for up to 28 d in plastic vessels sufficientlywell-sealed to generate t50 values of approx. 16 h, accumulatedethylene and carbon dioxide in association with depleted oxygen.The relationship between carbon dioxide accumulation and oxygendepletion within culture vessels indicated little if any anaerobicrespiration. Gerbera explants did not appear to be affectedby these gaseous environments. However, in Ficus, leaf expansionwas approximately halved, although fresh and dry mass of wholeshoots was not decreased. The smaller leaf size is attributedto the action of accumulated ethylene, because when the gaswas absorbed with 'Ethysorb' granules or its action inhibitedby 2,5–norbornadiene, leaf growth was normal. The removalof carbon dioxide with potassium hydroxide did not enhance theethylene effect, indicating little if any antagonism of ethyleneaction by carbon dioxide. Shoots of potato (Solanum tuberosumL. cv. Red Craig's Royal) were shortened in sealed culture vessels,in association with swelling, diageotropism and miniaturizationof the leaves. When tuber production was induced by decreasingthe photoperiod, increasing the sucrose concentration and includingcytokinin in the medium, partial sealing promoted conspicuoushypertrophy of the lenticels. These responses of potato wereprevented if the ethylene absorbant mercuric perchlorate wasenclosed together with the cultures. Plant tissue culture, poor aeration, ethylene, leaf expansion, Ficus lyrata Warb., Gerbera jamesonii Bolus, Solanum tuberosum L. cv. Red Craig's Royal  相似文献   

19.
We studied the course of early leaf area expansion and specificleaf area (SLA) in potato (Solanum tuberosum L.) and wheat (Triticumaestivum L.) genotypes and tested whether air temperature explainsdifferences in these courses within different environments.Such knowledge can be used to improve crop growth modelling.The relative rate of leaf area expansion (RL) of potato andwheat decreased with thermal time, but was nearly linear upto a leaf area index (L) of 1.0. TheRL (L < 1; mean: 17.9x 10-3°C-1 d-1) of potato showed an interaction betweengenotype and environment, and varied with year. TheRL (L <1; mean: 7.1 x 10-3°C-1 d-1) of winter wheat was lower thanthat of spring wheat (mean: 10.9 x 10-3°C-1 d-1), and bothvaried with year. SLAof potato increased nearly linearly withthermal time from 5 to 15 m2 kg-1at 50% emergence, to 20 to25 m2 kg-1at 155°Cd, and then decreased slightly. The SLAofboth winter and spring wheat began at 16 to 23 m2 kg-1and inmost cases increased slightly with thermal time. In potato,regression parameters of SLAwith thermal time were affectedby environment (management conditions and year) and genotype;in wheat they were affected by environment (year and site).Treatment effects on RLof potato were not correlated with thoseon SLA , and were only partly correlated for wheat. Thereforewe conclude that the early foliar expansion of potato is associatedwith a strong increase in SLA , and not so for wheat. For bothcrops the course of early leaf area expansion and ofSLA withair temperature is not robust over environments and genotypes.The consequences of these results for modelling are discussed.Copyright 2000 Annals of Botany Company Triticum aestivum, spring wheat, winter wheat, Solanum tuberosum, leaf area expansion, specific leaf area, early growth, genotype, environment, modelling  相似文献   

20.
The effect of tetraploidy on leaf characteristics and net gasexchange was studied in diploid (2x ) and autotetraploid (4x) ‘Valencia’ sweet orange (Citrus sinensis (L.)Osb.) and ‘Femminello’ lemon (Citrus limon (L.)Burm. f.) leaves. Comparisons between ploidy levels were madeunder high irradiance (I) in a growth chamber or low total Iin a glasshouse. Tetraploids of both species had thicker leaves,larger mesophyll cell volume and lower light transmittance thandiploids regardless of growth I. Mesophyll surface area perunit leaf area of 2x leaves was 5–15% greater than on4x leaves. Leaf thickness and mesophyll cell volume were greaterin high I leaves than low I leaves. In high I, average leafarea was similar for 2x and 4x leaves, whereas in low I it was30% greater in 4x than in 2x leaves. Nitrogen and chlorophyllconcentration per cell increased with ploidy level in both growthconditions. The ratio of chlorophyll a:b was 25% greater in2x than in 4x leaves. When net CO2assimilation rate (ACO2) wasbased on leaf area, 4x orange leaves had 24–35% lowerACO2than their diploids. There were no significant differencesin ACO2between 2x and 4x orange or lemon leaves when expressedon a per cell basis. Overall, lower ACO2per unit leaf area oftetraploids was related to increase in leaf thickness, largermesophyll cell volume, the decrease in mesophyll area exposedto internal air spaces, and the lower ratio between cell surfaceto cell volume. Such changes probably increased the resistanceto CO2diffusion to the site of carboyxlation in the chloroplasts. Cell volume; chlorophyll; irradiance; leaf thickness; nitrogen; photosynthesis; ploidy; Citrus limon ; C. sinensis ; ‘Valencia’ sweet orange; ‘Femminello’ lemon  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号