首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The species-specific chemical messenger, antheridiogen ACe, mediates the differentiation of male gametophytes in the fern Ceratopteris. In order to investigate the biochemical origin of antheridiogen, the effect of the inhibitors, 2′-isopropyl-4′-(trimethylammoniumchloride)-5′ -methylphenylpiperidine-1-carboxylate (AMO-1618), 2-chloroethyl trimethylammonium chloride (CCC), and α-cyclopropyl-α-(4-methoxyphenyl)-5-pyrimidine methyl alcohol (ancymidol) on gametophytic sex expression was determined in C. richardii. Both AMO-1618 and ancymidol blocked the production of male gametophytes in three genetically defined strains of C. richardii that exhibit different sensitivities to antheridiogen. Antheridiogen supplementation overcame inhibition by AMO-1618 and ancymidol, except in one strain (HaC18) that is insensitive to antheridiogen supplementation. These data suggest that the synthesis of Ceratopteris antheridiogen, a taxon that is insensitive to exogenously supplied gibberellins, occurs via a pathway that may include steps in common with gibberellin biosynthesis or involves similar reactions.  相似文献   

2.
The mutant dark-germinating 1 (dkg1) of the fern Ceratopteris richardii was originally characterized by two phenotypes, germination in the dark and inhibition of germination by light. In this work, we examined whether other phenotypes are present in the gametophytic generation of the dkg1 mutant. Although dkg1 prothalli grown in darkness were elongated as in the case of the wild type, some developmental processes were found to proceed even in complete darkness: (1) the apical and subapical zones developed largely by forming a lateral meristem; (2) asymmetric cell division for rhizoid differentiation occurred in the subapical elongation zone; (3) an archegonium was formed in the proximity of the meristem; and (4) chloroplast relocation could occur without de novo protein synthesis. Furthermore, these processes were shown to be under the control of phytochrome in the wild-type gametophytes on the basis of red/far-red reversibility. These results indicate that the DKG1 gene is pleiotropic and is involved in several phytochrome-mediated responses in the gametophyte development of C. richardii.  相似文献   

3.
WARNE, T. R., HICKOK, L. G. & SCOTT, R. S., 1988. Characterization and genetic analysis of antheridiogen-insensitive mutants in the fern Ceratopteris . The pheromone antheridiogen mediates the differentiation of male gametophytes in the fern Ceratopteris . Mutants insensitive to antheridiogen were isolated using an in vitro selection procedure. Antheridiogen-insensitive mutants exhibited partial or complete insensitivity to antheridiogen, but were normal in all other respects. Two mutants were completely insensitive to antheridiogen, whereas, another mutant was insensitive to supplemented antheridiogen, but produced male gametophytes in multispore cultures. Genetic analysis suggested a single gene basis for each mutant.  相似文献   

4.
Through an acclimation period of 10 days, compared to white light, the maximal net photosynthetic rates were significantly higher for gametophytes of Undaria pinnatifida cultivated under blue light (400–500 nm), and were lower under red light (600–700 nm). Chlorophyll c and the carotenoid content of gametophytes were similar under blue light and red light but were much lower under white light. The growth rate of female gametophytes under blue light was higher than that under other lights, and the growth rate of male gametophytes showed little variation with respect to blue and white light. Male and female gametophytes were mixed together to form sporophytes under white, blue and red light. After approximately 5 days, 50% gametophytes became fertile under blue and white light, but remained vegetative under red light after 10 days.  相似文献   

5.
研究了同形鳞毛蕨成精子囊素对该种和水蕨孢子萌发和配子体发育的影响,结果表明:同形鳞毛蕨配子体能产生成精子囊素,该成精子囊素能抑制同种孢子的萌发,抑制作用随配子体成熟度的增加而增强;同形鳞毛蕨成精子囊素还可促进同种孢子发育为雄配子体;光照条件下,同形鳞毛蕨成精子囊素对水蕨孢子萌发和配子体发育影响不大,黑暗条件下,同形鳞毛蕨成精子囊素能显著的促使水蕨孢子提早萌发,但都不影响其孢子最终萌发率和配子体的性别分化,表明同形鳞毛蕨和水蕨的成精子囊素不属于同一系统。  相似文献   

6.
The role of gibberellins (GAs) in determining sex in the gametophyte of the fern Blechnum spicant L. was studied through (a) the effect of exogenous GA4+7 and GA3 (b) quantitation of the endogenous levels of GA1, GA3, GA4, GA7, GA9, and GA20 in male and female gametophytes, and (c) the effect of flurprimidol, a GAs biosynthesis inhibitor of the steps of oxidation of ent-kaureno to ent-kaurenoic acid. Our results show that GA4+7 had a slight effect of inducing either male or female sexual organs, antheridia and archegonia, respectively. The endogenous GAs content was not significantly different between sexes, but the GA4, GA7, and GA20 levels were raised above those of the other GAs in both sexes. Neither antheridiogen biosynthesis nor antheridia formation was inhibited by flurprimidol. Gametophytes regenerated from homogenized mature gametophytes (HG) show a different physiological behavior than spore-derived gametophytes. In the first case, gametophytes are males and synthesize antheridiogen before they attain maturity, in contrast to what occurs in spore-derived gametophytes which are females and synthesize antheridiogen when mature.  相似文献   

7.
对狭眼凤尾蕨(Pteris biaurita)配子体发育特征及其外源成精子囊素对模式植物水蕨(Ceratopteris thalictroides)在黑暗和光照条件下孢子萌发和配子体发育的影响进行了研究。结果表明:(1)狭眼凤尾蕨孢子深褐色,三裂缝,孢子萌发为书带蕨型,原叶体发育为水蕨型,无毛状体产生;培养发现,其配子体能产生精子器,但不产生颈卵器,当接种密度适中时,可进行无配子生殖。(2)在光照和黑暗条件下狭眼凤尾蕨成精子囊素有促进和抑制水蕨孢子萌发的作用,但效果均不显著。(3)在光照条件下,狭眼凤尾蕨成精子囊素可以延迟水蕨心脏形配子体分生组织缺刻的形成,但对其配子体形态和性别分化无明显影响;而在黑暗条件下狭眼凤尾蕨成精囊素对水蕨长条形配子体的形态发育具有一定影响,与对照组相比其顶端分生组织发达,整体呈长楔形,对性别分化影响不显著。可见,狭眼凤尾蕨和水蕨不具有同种成精子囊素系统。  相似文献   

8.
The Photocontrol of Spore Germination in the Fern Ceratopteris richardii   总被引:1,自引:0,他引:1  
This paper describes how different wavelengths of light regulatespore germination in the fern Ceratopteris richardii. This speciesdoes not exhibit any dark germination. Maximum photosensitivityof the spores is reached 7 to 10 d after imbibition. An increasein the red light fluence above the threshold fluence of 1016quanta.m–2 leads to a corresponding increase in germination.In sequential irradiation experiments, farred light can reversethis red light-mediated germination to the level observed withthe far-red light control. Blue light fluences above 1020 quanta.m–2can also block the germination response to red light. Moreover,this antagonistic effect of blue light is not reversed by subsequentirradiation with red light. It is therefore concluded that phytochromeand a distinct blue light photoreceptor control C. richardiispore germination. These interpretations are entirely consistentwith the published literature on other fern genera. (Received November 28, 1986; Accepted April 6, 1987)  相似文献   

9.
金毛狗[Cibotium barometz(L.)J.Sm.]是珍稀观赏蕨类的重要类群,为国家二级重点保护野生植物。该研究以金毛狗孢子为试验材料,探究培养密度、外源赤霉素以及光质等不同环境因子对金毛狗配子体性别分化的影响,为金毛狗人工繁育和蕨类植物配子体性别决定机制研究提供技术支持。结果表明:(1)低配子体培养密度(1个/cm2和5个/cm2)有利于颈卵器和雌配子体形成,随着配子体培养密度增加,颈卵器平均数量及雌配子体比率下降,精子器平均数量以及雄配子体和两性配子体比例增加,但配子体培养密度过高(80个/cm2)会导致大量无性配子体产生。(2)不同配子体培养密度下,随着培养时间延长,两性配子体比率均有增加,且增加幅度基本一致。(3)外源GA4显著抑制颈卵器和雌配子体形成,并显著促进精子器和雄配子体形成;外源GA3对金毛狗配子体性别分化没有显著影响。(4)白光、红光、蓝光等不同光质对金毛狗配子体性别分化未产生显著影响,但会影响配子体的发育和形态建成。  相似文献   

10.
E Strain  B Hass  J A Banks 《Genetics》2001,159(3):1271-1281
Gametophytes of the fern Ceratopteris are either male or hermaphroditic. Their sex is epigenetically determined by the pheromone antheridiogen, which is secreted by the hermaphrodite and induces male and represses female development in other young, sexually undetermined gametophytes. To understand how antheridiogen represses the development of female traits at the genetic level, 16 new mutations that feminize the gametophyte in the presence of antheridiogen were identified and characterized. Seven are very tightly linked to the FEM1 locus previously described. Nine others define another locus named NOTCHLESS1 (NOT1), as several of the not1 mutants lack a meristem notch. Some not1 mutations also affect sporophyte development only when homozygous, indicating that the not1 mutations are recessive and that NOT1 is also required for normal sporophyte development. The epistatic interactions among FEM1, NOT1, and other sex-determining genes are described. This information was used to expand the genetic model of the sex-determining pathway in Ceratopteris. On the basis of this model, we can say that the presence of antheridiogen leads to the activation of the FEM1 gene, which not only promotes the differentiation of male traits, but also represses female development by activating the NOT1 gene. NOT1 represses the TRA genes necessary for the development of female traits in the gametophyte.  相似文献   

11.
Döpp has demonstrated an antheridium-inducing hormone (antheridiogen) in P.aquilinum. This antheridiogen (abbr. Apt.) is active in many, if not all, species of the family Polypodiaceae. Among responsive species, the minimally effective concentration varies widely. Apt was assayed againstOnoclea sensibilis because this species fails to form antheridia spontaneously under the prevailing conditions of culture and because none of the many species tested responds to a lower concentration APt is inactive toward the investigated species of the fern families Osmundaceae, Cyatheaceae and Schizaeaceae. The two schizaeaceous speciesAnema phyllitidis andLygodium japonicum also elaborate antheridiogens (abbr. AAn and ALy). Both these antheridiogens are inactive in 0.sensibilis, the species used to assay for APt. AAn, ALy, APt and AOn (the antheridiogen of O.sensibilis) are distinct entities based both on the criteria of cross-testing and of Chromatographic separation. Cross-testing led to the conclusion that the antheridiogen ofCeratopteris thalictroides differ from APt and AAn. Gibberellins have antheridiogenic properties in schizaeaceous species but, like AAn and ALy, they fail to hasten antheridium formation in the species used to assay for APt. The native antheridiogens of schizaeaceous species are more species-selective in their action than is GA3. AAn has recently been isolated. Its structure is similar to, if not identical with, that of gibberellins. AAn behaves like a weak gibberellin in several higher plant assay systems. The prothalli ofP. aquilinum andO. sensibilis become insensitive to Apt as they attain heart shape or shortly thereafter. Prothalli ofP. aquilinum do not begin to synthesize APt and secrete it into the medium, until after they have become insensitive to it. It is in consequence of this that the most rapidly growing and developing individuals attain the archegonial phase without a prior antheridial phase. Various mechanisms and developmental characteristics are described, which strongly favor cross-fertilization inP. aquilinum without, however, eliminating an opportunity for self-fertilization. The cells of abortive antheridium initials, and of “green antheridia”, exhibit certain characteristics of green vegetative cells. These atypical structures appear to arise when early antheridial stages are overtaken by conditions unfavorable to antheridium differentiation. The observations suggest that APt may be required beyond an initial inductive event. The investigations led to the conclusion that APt functions by cancelling a light-dependent block to antheridium formation and suggest that in darkness this block decays without the intervention of APt. InPolypodium crassifolium, the light-effect on antheridium formation is mediated by phytochrome. Other subject matters discussed include: The cellular location of antheridium initials; the relationship of antheridiogen to antheridiogen structure; the existence of a switching mechanism in the sexual development ofO. sensibilis; the retrieval of genetic information in the induction and differentiation of antheridia; the tempero-spatial pattern of competence to antheridiogen in schizaeaceous species and the inducibility of a physiological state antagonistic to antheridium formation in A.phyllitidis.  相似文献   

12.
Resource allocation plasticity enables individuals to alter patterns of nutrient use between reproductive and vegetative output to better fit their current environment. In sexually labile plant species, abiotic environmental factors can influence expression of dimorphic gender, resulting in environmental sex determination (ESD), which potentially reduces the need for plasticity of resource allocation by preemptively matching an individual’s future nutrient demands to resource availability in its location. Ceratopteris richardii gametophytes exhibit gender‐dependent differences in relative carbon and nitrogen content, and ESD in certain nutrient environments. This study examined whether prior ESD in C. richardii gametophyte populations reduced subsequent plasticity of reproductive allocation compared to instances where no ESD occurred, by quantifying phenotypic responses to reduced P, N, or CO2 availabilities. All three nutrient‐limited environments resulted in decreased size of egg‐bearing (meristic) gametophytes compared to nonlimited environments, but gametophytes failed to respond to N and CO2 limitation at the time of sex determination, resulting in no ESD. N limitation resulted in a predictable allometric re‐allocation of resources based on small gametophyte size, whereas CO2 limitation caused a change in reproductive output consistent with true plasticity. Withholding exogenous P caused ESD and had no effect on relative reproductive output of resultant meristic gametophytes because the size decrease was minor. Under P limitation, ESD matched the resource demands of gender phenotypes to their environment before the onset of developmental dimorphism, reducing the need for large allocation adjustments after sex determination.  相似文献   

13.
Hou GC  Hill JP 《Planta》2004,219(2):212-220
Young sporophytes of the homosporous fern Ceratopteris richardii produce a single shoot-borne root below each leaf. The developmental anatomy of the fifth sporophyte root is described using scanning electron microscopy and histological techniques. Three merophyte orthostichies in the body of the root originate from three proximal division faces of a tetrahedral root apical cell. Eight or nine divisions occur in a relatively regular sequence within each merophyte and produce a characteristic radial anatomical pattern in the root. The exact number of early divisions within a merophyte depends on the merophytes position within the root as a whole. Predictable inter-merophyte differences arise because a 2-fold (diarch) anatomical symmetry that is characteristic of mature roots is superimposed on a 3-fold radial symmetry that originates behind the apical cell. Before early formative divisions within a merophyte are completed, additional proliferative divisions begin to increase the number of cells within previously established tissue zones. The cellular parameters of early fifth root development in C. richardii are relatively invariant, and are reminiscent of patterns previously described for the heterosporous fern Azolla. Young sporophytes of C. richardii provide a useful model to further investigate the genetic regulation of root development in a non-seed plant, where the anatomy of meristem organization differs from that seen in flowering plant species.Abbreviations SEM Scanning electron microscopy - RAC Root apical cell  相似文献   

14.
Enzymes and metabolites associated with mitigation of paraquat toxicity were compared in two paraquat-tolerant mutants and a sensitive wild-type strain of the fern Ceratopteris richardii Brongn. In 21-day-old gametophytes, the specific activities of superoxide dismutase, catalase, peroxidase, glutathione reductase, dehydroascorbate reductase, and ascorbate peroxidase showed no differences that would explain mutant tolerance. Constitutive levels of ascorbate and glutathione also did not differ significantly in the three strains. An experiment testing the inducibility of paraquat tolerance revealed no change in the dose response of mutant or wild type gametophytes after exposure to sublethal concentrations of the herbicide. Uptake of paraquat by whole gametophytes was also equivalent in mutants and wild type. These data suggest that the physiological basis for tolerance in these mutants, unlike several other tolerant biotypes reported, does not lie in the oxygen radical scavenging system, in an inducible stress response, or in a block to whole-plant uptake.  相似文献   

15.
Günter Ruyters 《Planta》1988,174(3):422-425
Starch breakdown and respiratory O2 uptake in the green algaDunaliella tertiolecta (Butcher) are stimulated not only by blue, but also by red light. In the present study, attempts are described to identify the photoreceptor(s) involved. Fluence rate-response curves with different slopes in the ultraviolet (UV)/blue and in the red spectral region as well as differences in the kinetics and in the unfluence of dark pre-incubation on the stimulation of respiratory O2 uptake by blue and red light strongly indicate the action of two photoreceptors. Since the effect of red light shows some far-red reversibility, and since simultaneous irradiation with red and far-red light decreases the effectiveness of red light, the involvement of phytochrome — in addition to the UV/blue photoreceptor(s) — is suggested in the light-stimulated respiration inDunaliella.Abbreviation UV ultraviolet  相似文献   

16.
17.
Summary Spores from a weakly salt tolerant strain of Ceratopteris richardii containing the mutation stl1 were irradiated and sown on nutrient medium supplemented with 200 mM NaCl. A single highly salt tolerant gametophyte was recovered and selfed to generate a homozygous sporophyte. Spores from this strain, 1023, were used to document the sexual transmission of the trait and to monitor the inheritance of tolerance in crosses to both the wild type and to the parental salt tolerant strain. Genetic analysis showed the 1023 strain to possess both the original stl1 mutation and an additional semi-dominant nuclear mutation, stl2, that individually conferred a high level of tolerance to gametophytes. In combination, both mutations had additive effects. Tolerance was also evident in sporophytes, but at a lower level than in gametophytes.  相似文献   

18.

Background  

Ceratopteris richardii is a useful experimental system for studying gametophyte development and sexual reproduction in plants. However, few tools for cloning mutant genes or disrupting gene function exist for this species. The feasibility of systemic gene silencing as a reverse genetics tool was examined in this study.  相似文献   

19.
Summary Three nuclear mutations that affect tolerance to the herbicide paraquat have been selected in the fern Ceratopteris richardii. Two of the mutations, pq2 and pq45 are allelic and confer low and moderate tolerance, respectively. A third mutation, pqa6, is not linked to the other two and significantly enhances the level of tolerance when in combination with either pq2 or pq45. The pqa6 mutation does not independently confer tolerance in the absence of the other mutations.  相似文献   

20.
Homosporous ferns are generally considered polyploid due to high chromosome numbers, but genetically diploid since the expression of isozymes is generally controlled by a single locus. Gene silencing over evolutionary time is one means by which this apparent contradiction can be explained. A prediction of this hypothesis is that silenced gene sequences still reside in the genomes of homosporous ferns. We examined the genomes ofCeratopteris richardii andC. thalictroides for sequences which are similar to expressed gene sequences. Genomic DNA blots hybridized withC. richardii cDNA clones showed that the majority of these clones detected multiple fragments, suggesting that most gene-like sequences are duplicated inCeratopteris. Hybridization signal intensity often varied between fragments of the same size between accessions, sometimes dramatically, which indicates that not all sequences are equivalent, and may represent the products of silenced genes. Observed reciprocal differences in intensity could be due to reciprocally silenced genes. In addition, an unusual segregation pattern for one locus followed by one probe may indicate homeologous chromosome pairing and segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号