首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
SYNOPSIS. The life cycle of Eimeria ferrisi is described from experimentally infected Mus musculus. The prepatent period was 3 days and the patent period was 3–4 days. The endogenous stages were found only in the cecum and colon. Three generations of schizonts were found. Mature 1st-generation schizonts first seen 24 hr postinoculation (PI) measured 10.9 (7–14) × 10.2 (6–13) μm and had 9.6 (7–14) merozoites. Some 2nd-generation schizonts had uninucleate merozoites and others had multinucleate merozoites. The former were first seen in small numbers 36 hr PI and were most abundant 48 hr PI. They measured 9.6 (5–13) × 7.9 (6–12) μm and had 18 (6–25) merozoites. Schizonts with multinucleate merozoites were seen 72 hr PI. Mature 3rd-generation schizonts were seen 72 hr PI. They measured 14.0 (12–18) × 11-0 (9–13) μm and had 12.5 (5–16) merozoites. Macrogamonts were first seen in 72 hr sections. Each young macrogamont had a large nucleus with a prominent nucleolus. Only one type of cytoplasmic granule appeared to be involved in the formation of the oocyst wall. Mature macrogamonts were 11.0 (5–14) × 10.0 (6–13) μm. Crescent-shaped bodies were observed in the parasitophorous vacuole of trophozoites and young macrogamonts. Early microgamonts were first recognized at 96 hr by the presence of darkly stained and irregularly shaped nuclei. Usually, mature microgametes were arranged in long, narrow whorls at the periphery of the microgamont or in whorls at the surface of 2–5 compartments.  相似文献   

2.
SYNOPSIS. Monolayer primary cultures of cells from bovine embryonic intestine (BEInt), kidney (BEK), spleen (BES), and thyroid (BETy) and cell line cultures of embryonic bovine trachea (EBTr) and synovium (BESy) as well as established cell line cultures of bovine kidney (Madin-Darby, MDBK), human intestine (Int 407) and Syrian hamster kidney (BHK) were inoculated with freshly excysted sporozoites of Eimeria alabamensis and observed for 4–5 days. Sporozoites penetrated all cell types; during the 1st 24 hr, intracellular sporozoites, trophozoites and binucleate schizonts were seen in all cell cultures. Mature schizonts were more numerous in BES and MDBK cells than in the others. Large schizonts, 14.2 (11–18.5) by 10.2 μ (8.5–11), with 6–14 short, stubby merozoites (each with 2 refractile bodies) occurred at 2 and 3 days in all cells except BESy, Int 407, and BHK. Small schizonts, 9.7 (5.5–13) by 6 μ (5–8.5), with 6–10 long, slender merozoites (each with 2 refractile bodies) were found 3 days after inoculation in all cell types. At 4 days, some intracytoplasmic merozoites and a few intranuclear 2nd generation trophozoites were found. After 4 days post-inoculation, intracellular parasites were rarely seen and these were apparently degenerate. Development within the host cell nucleus, the normal site of development in the host animal, was observed infrequently in cell cultures. Intranuclear sporozoites, found no earlier than 2 days after inoculation, developed similarly to those in the cytoplasm, and small intranuclear schizonts with 6–10 merozoites (each with 2 refractile bodies) occurred after 3 days in culture.  相似文献   

3.
Sporozoites and 1st-, 2nd-, and 3rd-generation merozoites of Eimeria meleagrimitis were inoculated into primary cultures of turkey kidney cells. In vitro-excysted sporozoites developed into mature macrogamonts in 8 days; in vivo-excysted sporozoites developed into 2nd- or 3rd-generation schizonts within 5 to 7 days. First-generation merozoites obtained from infected turkeys produced mature 2nd-generation schizonts within 24 h. Second-generation merozoites from turkeys produced mature macrogamonts and oocysts within 72 h, whereas 3rd-generation merozoites produced these stages within 48 h. The oocysts that developed from 3rd-generation merozoites sporulated at 25 C and were infective for turkeys. The timing of the early stages and the intervals between schizogonic generations in cultures were comparable with those in turkeys. Morphologic parameters, however, indicated that some differences existed between in vitro and in vivo development. Second- and 3rd-generation schizonts and gamonts that developed after inoculation of cultures with merozoites were similar to stages in turkeys. Oocysts, however, were significantly smaller (P less than 0.05) in cultures. All stages that developed after inoculation of cultures with sporozoites were smaller (P less than 0.05) than their in vivo counter parts.  相似文献   

4.
SYNOPSIS. Cell lines of embryonic lamb trachea (LETr), lamb thyroid (LETh), and bovine liver (BEL) as well as an established cell line of Madin-Darby bovine kidney (MDBK) were used in a study of the in vitro development of Eimeria crandallis from sheep. Excysted sporozoites were inoculated into Leighton tubes containing coverslips with monolayers of the different cell types. Coverslips were examined with phase-contrast and interference-contrast at various intervals up to 20 days after inoculation; thereafter the monolayers were fixed and stained in various ways. Freshly excysted sporozoites, with 2–10 spheroidal refractile bodies, entered all of the cell types in relatively small numbers; intracellular sporozoites were first seen 2 min after inoculation. After 24 hr, most intracellular sporozoites had only 1 or 2 refractile bodies. Before and during transformation of sporozoites, the nucleus and peripheral nucleolus increased markedly in size. Transformation resulted in usually spheroid but sometimes ellipsoid trophozoites. Trophozoites were seen first 3–4 days, and binucleate schizonts at 4–5 days after inoculation. Immature schizonts increased considerably in size and eventually had large numbers of nuclei. Some of the parasites became lobulated and the lobules often separated to form individual schizonts. In BEL, LETr and LETh cells, mature schizonts, up to 150 μm in diameter, were seen first 11–14 days after inoculation. The BEL cells were the most favorable for development. Merozoites were formed by a budding process from the surface of the schizonts as well as from blastophores. Some merozoites were seen leaving mature schizonts, but no further development was observed. Merozoites frequently were motile and had a sharply bent posterior end. Marked nuclear and cytoplasmic changes were observed in parasitized cells.  相似文献   

5.
SYNOPSIS. Cell lines or established cell lines of bovine, ovine or human origin and primary cells from whole embryos of groundsquirrels were used in a study of the in vitro development of Eimeria callospermophili and E. bilamellata from the Uinta ground squirrel, Spermophilus armatus. Monolayers in Leighton tube cultures were inoculated with sporozoites of either of these 2 species and examined with phase-contrast microscopy at various intervals. After such examination, coverslips were fixed in Schaudinn's or Zenker's fluid and variously stained. E. callospermophi sporozoites penetrated cells and underwent development to mature 1st generation schizonts in most cell types. At different times after inoculation, both species formed sporozoite-shaped schizonts, which later became spheroidal. Intracellular movements of sporo zoite-shaped schizonts of E. callospermophili were observed and such schizonts penetrated cells when freed by mechanical disintegration of the host cells. Merozoites were formed at the periphery of the schizont in both species. Mature 1st generation schizonts of E. callospermophili, with 6–14 merozoites, were first seen 15 hr after inoculation; the corresponding values for E. bilamellata were 12–27 merozoites and 4 days. Merozoites of both had anterior and posterior refractile bodies. Exposure to a trypsin-bile solution stimulated motility in merozoites of E. callospermophili. Second generation trophozoites and immature schizonts of E. callospermophili were seen in cultures of primary cells of whole ground-squirrel embryos 20–24 hr and 44–48 hr, respectively, after inoculation of sporozoites.  相似文献   

6.
The life cycle of Eimeria falciformis var. pragensis, established from a single oocyst, is described in experimentally infected mice (Mus musculus). The coccidium had a prepatent period of 7 days and a patent period of 10--16 days. Oocysts were spherical to ellipsoidal in shape and measured 21.2 x 18.3 micron. Sporulation time was 3 to 3.5 days. Sporocysts measured 12.2 x 7.2 micron and contained a circular to avoid granular sporocyst residuum measuring 5.5 X 5.0 micron. One, 2 or 3 circular to rectangular polar granules were observed within each sporulated oocyst. The endogenous stages developed primarily in the cecum and colon and only occasionally in the lower ileum. Four generations of schizonts were found. Mature 1st-generation schizonts, first observed 48 hr postinfection (PI), measured 17.8 x 12.3 micron and had 12 merozoites that measured 13.3 x 2.0 micron. Mature 2nd-generation schizonts appeared 78 hr PI. They measured 10.2 x 9.3 micron and had 8 merozoites measuring 5.0 x 1.6 micron. Mature 3rd-generation schizonts appeared first at 114 hr PI and measured 17.5 x 10.2 micron and had 10 merozoites that measured 12.4 x 1.8 micron. Mature 4th-generation schizonts appeared first at 144 hr PI. They measured 18.2 x 15.3 micron and had 18 merozoites. The merozoites of the 4th-generation schizont were 4.5 x 1.2 micron. Mature macrogamonts and microgamonts developed simultaneously appearing at 156 hr PI. Macrogamonts measured 16 x 14.5 micron and microgamonts were 18.2 x 15.3 micron. In experimentally infected rats (Rattus norvegicus), development of E. falciformis var. pragensis progressed only as far as mature 1st-generation schizonts.  相似文献   

7.
To establish an in vitro culture system for the precystic phase of Sarcocystis singaporensis, we initially tested various excysting fluids for sporocysts. An excysting fluid containing 2.5% bovine taurocholate and 10% bile of the specific intermediate host, Rattus norvegicus, in RPMI medium was the most suitable resulting in excystation of 80% of the sporozoites. Subsequently, we identified brain endothelial cells and pneumonocytes of the rat to promote growth of sporozoites to schizonts. Hepatoma, fibroblastic, or myoblastic cells were not suitable for the parasite's development. First-generation schizonts were seen at days 3-10 postinoculation (PI); a distinct second peak of schizogonic development only occurred in endothelial cells at days 14-18 PI. First-generation schizonts were 26.0 (± 3.8) μm in diameter and contained 32-50 merozoites, second-generation schizonts measured 34.4 (± 10.6) μm and contained 54-72 merozoites. Merozoite yield at large-scale culture conditions (75 cm2 flasks) using pneumonocytes as host cells was relatively low. Ultrastructurally, sporozoites and merozoites were quite similar to corresponding stages of other Sarcocystis species. With regard to host cell specificity and developmental kinetics, in vitro cultivation showed close similarities to the situation in vivo.  相似文献   

8.
Serine protease activity in developmental stages of Eimeria tenella   总被引:1,自引:0,他引:1  
A number of complex processes are involved in Eimeria spp. survival, including control of sporulation, intracellular invasion, evasion of host immune responses, successful reproduction, and nutrition. Proteases have been implicated in many of these processes, but the occurrence and functions of serine proteases have not been characterized. Bioinformatic analysis suggests that the Eimeria tenella genome contains several serine proteases that lack homology to trypsin. Using RT-PCR, a gene encoding a subtilisin-like and a rhomboid protease-like serine protease was shown to be developmentally regulated, both being poorly expressed in sporozoites (SZ) and merozoites (MZ). Casein substrate gel electrophoresis of oocyst extracts during sporulation demonstrated bands of proteolytic activity with relative molecular weights (Mr) of 18, 25, and 45 kDa that were eliminated by coincubation with serine protease inhibitors. A protease with Mr of 25 kDa was purified from extracts of unsporulated oocysts by a combination of affinity and anion exchange chromatography. Extracts of SZ contained only a single band of inhibitor-sensitive proteolytic activity at 25 kDa, while the pattern of proteases from extracts of MZ was similar to that of oocysts except for the occurrence of a 90 kDa protease, resistant to protease inhibitors. Excretory-secretory products (ESP) from MZ contained AEBSF (4-[2-Aminoethyl] benzenesulphonyl fluoride)-sensitive protease activity with a specific activity about 10 times greater than that observed in MZ extracts. No protease activity was observed in the ESP from SZ. Pretreatment of SZ with AEBSF significantly reduced SZ invasion and the release of the microneme protein, MIC2. The current results suggest that serine proteases are present in all the developmental stages examined.  相似文献   

9.
A monoclonal antibody, which recognizes the refractile body of Eimeria sporozoites, was used to study the developmental fate of this organelle during asexual development of E. tenella and to determine the effect of this monoclonal antibody on in vitro development of the parasite. Through use of immunofluorescent antibody and gold-labeling techniques at the light and electron microscopy level, the refractile body at 48 to 96 hr postinoculation was found to separate into 6 to 10 small globules, then diffuse throughout the schizont cytoplasm, and eventually reconcentrate as a small dot of material in each of the mature first-generation merozoites. The schizont did not develop to maturity if diffusion of the refractile body did not occur. The refractile body material was quickly lost as the merozoite left the schizont and invaded new cells and was not detected in any later developmental stages. The in vitro development of first- and second-generation schizonts of E. tenella was greatly inhibited (up to 100%) with exposure to the monoclonal antibody. There was an increase in the number of schizonts with nondispersed refractile body in the monoclonal antibody-treated cells when compared to the untreated controls, and the few mature schizonts seen had up to a 50-fold decrease in the number of merozoites. Immunofluorescent antibody labeling of the refractile body of intracellular sporozoites and schizonts treated in vitro with the monoclonal antibody for 24-96 hr postinoculation indicated that the antibody had crossed the host cell and parasite plasma membrane during incubation.  相似文献   

10.
The morphology and behavior of living exoerythrocytic stages of Plasmodium gallinaceum and P. fallax were studied by the use of tissue cultures, phase contrast microscopy, and time-lapse cinephotomicrography. The morphology of exoerythrocytic stages of these two species was essentially that previously observed in fixed, stained material, with the following exceptions: (1) the presence of a filament on one end of the merozoite, (2) the absence of clefts in the cytoplasm of the large schizonts, and (3) the absence of a vacuole-like space around the parasite. The following behavior was observed either directly or in time-lapse sequences: (1) emergence of merozoites from mature schizonts, (2) progressive motility of free merozoites, (3) entry of merozoites, both actively and passively, into host cells, (4) nuclear division in the parasite, (5) the various stages of schizogony, including final production of merozoites, (6) massive infection of host cells, and (7) phagocytosis of merozoites and attempted phagocytosis of mature schizonts by macrophages. Exoerythrocytic stages of P. fallax differed from those of P. gallinaceum in that the merozoites of the former were (1) somewhat more curved in shape and (2) present in fewer numbers in mature schizonts. The use of tissue culture, phase contrast microscopy, and time-lapse cinephotomicrography promises to solve many of the remaining problems concerning exoerythrocytic stages of malarial parasites and their interrelationships with host cells.  相似文献   

11.
Serpins are serine protease inhibitors that are widely distributed in metazoans but have not been previously characterized in Eimeria spp. A serpin from Eimeria acervulina was cloned, expressed and characterized. Random screening of an E.acervulina sporozoite cDNA library identified a single clone (D14) whose coding region shared high similarity to consensus structure of serpins. Clone D14 contained an entire open reading frame (ORF) consisting of 1,245 nts that encode a peptide 413 amino acids in length with a predicted molecular weight of 45.5 kDa and containing a signal peptide 28 residues in length. By Western blot analysis, polyclonal antiserum to the recombinant serpin (rbSp) recognized a major 55 kDa protein band in unsporulated oocysts and in oocysts sporulated up to 24 hr (fully sporulated). The anti-rbSp detected bands of 55 kDa and 48 kDa in sporozoites (SZ) and merozoites (MZ) respectively. Analysis of MZ secretion products revealed a single protein of 48 kDa which may correspond to secreted serpin. By immuno-staining the serpin was located in granules distributed throughout both the SZ and MZ but granules appeared to be concentrated in the parasite's anterior. Analysis of the structure predicts that the E. acervulina serpin should be an active inhibitor. However, rbSp was without inhibitory activity against common serine proteases. By Western blot analysis the endogenous serpin in MZ extracts did not form the expected high molecular weight complex when coincubated with either trypsin or subtilisin. The results demonstrate that E. acervulina contains a serpin gene and expresses a protein with structural properties similar to an active serine protease inhibitor. Although the function of the E. acervulina serpin remains unknown the results further suggest that serpin is secreted by the parasite where it may be involved in cell invasion and other basic developmental processes.  相似文献   

12.
SYNOPSIS. Sporozoites and 1st-, 2nd-, and 3rd-generation merozoites of Eimeria meleagrimitis were inoculated into primary cultures of turkey kidney cells. In vitro-excysted sporozoites developed into mature macrogamonts in 8 days; in vivo-excysted sporozoites developed into 2nd- or 3rd-generation schizonts within 5 to 7 days. First-generation merozoites obtained from infected turkeys produced mature 2nd-generation schizonts within 24 h. Second-generation merozoites from turkeys produced mature macrogamonts and oocysts within 72 h, whereas 3rd-generation merozoites produced these stages within 48 h. The oocysts that developed from 3rd-generation merozoites sporulated at 25 C and were infective for turkeys. The timing of the early stages and the intervals between schizogonic generations in cultures were comparable with those in turkeys. Morphologic parameters, however, indicated that some differences existed between in vitro and in vivo development. Second- and 3rd-generation schizonts and gamonts that developed after inoculation of cultures with merozoites were similar to stages in turkeys. Oocysts, however, were significantly smaller (P < 0.05) in cultures. All stages that developed after inoculation of cultures with sporozoites were smaller (P < 0.05) than their in vivo counter parts.  相似文献   

13.
Late schizonts from continuous cultures of P. falciparum were concentrated over Percoll, inoculated to various experimental media at the rate of about 20 X 10(6) per 0.5 ml of medium, and incubated in a candle jar at 37 degrees for 1 day. Controls in standard culture medium showed a heavy invasion with young rings in the previously uninfected red cells introduced with the inoculum of schizonts. In a medium of high potassium content containing a 33% extract of human erythrocytes, this invasion was inhibited and many free merozoites were present. If, however, this same medium was supplemented with both ATP, as the dipotassium salt at 1.6 mM, and sodium pyruvate at 3.6 mM, there appeared large numbers of extracellular forms resembling young rings. Examination of these by electron microscopy shows that they are indeed merozoites that have begun to differentiate extracellularly. This suggests that the trigger for differentiation of merozoites may not depend on the process of entry into a red cell but rather on specific factors within the red cell.  相似文献   

14.
Eimeria tenella sporozoites were inoculated into primary cultures of chick kidney cells. Cells fixed from 1 1/2 to 54 hr later were examined with the electron microscope. At 1 1/2 and 24 hr, most intracellular sporozoites were fusiform and retained organelles typical of extracellular sporozoites. However, at 35 hr, rounded trophozoites were present without these structures; only a refractile body, nucleus, mitochondria, and endoplasmic reticulum remained. Binucleate parasites were also present at that time, but at 48 hr many multinucleate schizonts were present. Nuclei, with adjacent conoids, were at the periphery of these schizonts. Partly developed merozoites, each containing a conoid and a nucleus, protruded into the parasitophorous vacuole. At 54 hr, fully developed merozoites were separated from the residual body. Merozoites resembled sporozoites but lacked the large refractile bodies seen in sporozoites. Linear inclusions were present near the merozoite nucleus and in the residual body. Round vacuoles and ribosomes were also found in the residuum. Nucleoli were first seen in sporozoite nuclei at 1 1/2 hr. They were also present in merozoites but were more prominent in trophozoites and schizonts. Peripheral and scattered nuclear heterochromatins were prominent in intracellular sporozoites and diminished in trophozoites, but increased after several nuclear divisions and were again prominent in the merozoite. Small, distinct interchromatin granules were found in all stages. Intranuclear spindles, centrocones, and centrioles were found in connection with nuclear divisions. Ultrastructure of first-generation schizogony in cell culture was similar to that described for second-generation E. tenella in the chicken and to schizogony of other species of Eimeria.  相似文献   

15.
Erythrocytic malaria parasites utilize proteases for a number of cellular processes, including hydrolysis of hemoglobin, rupture of erythrocytes by mature schizonts, and subsequent invasion of erythrocytes by free merozoites. However, mechanisms used by malaria parasites to control protease activity have not been established. We report here the identification of an endogenous cysteine protease inhibitor of Plasmodium falciparum, falstatin, based on modest homology with the Trypanosoma cruzi cysteine protease inhibitor chagasin. Falstatin, expressed in Escherichia coli, was a potent reversible inhibitor of the P. falciparum cysteine proteases falcipain-2 and falcipain-3, as well as other parasite- and nonparasite-derived cysteine proteases, but it was a relatively weak inhibitor of the P. falciparum cysteine proteases falcipain-1 and dipeptidyl aminopeptidase 1. Falstatin is present in schizonts, merozoites, and rings, but not in trophozoites, the stage at which the cysteine protease activity of P. falciparum is maximal. Falstatin localizes to the periphery of rings and early schizonts, is diffusely expressed in late schizonts and merozoites, and is released upon the rupture of mature schizonts. Treatment of late schizionts with antibodies that blocked the inhibitory activity of falstatin against native and recombinant falcipain-2 and falcipain-3 dose-dependently decreased the subsequent invasion of erythrocytes by merozoites. These results suggest that P. falciparum requires expression of falstatin to limit proteolysis by certain host or parasite cysteine proteases during erythrocyte invasion. This mechanism of regulation of proteolysis suggests new strategies for the development of antimalarial agents that specifically disrupt erythrocyte invasion.  相似文献   

16.
ABSTRACT Exoerythrocytic forms of Plasmodium gallinaceum were cultured in vitro using salivary gland sporozoites extracted from experimentally infected Aedes fluviatilis mosquitoes. the host cells were macrophage precursors from chicken bone marrow. At various times after introduction of Sporozoites, the cultures were stained by Giemsa or by immunofluorescence assay (IFA) using anti-sporozoite-specific monoclonal antibodies (MAb). the time to complete parasite development in vitro was 50-70 h. By 70 h, ruptured segmenters and free merozoites were visible within the cells. Inoculation of normal chickens with infected cultures induced parasitemia after a pre-patent period of 10-11 days. In vitro young exoerythrocytic forms, late schizonts that include the matured segmenters, and free merozoites shared common antigens with the sporozoites as revealed by IFA using anti-sporozoite-specific MAbs. Our data indicate that macrophages support development of P. gallinaceum sporozoites and that the circumsporozoite proteins are present until Ac end of the primary exoerythrocytic schizogony.  相似文献   

17.
Exoerythrocytic forms of Plasmodium gallinaceum were cultured in vitro using salivary gland sporozoites extracted from experimentally infected Aedes fluviatilis mosquitoes. The host cells were macrophage precursors from chicken bone marrow. At various times after introduction of sporozoites, the cultures were stained by Giemsa or by immunofluorescence assay (IFA) using anti-sporozoite-specific monoclonal antibodies (MAb). The time to complete parasite development in vitro was 50-70 h. By 70 h, ruptured segmenters and free merozoites were visible within the cells. Inoculation of normal chickens with infected cultures induced parasitemia after a pre-patent period of 10-11 days. In vitro young exoerythrocytic forms, late schizonts that include the matured segmenters, and free merozoites shared common antigens with the sporozoites as revealed by IFA using anti-sporozoite-specific MAbs. Our data indicate that macrophages support development of P. gallinaceum sporozoites and that the circumsporozoite proteins are present until the end of the primary exoerythrocytic schizogony.  相似文献   

18.
The development and merozoite production of Sarcocystis falcatula and 2 isolates (SN6 and SN2) of Sarcocystis neurona were studied in various cultured cell lines inoculated with culture-derived merozoites. All 3 parasites underwent multiple cycles of schizogony in VERO cells, bovine monocytes (M617 cells), and bovine pulmonary artery endothelial cells (CPA). Sarcocystis neurona strains SN6 and SN2 formed schizonts in rat myoblasts (L6) but not in quail myoblasts (QM7); S. falcatula formed schizonts in QM7 cells but not in L6 cells. Merozoites did not develop to sarcocysts in the myoblast cells lines. During a 47-day culture period in VERO cells, SN6 produced substantially more merozoites than did SN2 or S. falcatula. M617 cells produced substantially more merozoites of SN6 than did VERO or CPA cells. During a 17-day culture period of SN6, M617 cells produced mean totals of 4.7 x 10(8) merozoites, VERO cells produced 1.9 x 10(8) merozoites, and CPA cells produced 5.9 x 10(7) merozoites. At 4-12 days after inoculation of cultured cells with SN6, M617 cells cultured in the presence of 10% fetal bovine serum (FBS) produced a mean merozoite total of 5.1 x 10(8) compared to 3.6 x 10(8) for culture medium containing 1% FBS.  相似文献   

19.
SYNOPSIS. Monolayer cell cultures of embryonic turkey intestine (primary) and bovine kidney (cell line, 20th passage), maintained at 40.6 and 43 C for alternating intervals of approximately 12 hours in Basal Medium Eagle and fetal calf serum at pH 7.0–7.4, were observed for 144 hours after inoculation of Eimeria meleagrimitis sporozoites.
In turkey intestine cultures, which consisted of fibroblast-like cells and patches of epitheliul-like cells, there were decreases of 80 and 81% in the numbers of parasites between 5 and 48 hrs; in bovine cultures, 21–41% decreases. Decreases in the turkey cultures, however, were due to the nonsurvival of sporozoites in fibroblast-like cells; in epitheliul-like cells there was a 42% dcrease between 5 and 48 hrs and only 27% between 48 and 144 hours.
Trophozoites were present in bovine cells at 5 hrs. Small, mature schizonts containing only 12-28 merozoites were present in the bovine cultures and in the epitheliul-like cells within turkey intestine cultures from 48-144 hrs. Larger schizonts (50-115 by 20-70 μ) were present in bovine but not in turkey cultures from 72–144 hrs. Many of these schizonts contained far more merozoites than schizonts of any of the 3 generations described from the host.
In bovine cultures, there was an abundance of liberated merozoites at 50, 52, 74, and 76 hrs; many had reinvaded cells, sometimes as many as 50–60 per cell. In turkey cultures, liberated merozoites were found once at 144 hrs and none were intracellular. At 120 and 144 hrs in bovine cultures, abnormally developed and degenerate forms appeared; in turkey cultures, all were normal.  相似文献   

20.
Eimeria tenella, an intracellular protozoan parasite infecting the epithelial cells of the ceca of chickens, causes severe diarrhea and bleeding that can lead its host to death. It is of interest that E. tenella first penetrate into the mucosal intraepithelial lymphocytes (IEL) before they parasitize crypt or villous epithelial cells. This in vitro study was undertaken to know whether the penetration of E. tenella into such a lymphoid cell is a beneficial step for the parasite survival and development. Three sequential experiments were performed. First, the in vitro established bovine kidney cell line, MDBK cells, were evaluated for use as host cells for E. tenella, through morphological observation. Second, the degree of parasite development and multiplication in MDBK cells was quantitatively assayed using radioisotope-labelled uracil (3H-uracil). Third, the E. tenella sporozoites viability was assayed after preincubation of them with chicken spleen cells. E. tenella o?cysts obtained from the ceca of the infected chickens were used for the source of the sporozoites. Spleen cells (E) obtained from normal chickens (FP strain) were preincubated with the sporozoites (T) at the E:T ratio of 100:1, 50:1 or 25:1 for 4 or 12 hours, and then the mixture was inoculated into the MDBK cell monolayer. Morphologically the infected MDBK cells revealed active schizogonic cycle of E. tenella in 3-4 days, which was characterized by the appearance of trophozoites, and immature and mature schizonts containing merozoites. The 3H-uracil uptake by E. tenella increased gradually in the MDBK cells, which made a plateau after 48-60 hours, and decreased thereafter. The uptake amount of 3H-uracil depended not only upon the inoculum size of the sporozoites but also on the degree of time delay (preincubation; sporozoites only) from excystation to inoculation into MDBK cells. The 3H-uracil uptake became lower as the preincubation time was prolonged. In comparison, after preincubation of sporozoites with spleen cells for 4 or 12 hours, the 3H-uracil uptake was significantly increased compared with that of control group. From the results, it was inferred that, although the penetration of E. tenella sporozoites into the lymphoid cells such as IEL is not an essential step, it should be at least a beneficial one for the survival and development of sporozoites in the chicken intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号