首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 527 毫秒
1.
Using IAAC14, polar transport has been studied in Helianthus annuus shoots in which stem elongation was inhibited by a transverse gravity stimulus induced by horizontal orientation of the plant with daily rotation. Marked inhibition of polar transport of IAA C14 occurred in the treated plants. A similar degree of inhibition occurred in the upper and lower halves of non-rotated horizontally trained shoots. Horizontal orientation of stem segments during the transport test had no consistent effect upon IAA transport. Pretreatment of erect plants with gibberellin greatly enhanced IAAC14 transport and also reduced the inhibitory effect of horizontal orientation. Pretreatment of erect plants with non-radioactive IAA or ethylene inhibited transport of IAA C14 and induced the same symptoms in the shoot as the transverse gravity stimulus. The similarities between the response of the auxin transport system to gravity stimulation, IAA and ethylene are discussed.  相似文献   

2.
The longitudinal and lateral transport of 2, 4-D-[1-14C] hasbeen studied in 6-mm horizontally disposed segments of the hypocotylof Helianthun annuus. The technique involved the asymmetricapplication of the auxin in agar donor blocks to either theupper or lower halves of the cut surface of the segments andthe measurement of 14C accumulating with time in split receiverblocks on the upper and lower halves of the cut surfaces atthe opposite ends. A highly significant effect of gravity inducinga polar migration of 2, 4-D to the lower side has been establishedand represents, under optimal conditions, about 10 per centof the total 2, 4-D in transit. This lateral polar movementshows a tendency to saturate at higher donor concentrations(5 mg/1) and is affected by temperature in precisely the sameway as the basipetal longitudinal transport. The optimal flux(intensity of transport) occurs at about 35 °C or slightlyabove, and above 40 °C both transport systems are seriouslyimpaired. There is some evidence that gravity increases thevelocity of 2, 4-D transport in the lowermost tissues of thehorizontal hypocotyl but does not affect the transport intensity.  相似文献   

3.
The movement of auxin through tendril segments of Passiflora caerulca L. has been investigated using IAA-2-14C. It has been shown that (1) flux of IAA through the segments is strongly polarized basipetally: (2) the amount of 14C recovered in the basal receiver blocks increases linearly within a transport period of 6 h; (3) velocity of basipetal transport is 14.5 mm h?1; (4) at least 70% of the radioactivity in the receiver blocks is confined to the IAA molecule: approximately 55% of 14C from methanolic extracts of the segments is IAA: (5) at low temperatures (2–4°C) the basipetal transport is abolished; (6) white light promotes basipetal transport, and this effect is abolished in a CO2-free atmosphere; (7) no difference could be detected in 14C content between dorsal and ventral halves of tendril segments nor among individual dorsal and ventral receiver blocks.  相似文献   

4.
We have developed and characterized a system to analyze light effects on auxin transport independent of photosynthetic effects. Polar transport of [3H]indole-3-acetic acid through hypocotyl segments from etiolated cucumber (Cucumis sativus L.) seedlings was increased in seedlings grown in dim-red light (DRL) (0.5 μmol m−2 s−1) relative to seedlings grown in darkness. Both transport velocity and transport intensity (export rate) were increased by at least a factor of 2. Tissue formed in DRL completely acquired the higher transport capacity within 50 h, but tissue already differentiated in darkness acquired only a partial increase in transport capacity within 50 h of DRL, indicating a developmental window for light induction of commitment to changes in auxin transport. This light-induced change probably manifests itself by alteration of function of the auxin efflux carrier, as revealed using specific transport inhibitors. Relative to dark controls, DRL-grown seedlings were differentially less sensitive to two inhibitors of polar auxin transport, N-(naphth-1-yl) phthalamic acid and 2,3,5-triiodobenzoic acid. On the basis of these data, we propose that the auxin efflux carrier is a key target of light regulation during photomorphogenesis.  相似文献   

5.
Measurements were made of the transport of 2,4-dichlorophenoxyacetic acid-14C (2,4-D) through segments cut from the region of the distal abscission zone in young and old primary leaves of Phaseolus vulgaris L. When old leaves were used basipetal transport of 2,4-D in segments including pulvinar tissue, abscission zone, and petiolar tissue was much less than in wholly petiolar segments. In both young and old plants, segments consisting entirely of pulvinar tissue transported 2,4-D basipetally at a velocity about half that in petiolar tissue. At both ages the flux of 2,4-D through pulvinar tissue was less than that through petiolar tissue. In segments from old leaves the flux through pulvinar tissue was much less than in young plants; the flux through petiolar tissue changed little with age. There was no change with age in the velocity of basipetal transport. The distribution of 14C along segments including the abscission zone showed no marked discontinuity. It was concluded that the pulvinus limited the basipetal movement of 2,4-D through segments from old leaves which included both pulvinar and petiolar tissue, but there was no evidence that the abscission zone itself was a barrier to auxin transport.  相似文献   

6.
Although the Cholodny-Went model of auxin redistribution has been used to explain the transduction phase of gravitropism for over 60 years, problems are apparent, especially with dicot stems. An alternative to an auxin gradient is a physiological gradient in which lower tissues of a horizontal stem become more sensitive than upper tissues to auxin already present. Changes in tissue sensitivity to auxin were tested by immersing marked Glycine max Merrill (soybean) hypocotyl sections in buffered auxin solutions (0, 10−8 to 10−2 molar indoleacetic acid) and observing bending and growth of upper and lower surfaces. The two surfaces of horizontal hypocotyl sections responded differently to the same applied auxin stimulus; hypocotyls bent up (lower half grew more) in buffer alone or in low auxin levels, but bent down (upper half grew more) in high auxin. Dose-response curves were evaluated with Michaelis-Menten kinetics, with auxin-receptor binding analogous to enzyme-substrate binding. Vmax for the lower half was usually greater than that for the upper half, which could indicate more binding sites in the lower half. Km of the upper half was always greater than that of the lower half (unmeasurably low), which could indicate that upper-half binding sites had a much lower affinity for auxin than lower-half sites. Dose-response curves were also obtained for sections `scrubbed' (cuticle abraded) on top or bottom before immersion in auxin, and `gravitropic memory' experiments of L. Brauner and A. Hagar (1958 Planta 51: 115-147) were duplicated. [1-14C]Indoleacetic acid penetration was equal into the two halves, and endogenous plus exogenously supplied (not radiolabeled) free auxin in the two halves (by gas chromatography-selected ion monitoring-mass spectrometry) was also equal. Thus, differential growth occurred without free auxin redistribution, contrary to Cholodny-Went but in agreement with a sensitivity model.  相似文献   

7.
The effect of bilateral irradiation with white light (1000 Meter Candle Sec) on the basipetal transport of auxin has been investigated. Illumination of either the intact shoot or the excised coleoptile tip of the Zea seedling, decreased the amount of diffusible auxin obtained from the tip, and decreased Avena curvature response to unilaterally applied indoleacetic acid. Irradiation of the intact Zea seedling did not affect the absorption of 14C-labeled indoleacetic acid from an agar block subsequently placed on the decapitated coleoptile. However, light caused a significant decrease in the amount of labeled auxin basipetally transported, without affecting materially the velocity of that transport. These and other observations are interpreted as support for the hypothesis that the primary hormonal phenomenon in first-positive phototropism is a light-induced impairment in the basipetal transport of auxin.  相似文献   

8.
The transport of 14C-indole-3-acetic acid in branch terminals and stems of rooted cuttings of Pseudotsuga menziesii (Mirb.) Franco was studied to determine if the plagiotropic growth of cuttings might result from an accumulation of basipetally transported auxin in the morphologically upper side of cuttings stems. Twenty-four h after application of 10 μl of 14C-IAA solution to the cut surface of decapitated, rooted cuttings, nearly twice as much activity was detected in extracts of tissue from the morphologically upper than from the lower halves of the stems. A similar distribution of activity was observed in horizontal branch terminals and in branch terminals which had been tied vertically for 2 weeks. The magnitude of the difference in activity between the 2 sides of the stem was greater in the horizontal than in the vertical branches.
There was no significant difference in transport through the upper and lower sides of excised stem segments from cuttings or branch terminals. In segments from rooted cutting stems, however, significantly more radioactivity from 14C-IAA donor blocks was detected in the lower than in the upper halves of segments.  相似文献   

9.
Wilkins MB  Whyte P 《Plant physiology》1968,43(9):1435-1442
The lateral movement of IAA in coleoptiles of Zea mays has been investigated under aerobic and anaerobic conditions. The IAA-1-14C was supplied asymmetrically to the apical end of the segment. The results were as follows: A) In air more 14C was found in the lower half of horizontal segments supplied with an upper donor than in the half opposite the donor in vertical segments. The enhanced lateral movement of 14C in geotropically stimulated segments of corn coleoptiles under aerobic conditions has thus been confirmed. B) This increased lateral movement of 14C in geotropically stimulated segments is greatly reduced, but is not completely abolished, under anaerobic conditions. C) The lateral movement of 14C in vertical segments is significantly less under anaerobic conditions than in air. D) Under anaerobic conditions, the lateral movement of 14C in horizontal segments can be reduced to the level found in vertical segments by pre-soaking the tissue in a 1 mm solution of the metabolic inhibitor sodium fluoride for 2 hours. The inhibitor has no effect on lateral movement of 14C in vertical anaerobic segments. E) In air, sodium fluoride has no effect on the lateral movement of 14C in either vertical or horizontal segments.  相似文献   

10.
Suttle JC 《Plant physiology》1988,86(1):241-245
The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of 14C-IAA transport in petiole segments isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDZ response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of 14C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment.  相似文献   

11.
Growth regulators were measured in extracts from the upper and lower halves of 7-mm apical segments of horizontally oriented, red-light-irradiated and non-irradiated roots of Zea mays L. cv. Golden Cross Bantam 70 which exhibit a georesponse only after an exposure to light. Abscisic acid (ABA) was measured by gas-liquid chromatography, auxin (indole-3-acetic acid, IAA) by the Avena straight-growth assay, and an unidentified growth inhibitor by a Zea root-growth assay. The ratio of ABA in the upper and lower halves was 1.6 in the irradiated roots and 1.0 in the non-irradiated ones. The total amount of ABA after irradiation was increased by a factor of ca. 1.8. The ratio of IAA in the upper and lower halves of irradiated and non-irradiated roots was 1:3.4 and 1:2.9, respectively. The content (or activity) of an unidentified growth inhibitor was highest in the lower halves of horizontally oriented roots which had been irradiated with red light. The unidentified growth inhibitor, rather than IAA or ABA, may be the major factor in the light-induced geotropic responsiveness in Zea roots.  相似文献   

12.
Role of calcium in the polar secretion of indoleacetic Acid   总被引:8,自引:4,他引:4       下载免费PDF全文
The rate of auxin transport in sunflower hypocotyls (Helianthus annuus L. cv `Russian mammoth') or corn coleoptiles (Zea mays L. cv `WF9 × 38') was less in seedlings grown in Ca-deficient medium than in controls. The rate of IAA transport depended on the concentration of Ca in the root medium up to 1 millimolar. Further increases in auxin transport were observed when the isolated segments were incubated in medium containing up to 30 millimolar Ca. We suggest that the rate of auxin transport in plant tissue is dependent on the pool of ionic Ca in the extracellular space.

Segments from Ca-deficient seedlings exhibited a high specific requirement for Ca2+ in auxin transport. Magnesium, strontium, and several other divalent cations tested for their ability to replace Ca2+ in restoring auxin transport showed no effect; partial replacement by lanthanum was observed.

Auxin transport, or auxin flux through the segment, which is the result of IAA secretion by individual cells, was reduced in the low Ca2+ segments due both to lowered velocity and to reduced capacity of transport. The requirement for Ca2+ in the secretion of auxin is believed to be equivalent to the phenomenon observed in animal cell secretion, where the influx of Ca2+ serves as a link between an external stimulus and the secretion response.

  相似文献   

13.
Suttle JC 《Plant physiology》1991,96(3):875-880
Basipetal transport of [14C]IAA in hypocotyl segments isolated from various regions of etiolated Helianthus annuus L. cv NK 265 seedlings declines with increasing physiological age. This decline was the result of a reduction in both transport capacity and apparent velocity. Net IAA uptake was greater and the abilities of auxin transport inhibitors to stimulate net IAA uptake were reduced in older tissues. Net IAA accumulation by microsomal vesicles exhibited a similar behavior with respect to age. Specific binding of [3H]N-1-naphthylphthalamic acid (NPA) to microsomes prepared from young and older hypocotyl regions was saturable and consistent with a single class of binding sites. The apparent affinity constants for NPA binding in microsomes prepared from young versus older tissues were 6.4 and 10.8 nanomolar, respectively, and the binding site densities for young versus old tissues were 7.44 and 3.29 picomoles/milligram protein, respectively. Specific binding of [3H]NPA in microsomes prepared from both tissues displayed similar sensitivities toward unlabeled flurenol and exhibited only slight differences in sensitivity toward 2,3,5-triiodobenzoic acid. These results demonstrate that the progressive loss of basipetal IAA transport capacity in etiolated Helianthus hypocotyls with advancing age is associated with substantial alterations in the phytotropin-sensitive, IAA efflux system and they suggest that these changes are, at least partially, responsible for the observed reduction of polar IAA transport with advancing tissue age.  相似文献   

14.
Wochok ZS 《Plant physiology》1974,53(5):738-741
The rhizophore of Selaginella willdenovii Baker develops from the ventral angle meristem. The morphological nature of this organ has been in dispute. The purpose of this investigation was to obtain physiological evidence to support the contention that the rhizophore is a root and not a shoot. This was accomplished by studying the movement of 3H-indoleacetic acid and 14C-indoleacetic acid in Selaginella rhizophores. In 6-millimeter tissue segments, twice as much radioactivity accumulated in acropetal receivers as in basipetal. During 1 hour of transport in intact roots auxin traveled twice as far in the acropetal direction as basipetal. A significant amount of radioactivity transported in the tissue was found to co-chromatograph with cold indoleacetic acid. Decarboxylation accounted for 10% loss of activity from donors. The data provide sufficient physiological evidence that this organ is morphogenetically a root.  相似文献   

15.
Effects of ethylene on auxin transport   总被引:30,自引:23,他引:7  
The effect of ethylene on the uptake, distribution and polar transport of C14 from indole-3-acetic acid-2-C14 and naphthalene acetic acid-1-C14 in tissue sections was studied. Test species were cotton (Gossypium hirsutum, L.) and cowpea (Vigna sinensis, Endl.). Generally, incubation of tissue or intact plants with ethylene reduced the degree of polar auxin transport. Ethylene inhibited the movement of both auxins in stem tissue and IAA in petiole tissue of cotton. The effect of ethylene on auxin movement in cow-peas was more complex. Ethylene apparently inhibited transport in younger petiole and stem tissue, but stimulated the process to a small but significant degree in basal petiole segments.

Ethylene, in some experiments, reduced C14 (auxin) uptake. This reduction was consistently smaller than the inhibition of transport. Effects upon transport were observed when uptake was not different. Differences in uptake declined as the period of incubation with auxin was lengthened, but transport was inhibited for up to 23 hours.

It is proposed that ethylene may, through its effect on transport, cause localized shortages and surpluses of auxin which in turn contribute to symptoms now associated with the response of sensitive species to ethylene.

  相似文献   

16.
Horton RF  Fletcher RA 《Plant physiology》1968,43(12):2045-2048
The transport of the synthetic auxin, picloram (4-amino-3,5,6-trichloropicolinic acid) was investigated in sections of petioles of Phaseolus vulgaris L. and Coleus blumei Benth. and stems of Pisum sativum L. Transport of 14C-picloram was basipolar in all tissues, although the degree of polarity was dependant on age. The velocity of picloram movement was calculated at between 0.75 and 1.11 mm/hr. The amount moved in a given time, the flux, was dependant on the concentration applied and the length of the sections used. Picloram did not appear to be metabolized by the tissues during the transport experiments. When compared to the movement of other growth regulators, picloram transport bears marked similarities to that of 2,4-dichlorophenoxyacetic acid.  相似文献   

17.
A. R. Sheldrake 《Planta》1979,145(2):113-117
Segments of mesocotyls of Avena sativa L. transported [1-14C]indol-3yl-acetic acid (IAA) with strictly basipetal polarity. Treatment of the segments with solutions of sorbitol caused a striking increase in basipetal auxin transport, which was greatest at concentrations around 0.5 M. Similar effects were observed with mannitol or quebrachitol as osmotica, but with glucose or sucrose the increases were smaller. Polar transport was still detectable in segments treated with 1.2 M sorbitol. The effects of osmotic stress on the polar transport of auxin were reversible, but treatment with sorbital solutions more concentrated than 0.5 M reduced the subsequent ability of mesocotyl segments to grow in response to IAA. The increased transport of auxin in the osmotically stressed segments could not be explained in terms of an increased uptake from donor blocks. The velocity of transport declined with higher concentrations of osmoticum. The reasons for the enhancement of auxin transport by osmotic stress are not known.  相似文献   

18.
We examined the influence of aluminum and calcium (and certain other cations) on hormone transport in corn roots. When aluminum was applied unilaterally to the caps of 15 mm apical root sections the roots curved strongly away from the aluminum. When aluminum was applied unilaterally to the cap and 3H-indole-3-acetic acid was applied to the basal cut surface twice as much radioactivity (assumed to be IAA) accumulated on the concave side of the curved root as on the convex side. Auxin transport in the apical region of intact roots was preferentially basipetal, with a polarity (basipetal transport divided by acropetal transport) of 6.3. In decapped 5 mm apical root segments, auxin transport was acropetally polar (polarity = 0.63). Application of aluminum to the root cap strongly promoted acropetal transport of auxin reducing polarity from 6.3 to 2.1. Application of calcium to the root cap enhanced basipetal movement of auxin, increasing polarity from 6.3 to 7.6. Application of the calcium chelator, ethylene-glycol-bis-(β-aminoethylether)-N,N,N′, N′-tetraacetic acid, greatly decreased basipetal auxin movement, reducing polarity from 6.3 to 3.7. Transport of label after application of tritiated abscisic acid showed no polarity and was not affected by calcium or aluminum. The results indicate that the root cap is particularly important in maintaining basipetal polarity of auxin transport in primary roots of corn. The induction of root curvature by unilateral application of aluminum or calcium to root caps is likely to result from localized effects of these ions on auxin transport. The findings are discussed relative to the possible role of calcium redistribution in the gravitropic curvature of roots and the possibility of calmodulin involvement in the action of calcium and aluminum on auxin transport.  相似文献   

19.
Plant water deficits reduced the basipetal transport of auxin in cotyledonary petiole sections taken from cotton (Gossypium hirsutum L.) seedings. A pulse-labeling technique was employed to eliminate complications of uptake or exit of 14C-indoleacetic acid from the tissue. The transport capacity or the relative amount of radioactivity in a 30-minute pulse which was basipetally translocated was approximately 30% per hour in petioles excised from well watered seedlings (plant water potentials of approximately -4 to -8 bars). No cotyledonary leaf abscission took place in well watered seedlings. Plant water potentials from -8 to -12 bars reduced the transport capacity from 30 to 15% per hour, and although the leaves were wilted, cotyledonary abscission did not increase appreciably at these levels of stress. The threshold water potential sufficient to induce leaf abscission was approximately -13 bars and abscission increased with increasing stress while the auxin transport capacity of the petioles remained relatively constant (15% per hour). The basipetal transport capacity of well watered petioles tested under anaerobic conditions and acropetal transport tested under all conditions were typically less than basipetal transport under the most severe stress conditions. Cotyledonary abscission took place during and 24 hours after relief of stress with little or no abscission taking place 48 hours after relief of stress. Although the water potential returned to -4 bars within hours after rewatering the stressed plants, partial recovery of the basipetal transport capacity of the petioles was not apparent until 48 hours after rewatering, and at least 72 hours was required to return the transport capacity to near normal values. These data support the view that decreased levels of auxin reaching the abscission zone from the leaf blade influence the abscission process and further suggest that the length of time that the auxin supply is maximally reduced is more critical than the degree of reduction.  相似文献   

20.
The movement of IAA-14C through coleoptile segments of Avena and Zea has been investigated under aerobic and anaerobic conditions. The results are as follows: Zea. Using a 5-mm segment and a 2-hour transport period anaerobic conditions reduced the total uptake of 14C from an apical donor by 74% and the proportion of the total found in the receiving block by at least 45%. Anaerobic conditions reduced total uptake from a basal donor by 58% but no 14C reached the apical receiving block in either air or N2. Uptake from apical and basal donor blocks in N2 is closely similar.

The presence of 14C in the basal receiving blocks, and its absence in the apical receiving blocks, in N2 suggests that even in anaerobic conditions movement of IAA is polarized basipetally, although the movement occurs at only a fraction of the rate found in air.

Anaerobic conditions induced a similar reduction in basipetal movement of IAA in upper and lower 5-mm segments taken from the apical 10 mm of a Zea coleoptile.

Using 10-mm Zea segments no 14C was recovered in the receiving blocks at the basal end of the segment after 2 and 4 hours in N2 whereas large amounts were recovered in air.

Avena: Using 5-mm segments and a 2-hour transport period the total uptake of 14C from an apical donor is reduced by 83%. Movement of 14C into the basal donor is totally inhibited in N2. Total uptake of 14C from a basal donor is reduced by 61% in nitrogen and no 14C reached the apical receiving blocks regardless of the atmospheric conditions.

A time course for the movement of 14C into the basal and apical receiving blocks through 5-mm segments showed that in air the amount in the basal receivers increased for 4 hours and then remained approximately uniform. In N2 no significant 14C reached the receivers until 6 to 8 hours after the application of donors but even then the amounts were about 12 to 14% of that in aerobic receivers. Movement of 14C into apical receivers was similar in air and in nitrogen and even after 6 to 8 hours the amount of radioactivity barely reached significant levels.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号