首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caveolin-1 is normally localized in plasma membrane caveolae and the Golgi apparatus in mammalian cells. We found three treatments that redirected the protein to lipid storage droplets, identified by staining with the lipophilic dye Nile red and the marker protein ADRP. Caveolin-1 was targeted to the droplets when linked to the ER-retrieval sequence, KKSL, generating Cav-KKSL. Cav-DeltaN2, an internal deletion mutant, also accumulated in the droplets, as well as in a Golgi-like structure. Third, incubation of cells with brefeldin A caused caveolin-1 to accumulate in the droplets. This localization persisted after drug washout, showing that caveolin-1 was transported out of the droplets slowly or not at all. Some overexpressed caveolin-2 was also present in lipid droplets. Experimental reduction of cellular cholesteryl ester by 80% did not prevent targeting of Cav-KKSL to the droplets. Cav-KKSL expression did not grossly alter cellular triacylglyceride or cholesteryl levels, although droplet morphology was affected in some cells. These data suggest that accumulation of caveolin-1 to unusually high levels in the ER causes targeting to lipid droplets, and that mechanisms must exist to ensure the rapid exit of newly synthesized caveolin-1 from the ER to avoid this fate.  相似文献   

2.
Previously, the authors have shown that the molecular interaction between caveolin-1 and ATP-binding cassette transporter A1 (ABCA1) is associated with the high-density lipoprotein (HDL)-mediated cholesterol efflux pathway in aortic endothelial cells (ECs). This study analyzed the role ABCA1 plays in caveolin-1-mediated cholesterol efflux in aortic ECs. Knockdown of ABCA1 by siRNA in primary rat aortic ECs after cholesterol treatment did not affect caveolin-1 expression but led to the retention of caveolin-1 in the Golgi apparatus, impaired caveolin-1 oligomerization, and reduced cholesterol efflux. Immunoblotting assay and immunofluorescence microscopy demonstrated that HDL transiently up-regulated ABCA1 expression, induced caveolin-1 oligomerization, and promoted its Golgi exit, thereby enhancing cholesterol efflux. These HDL-induced events, however, were inhibited by down-regulation of ABCA1. It is concluded that HDL up-regulates ABCA1 expression, which in turn modulates the oligomerization and Golgi exit of caveolin-1 to enhance cholesterol efflux in aortic ECs.  相似文献   

3.
Multiple domains in caveolin-1 control its intracellular traffic   总被引:6,自引:0,他引:6  
Caveolin-1 is an integral membrane protein of caveolae that is thought to play an important role in both the traffic of cholesterol to caveolae and modulating the activity of multiple signaling molecules at this site. The molecule is synthesized in the endoplasmic reticulum, transported to the cell surface, and undergoes a poorly understood recycling itinerary. We have used mutagenesis to determine the parts of the molecule that control traffic of caveolin-1 from its site of synthesis to the cell surface. We identified four regions of the molecule that appear to influence caveolin-1 traffic. A region between amino acids 66 and 70, which is in the most conserved region of the molecule, is necessary for exit from the endoplasmic reticulum. The region between amino acids 71 and 80 controls incorporation of caveolin-1 oligomers into detergent-resistant regions of the Golgi apparatus. Amino acids 91-100 and 134-154 both control oligomerization and exit from the Golgi apparatus. Removal of other portions of the molecule has no effect on targeting of newly synthesized caveolin-1 to caveolae. The results suggest that movement of caveolin-1 among various endomembrane compartments is controlled at multiple steps.  相似文献   

4.
Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.  相似文献   

5.
Emp24p is a type I transmembrane protein that is involved in secretory protein transport from the endoplasmic reticulum (ER) to the Golgi complex. A yeast mutant that lacks Emp24p (emp24 delta) is viable, but periplasmic invertase and the glycosylphosphatidyl-inositol-anchored plasma membrane protein Gas1p are delivered to the Golgi apparatus with reduced kinetics, whereas transport of alpha-factor, acid phosphatase and two vacuolar proteins is unaffected. Oligomerization and protease digestion studies of invertase suggest that the selective transport phenotype observed in the emp24 delta mutant is not due to a defect in protein folding or oligomerization. Consistent with a role in ER to Golgi transport, Emp24p is a component of COPII-coated, ER-derived transport vesicles that are isolated from a reconstituted in vitro budding reaction. We propose that Emp24p is involved in the sorting and/or concentration of a subset of secretory proteins into ER-derived transport vesicles.  相似文献   

6.
Synaptotagmin (Syt) is a family of type I membrane proteins that consists of a single transmembrane domain, a spacer domain, two Ca(2+)-binding C2 domains, and a short C terminus. We recently showed that deletion of the short C terminus (17 amino acids) of Syt IV prevented the Golgi localization of Syt IV proteins in PC12 cells and induced granular structures of various sizes in the cell body by an unknown mechanism (Fukuda, M., Ibata, K., and Mikoshiba, K. (2001) J. Neurochem. 77, 730-740). In this study we showed by electron microscopy that these structures are crystalloid endoplasmic reticulum (ER), analyzed the mechanism of its induction, and demonstrated that: (a) mutation or deletion of the evolutionarily conserved WHXL motif in the C terminus of the synaptotagmin family (Syt DeltaC) destabilizes the C2B domain structure (i.e. causes misfolding of the protein), probably by disrupting the formation of stable anti-parallel beta-sheets between the beta-1 and beta-8 strands of the C2B domain; (b) the resulting malfolded proteins accumulate in the ER rather than being transported to other membrane structures (e.g. the Golgi apparatus), with the malfolded proteins also inducing the expression of BiP (immunoglobulin binding protein), one of the ER stress proteins; and (c) the ERs in which the Syt DeltaC proteins have accumulated associate with each other as a result of oligomerization capacity of the synaptotagmin family, because the Syt IDeltaC mutant, which lacks oligomerization activity, cannot induce crystalloid ER. Our findings indicate that the conserved WHXL motif is important not only for protein interaction site but for proper folding of the C2B domain.  相似文献   

7.
Efficient transport of cell surface glycoproteins to the Golgi apparatus has been previously demonstrated for a limited number of proteins, and has been proposed to require selective sorting in the endocytic pathway after internalization. We have studied the endocytic fate of several glycoproteins that accumulate in different organelles in a variant clone of PC12, a regulated secretory cell line. The cation-independent mannose 6-phosphate receptor and the low density lipoprotein receptor, both rapidly internalized from the cell surface, and the synaptic vesicle membrane protein synaptophysin, were transported to the Golgi apparatus with equivalent, nonlinear kinetics. Transport to the Golgi apparatus (t1/2 = 2.5-3.0 h) was several times faster than turnover of these proteins (t1/2 greater than or equal to 20 h), indicating that transport of these proteins to the Golgi apparatus occurred on average several times for each protein. In contrast, Thy-1, a protein anchored in the membrane by a glycosylphosphoinositide group, was internalized and transported to the Golgi apparatus more slowly than the three transmembrane proteins. Since each of the transmembrane proteins studied showed the same t1/2 for transport to the Golgi apparatus, we conclude that transport of these proteins from the cell surface to the Golgi apparatus does not require sorting information specific to any one of these proteins. These results suggest that one of the functions of late endosomes is constitutive recycling of cell surface receptors through the Golgi apparatus if they fail to recycle to the cell surface directly from early endosomes, and that the late endosome recycling pathway is followed frequently by many rapidly internalized proteins.  相似文献   

8.
The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN).  相似文献   

9.
We tested whether the entire Golgi apparatus is a dynamic structure in interphase mammalian cells by assessing the response of 12 different Golgi region proteins to an endoplasmic reticulum (ER) exit block. The proteins chosen spanned the Golgi apparatus and included both Golgi glycosyltransferases and putative matrix proteins. Protein exit from ER was blocked either by microinjection of a GTP-restricted Sar1p mutant protein in the presence of a protein synthesis inhibitor, or by plasmid-encoded expression of the same dominant negative Sar1p. All Golgi region proteins examined lost juxtanuclear Golgi apparatus-like distribution as scored by conventional and confocal fluorescence microscopy in response to an ER exit block, albeit with a differential dependence on Sar1p concentration. Redistribution of GalNAcT2 was more sensitive to low Sar1p(dn) concentrations than giantin or GM130. Redistribution was most rapid for p27, COPI, and p115. Giantin, GM130, and GalNAcT2 relocated with approximately equal kinetics. Distinct ER accumulation could be demonstrated for all integral membrane proteins. ER-accumulated Golgi region proteins were functional. Photobleaching experiments indicated that Golgi-to-ER protein cycling occurred in the absence of any ER exit block. We conclude that the entire Golgi apparatus is a dynamic structure and suggest that most, if not all, Golgi region-integral membrane proteins cycle through ER in interphase cells.  相似文献   

10.
We have investigated the role of the smooth endoplasmic reticulum (SER) of UT-1 cells in the biogenesis of the glycoprotein (G) of vesicular stomatitis virus (VSV). Using immunofluorescence microscopy, we observed the wild type G protein in the SER of infected cells. When these cells were infected with the mutant VSV strain ts045, the G protein was unable to reach the Golgi apparatus at 40 degrees C, but was able to exit the rough endoplasmic reticulum (RER) and accumulate in the SER. Ribophorin II, a RER marker, remained excluded from the SER during the viral infection, ruling out the possibility that the infection had destroyed the separate identities of these two organelles. Thus, the mechanism that results in the retention of this mutant glycoprotein in the ER at 39.9 degrees C does not limit its lateral mobility within the ER system. We have also localized GRP78/BiP to the SER of UT-1 cells indicating that other mutant proteins may also have access to this organelle. Upon incubation at 32 degrees C, the mutant G protein was able to leave the SER and move to the Golgi apparatus. To measure how rapidly this transfer occurs, we assayed the conversion of the G protein's N-linked oligosaccharides from endoglycosidase H-sensitive to endoglycosidase H-resistant forms. After a 5-min lag, transport of the G protein followed first order kinetics (t1/2 = 15 min). In contrast, no lag was seen in the transport of G protein that had accumulated in the RER of control UT-1 cells lacking extensive SER. In these cells, the transport of G protein also exhibited first order kinetics (t1/2 = 17 min). Possible implications of this lag are discussed.  相似文献   

11.
C-terminal lipid modifications are essential for the interaction of Ras-related proteins with membranes. While all Ras proteins are farnesylated and some palmitoylated, the majority of other Ras-related proteins are geranylgeranylated. One such protein, Rab6, is associated with the Golgi apparatus and has a C-terminal CXC motif that is geranylgeranylated on both cysteines. We show here that farnesylation alone cannot substitute for geranylgeranylation in targeting Rab6 to the Golgi apparatus and that whereas Ras proteins that are farnesylated and palmitoylated are targeted to the plasma membrane, mutant Rab proteins that are both farnesylated and palmitoylated associate with the Golgi apparatus. Using chimeric Ras-Rab proteins, we find that there are sequences in the N-terminal 71 amino acids of Rab6 which are required for Golgi complex localization and show that these sequences comprise or include the effector domain. The C-terminal hypervariable domain is not essential for the Golgi complex targeting of Rab6 but is required to prevent prenylated and palmitoylated Rab6 from localizing to the plasma membrane. Functional analysis of these mutant Rab6 proteins in Saccharomyces cerevisiae shows that wild-type Rab6 and C-terminal mutant Rab6 proteins which localize to the Golgi apparatus in mammalian cells can complement the temperature-sensitive phenotype of ypt6 null mutants. Interestingly, therefore, the C-terminal hypervariable domain of Rab6 is not required for this protein to function in S. cerevisiae.  相似文献   

12.
C. L. Jackson  F. Kepes 《Genetics》1994,137(2):423-437
Brefeldin A (BFA) blocks protein transport out of the Golgi apparatus and causes disassembly of this organelle in mammalian cells. The primary effect of BFA is the release of the non-clathrin coat from Golgi membranes and vesicles. We sought to elucidate the mechanism of BFA action using a genetic approach in Saccharomyces cerevisiae. When an erg6 S. cerevisiae strain is treated with BFA, cell growth is arrested, cells lose viability and secretory proteins are accumulated in the endoplasmic reticulum (ER) and early Golgi compartments. We demonstrate that the mutant sec21 (defective in the S. cerevisiae homolog of γ-COP, a non-clathrin coat protein) is supersensitive to BFA. Hence BFA probably affects the same processes in S. cerevisiae as in mammalian cells. We used a multicopy genomic DNA library to search for multicopy suppressors of BFA-induced lethality. We identified one such gene, BFR1, that, in addition, partially suppresses the growth and secretion defects of the ER-to-Golgi secretion mutant sec17. A bfr1-Δ1::URA3 deletion strain is viable, but has defects in cell morphology and nuclear segregation, and the mutation accentuates the growth and secretion defects of a sec21 mutant.  相似文献   

13.
Transport of proteins between intracellular membrane compartments is mediated by a protein machinery that regulates the budding and fusion processes of individual transport steps. Although the core proteins of both processes are defined at great detail, much less is known about the involvement of lipids. Here we report that changing the cellular balance of cholesterol resulted in changes of the morphology of the Golgi apparatus, accompanied by an inhibition of protein transport. By using a well characterized cell-free intra-Golgi transport assay, these observations were further investigated, and it was found that the transport reaction is sensitive to small changes in the cholesterol content of Golgi membranes. Addition as well as removal of cholesterol (10 +/- 6%) to Golgi membranes by use of methyl-beta-cyclodextrin specifically inhibited the intra-Golgi transport assay. Transport inhibition occurred at the fusion step. Modulation of the cholesterol content changed the lipid raft partitioning of phosphatidylcholine and heterotrimeric G proteins, but not of other (non) lipid raft proteins and lipids. We suggest that the cholesterol balance in Golgi membranes plays an essential role in intra-Golgi protein transport and needs to be carefully regulated to maintain the structural and functional organization of the Golgi apparatus.  相似文献   

14.
The targeting signals of two yeast integral membrane dipeptidyl aminopeptidases (DPAPs), DPAP B and DPAP A, which reside in the vacuole and the Golgi apparatus, respectively, were analyzed. No single domain of DPAP B is required for delivery to the vacuolar membrane, because removal or replacement of either the cytoplasmic, transmembrane, or lumenal domain did not affect the protein's transport to the vacuole. DPAP A was localized by indirect immunofluorescence to non-vacuolar, punctate structures characteristic of the yeast Golgi apparatus. The 118-amino acid cytoplasmic domain of DPAP A is sufficient for retention of the protein in these structures, since replacement of the cytoplasmic domain of DPAP B with that of DPAP A resulted in an immunolocalization pattern indistinguishable from that of wild type DPAP A. Overproduction of DPAP A resulted in its mislocalization to the vacuole, because cells expressing high levels of DPAP A exhibited vacuolar as well as Golgi staining. Deletion of 22 residues of the DPAP A cytoplasmic domain resulted in mislocalization of the mutant protein to the vacuole. Thus, the cytoplasmic domain of DPAP A is both necessary and sufficient for Golgi retention, and removal of the retention signal, or saturation of the retention apparatus by overproducing DPAP A, resulted in transport to the vacuole. Like wild type DPAP B, the delivery of mutant membrane proteins to the vacuole was unaffected in the secretory vesicle-blocked sec1 mutant; thus, transport to the vacuole was not via the plasma membrane followed by endocytosis. These data are consistent with a model in which membrane proteins are delivered to the vacuole along a default pathway.  相似文献   

15.
Our previous study shows that caveolin-1 colocalizes and interacts with ATP-binding cassette transporter A1 (ABCA1), which is intimately involved in cellular cholesterol efflux. In this study, we further clarified the region of caveolin-1 that interacts with ABCA1. We also examined the interaction between mutant caveolin-1 and ABCA1 in HDL-mediated cholesterol efflux. We constructed a panel of mutant caveolin-1 proteins and co-transfected them into rat aortic endothelial and human embryonic kidney 293 (HEK293) cells. The co-immunoprecipitation shows that mutant oligomerization domain of caveolin-1, caveolin-1Δ62–100, is required for the interaction of caveolin-1 with ABCA1. Caveolin-1Δ62–100 did not colocalize with ABCA1 in the cholesterol-loaded cells after HDL incubation as observed by immunofluorescence confocal microscopy. Concomitantly, caveolin-1Δ62–100 suppressed HDL-mediated cholesterol efflux. The results suggest that the region of caveolin-1 between amino acids 62 and 100 is an oligomerization domain as well as an attachment site for ABCA1 interaction that regulates HDL-mediated cholesterol efflux.  相似文献   

16.
The vesicular stomatitis virus glycoprotein (G protein) is an integral membrane protein which assembles into noncovalently associated trimers before transport from the endoplasmic reticulum. In this study we have examined the folding and oligomeric assembly of twelve mutant G proteins with alterations in the cytoplasmic, transmembrane, or ectodomains. Through the use of conformation-specific antibodies, we found that newly synthesized G protein folded into a conformation similar to the mature form within 1-3 min of synthesis and before trimer formation. Mutant proteins not capable of undergoing correct initial folding did not trimerize, were not transported, and were found in large aggregates. They had, as a rule, mutations in the ectodomain, including several with altered glycosylation patterns. In contrast, mutations in the cytoplasmic domain generally had little effect on folding and trimerization. These mutant proteins, whose ectodomains were identical to the wild-type by several assays, were either transported to the cell surface slowly or not at all. We concluded that while correct ectodomain folding and trimer formation are prerequisites for transport, they alone are not sufficient. The results suggest that the cytoplasmic domain of the wild-type protein may facilitate rapid, efficient transport from the ER, which can be easily affected or eliminated by tail mutations that do not detectably affect the ectodomain.  相似文献   

17.
Connexin43 (Cx43) is a gap junction protein that forms multimeric channels that enable intercellular communication through the direct transfer of signals and metabolites. Although most multimeric protein complexes form in the endoplasmic reticulum (ER), Cx43 seems to exit from the ER as monomers and subsequently oligomerizes in the Golgi complex. This suggests that one or more protein chaperones inhibit premature Cx43 oligomerization in the ER. Here, we provide evidence that an ER-localized, 29-kDa thioredoxin-family protein (ERp29) regulates Cx43 trafficking and function. Interfering with ERp29 function destabilized monomeric Cx43 oligomerization in the ER, caused increased Cx43 accumulation in the Golgi apparatus, reduced transport of Cx43 to the plasma membrane, and inhibited gap junctional communication. ERp29 also formed a specific complex with monomeric Cx43. Together, this supports a new role for ERp29 as a chaperone that helps stabilize monomeric Cx43 to enable oligomerization to occur in the Golgi apparatus.  相似文献   

18.
Caveolin-1 has been implicated in apical transport of glycosylphosphatidylinositol (GPI)-anchored proteins and influenza virus hemagglutinin (HA). Here we have studied the role of caveolin-1 in apical membrane transport by generating caveolin-1-deficient Madin-Darby canine kidney (MDCK) cells using retrovirus-mediated RNA interference. The caveolin-1 knockdown (cav1-KD) MDCK cells were devoid of caveolae. In addition, caveolin-2 was retained in the Golgi apparatus in cav1-KD MDCK cells. However, we found no significant alterations in the apical transport kinetics of GPI-anchored proteins or HA upon depletion of caveolin-1. Similar results were obtained using embryonic fibroblasts from caveolin-1-knockout mice. Thus, we conclude that caveolin-1 does not play a major role in lipid raft-mediated biosynthetic membrane trafficking.  相似文献   

19.
20.
Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell   总被引:12,自引:0,他引:12  
Caveolin-1 and -2 constitute a framework of caveolae in nonmuscle cells. In the present study, we showed that caveolin-2, especially its beta isoform, is targeted to the surface of lipid droplets (LD) by immunofluorescence and immunoelectron microscopy, and by subcellular fractionation. Brefeldin A treatment induced further accumulation of caveolin-2 along with caveolin-1 in LD. Analysis of mouse caveolin-2 deletion mutants revealed that the central hydrophobic domain (residues 87-119) and the NH(2)-terminal (residues 70-86) and COOH-terminal (residues 120-150) hydrophilic domains are all necessary for the localization in LD. The NH(2)- and COOH-terminal domains appeared to be related to membrane binding and exit from ER, respectively, implying that caveolin-2 is synthesized and transported to LD as a membrane protein. In conjunction with recent findings that LD contain unesterified cholesterol and raft proteins, the result implies that the LD surface may function as a membrane domain. It also suggests that LD is related to trafficking of lipid molecules mediated by caveolins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号