首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study the structures of two glycopeptides (G1 and G1'), isolated from FU RvH(1)-b and two glycopeptides (G2 and G3), isolated from the structural subunit RvH(1) of Rapana venosa hemocyanin, were determined. To structurally characterize the site-specific carbohydrate heterogeneity and binding site of the N-linked glycopeptide(s), a combination of capillary reversed-phase chromatography and ion trap mass spectrometry was used. The amino acid sequences of glycopeptides G1 and G1' determined by Edman degradation and MS/MS sequencing demonstrated that the oligosaccharides are linked to N-glycosylation sites. Two peptides (a glycosylated (G1) and non-glycosylated one) were identified in this fraction and no linkage sites were observed in the latter one. Based on the sequencing of the glycosylated fractions G1, G1', G2 and G3, the carbohydrate structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)[Fuc(alpha1-6)]GlcNAc-R could be identified for glycopeptides G1 and G3, and only the typical core structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)GlcNAc-R was found for G1' and G2. The Fuc residue found in glycopeptides G1 and G3 is attached to N-acetyl-glucosamine of the carbohydrate core, as often found in other glycoproteins.  相似文献   

2.
Cytokinin oxidase/dehydrogenase (CKO; EC 1.5.99.12) irreversibly degrades the plant hormones cytokinins. A recombinant maize isoenzyme 1 (ZmCKO1) produced in the yeast Yarrowia lipolytica was subjected to enzymatic deglycosylation by endoglycosidase H. Spectrophotometric assays showed that both activity and thermostability of the enzyme decreased after the treatment at non-denaturing conditions indicating the biological importance of ZmCKO1 glycosylation. The released N-glycans were purified with graphitized carbon sorbent and analyzed by MALDI-TOF MS. The structure of the measured high-mannose type N-glycans was confirmed by tandem mass spectrometry (MS/MS) on a Q-TOF instrument with electrospray ionization. Further experiments were focused on direct analysis of sugar binding. Peptides and glycopeptides purified from tryptic digests of recombinant ZmCKO1 were separated by reversed-phase chromatography using a manual microgradient device; the latter were then subjected to offline-coupled analysis on a MALDI-TOF/TOF instrument. Glycopeptide sequencing by MALDI-TOF/TOF MS/MS demonstrated N-glycosylation at Asn52, 63, 134, 294, 323 and 338. The bound glycans contained 3-14 mannose residues. Interestingly, Asn134 was found only partially glycosylated. Asn338 was the sole site to carry large glycan chains exceeding 25 mannose residues. This observation demonstrates that contrary to a previous belief, the heterologous expression in Y. lipolytica may lead to locally hyperglycosylated proteins.  相似文献   

3.
N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of a beta1,6-linked GlcNAc to the alpha1,6 mannose of the trimannosyl core to form tri- and tetraantennary N-glycans and contains six putative N-linked sites. We used mass spectrometry techniques combined with exoglycosidase digestions of recombinant human GnT-V expressed in CHO cells, to identify its N-glycan structures and their sites of expression. Release of N-glycans by PNGase F treatment, followed by analysis of the permethylated glycans using MALDI-TOF MS, indicated a range of complex glycans from bi- to tetraantennary species. Mapping of the glycosylation sites was performed by enriching for trypsin-digested glycopeptides, followed by analysis of each fraction with Q-TOF MS. Predicted tryptic glycopeptides were identified by comparisons of theoretical masses of peptides with various glycan masses to the masses of the glycopeptides determined experimentally. Of the three putative glycosylation sites in the catalytic region, peptides containing sites Asn 334, 433, and 447 were identified as being N-glycosylated. Asn 334 is glycosylated with only a biantennary structure with one or two terminating sialic acids. Sites Asn 433 and 447 both contain structures that range from biantennary with two sialic acids to tetraantennary terminating with four sialic acids. The predominant glycan species found on both of these sites is a triantennary with three sialic acids. The appearance of only biantennary glycans at site Asn 433, coupled with the appearance of more highly branched structures at Asn 334 and 447, demonstrates that biantennary acceptors present at different sites on the same protein during biosynthesis can differ in their accessibility for branching by GnT-V.  相似文献   

4.
The mammalian oocyte is encased by a transparent extracellular matrix, the zona pellucida (ZP), which consists of three glycoproteins, ZPA, ZPB, and ZPC. The glycan structures of the porcine ZP and the complete N-glycosylation pattern of the ZPB/ZPC oligomer has been recently described. Here we report the N-glycan pattern and N-glycosylation sites of the porcine ZP glycoprotein ZPA of an immature oocyte population as determined by a mass spectrometric approach. In-gel deglycosylation of the electrophoretically separated ZPA protein and comparison of the pattern obtained from the native, the desialylated and the endo-beta-galactosidase-treated glycoprotein allowed the assignment of the glycan structures by MALDI-TOF MS by considering the reported oligosaccharide structures. The major N-glycans are neutral biantennary complex structures containing one or two terminal galactose residues. Complex N-glycans carrying N-acetyllactosamine repeats are minor components and are mostly sialylated. A significant signal corresponding to a high-mannose type chain appeared in the three glycan maps. MS/MS analysis confirmed its identity as a pentamannosyl N-glycan. By the combination of tryptic digestion of the endo-beta-galactosidase-treated ZP glycoprotein mixture and in-gel digestion of ZPA with lectin affinity chromatography and reverse-phase HPLC, five of six N-glycosylation sites at Asn(84/93), Asn268, Asn316, Asn323, and Asn530 were identified by MS. Only one site was found to be glycosylated in the N-terminal tryptic glycopeptide with Asn(84/93.) N-glycosidase F treatment of the isolated glycopeptides and MS analysis resulted in the identification of the corresponding deglycosylated peptides.  相似文献   

5.
In this study, we show that introduction of human N-acetylglucosaminyltransferase (GnT)-III gene into tobacco plants leads to highly efficient synthesis of bisected N-glycans. Enzymatically released N-glycans from leaf glycoproteins of wild-type and transgenic GnT-III plants were profiled by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in native form. After labeling with 2-aminobenzamide, profiling was performed using normal-phase high-performance liquid chromatography with fluorescence detection, and glycans were structurally characterized by MALDI-TOF/TOF-MS and reverse-phase nano-liquid chromatography-MS/MS. These analyses revealed that most of the complex-type N-glycans in the plants expressing GnT-III were bisected and carried at least two terminal N-acetylglucosamine (GlcNAc) residues in contrast to wild-type plants, where a considerable proportion of N-glycans did not contain GlcNAc residues at the nonreducing end. Moreover, we have shown that the majority of N-glycans of an antibody produced in a plant expressing GnT-III is also bisected. This might improve the efficacy of therapeutic antibodies produced in this type of transgenic plant.  相似文献   

6.
Glycopeptides, isolated from a trypsinolysate of functional unit (FU) RtH2-e of Rapana thomasiana hemocyanin subunit 2, were analysed by electrospray ionization mass spectrometry and MS/MS. From the molecular mass observed after deglycosylation, it was inferred that all glycopeptides shared the same peptide stretch 92-143 of FU RtH2-e with a glycosylation site at Asn-127. Besides the core structure Man(3)GlcNAc(2) for N-glycosylation, structures with a supplementary GlcNAc linked to either the Man(alpha1-3) or the Man(alpha1-6) arm and/or an additional tetrasaccharide unit connected to the other Man arm were observed, indicating the existence of microheterogeneity at the glycan level. The tetrasaccharide unit contains a central fucose moiety substituted with 3-O-methylgalactose and N-acetylgalactosamine, and linked to GlcNAc at the reducing end. This structure represents a novel N-glycan motif and is likely to be immunogenic. A second potential site for N-glycosylation in FU RtH2-e at Asn-17 was shown to be not glycosylated.  相似文献   

7.
Plants synthesize N-glycans containing the antigenic sugars α(1,3)-fucose and β(1,2)-xylose. Therefore it is important to monitor these N-glycans in monoclonal antibodies produced in plants (plantibodies). We evaluated several techniques to characterize the N-glycosylation of a plantibody produced in tobacco plants with and without the KDEL tetrapeptide endoplasmic reticulum retention signal which should inhibit or drastically reduce the addition of α(1,3)-fucose and β(1,2)-xylose. Ammonium hydroxide/carbonate-based chemical deglycosylation and PNGase A enzymatic release were investigated giving similar 2-aminobenzamide-labeled N-glycan HPLC profiles. The chemical release does not generate peptides which is convenient for MS analysis of unlabeled pool but its main drawback is that it induces degradation of α1,3-fucosylated N-glycan reducing terminal sugar. Three analytical methods for N-glycan characterization were evaluated: (i) MALDI-MS of glycopeptides from tryptic digestion; (ii) negative-ion ESI-MS/MS of released N-glycans; (iii) normal-phase HPLC of fluorescently labeled glycans in combination with exoglycosidase sequencing. The MS methods identified the major glycans, but the HPLC method was best for identification and relative quantitation of N-glycans. Negative-mode ESI-MS/MS permitted also the correct identification of the linkage position of the fucose residue linked to the inner core N-acteylglucosamine (GlcNAc) in complex N-glycans.  相似文献   

8.
A peroxidase is present in the chorion of Aedes aegypti eggs and catalyzes chorion protein cross-linking during chorion hardening, which is critical for egg survival in the environment. The unique chorion peroxidase (CPO) is a glycoprotein. This study deals with the N-glycosylation site, structures, and profile of CPO-associated oligosaccharides using mass spectrometric techniques and enzymatic digestion. CPO was isolated from chorion by solubilization and several chromatographic methods. Mono-saccharide composition was analyzed by HPLC with fluorescent detection. Our data revealed that carbohydrate (D-mannose, N-acetyl D-glucosamine, D-arabinose, N-acetyl D-galactosamine, and L-fucose) accounted for 2.24% of the CPO molecular weight. A single N-glycosylation site (Asn328-Cys- Thr) was identified by tryptic peptide mapping and de novo sequencing of native and PNGase A-deglycosylated CPO using matrix-assisted laser/desorption/ionization time-of-flight mass spectrometry (MALDI/TOF/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). The Asn328 was proven to be a major fully glycosylated site. Potential tryptic glycopeptides and profile were first assessed by MALDI/TOF/MS and then by precursor ion scanning during LC/MS/MS. The structures of N-linked oligosaccharides were elucidated from the MS/MS spectra of glycopeptides and exoglycosidase sequencing of PNGase A-released oligosaccharides. These CPO-associated oligosaccharides had dominant Man3GlcNAc2 and Man3 (Fuc) GlcNAc2 and high mannose-type structures (Man(4-8)GlcNAc2). The truncated structures, Man2GlcNAc2 and Man2 (Fuc) GlcNAc2, were also identified. Comparison of CPO activity and Stokes radius between native and deglycosylated CPO suggests that the N-linked oligosaccharides influence the enzyme activity by stabilizing its folded state.  相似文献   

9.
The hemocyanin of the crab Carcinus aestuarii contains a carbohydrate moiety that represents 1.6% of protein mass. This carbohydrate content is higher than that exhibited by other arthropod hemocyanins so far investigated. By combination of FPLC ion exchange chromatography and reverse-phase HPLC, the native oligomeric protein can be resolved into three major and one minor electrophoretically pure fractions that are found to be homogeneous by N-terminal sequencing and correspond to the subunit polypeptide chains. Sugar analysis on the different subunits reveals that the subunit referred to as Ca2 is glycosylated, with a carbohydrate content of 6.3%. By Ca2 trypsin digestion, separation of glycopeptides, and amino acid sequencing, three consensus sequences for O-glycosylation and one for N-glycosylation were found. MALDI-MS was applied for the determination of the molecular masses of the various glycopeptides and peptides after removal of carbohydrates by neuraminidase and alpha-N-acetylgalactosaminidase.  相似文献   

10.
Intercellular adhesion molecule-1 (ICAM-1) is a heavily N-glycosylated transmembrane protein comprising five extracellular Ig-like domains. The soluble isoform of ICAM-1 (sICAM-1), consisting of its extracellular part, is elevated in the cerebrospinal fluid of patients with severe brain trauma. In mouse astrocytes, recombinant mouse sICAM-1 induces the production of the CXC chemokine macrophage inflammatory protein-2 (MIP-2). MIP-2 induction is glycosylation dependent, as it is strongly enhanced when sICAM-1 carries sialylated, complex-type N-glycans as synthesized by wild-type Chinese hamster ovary (CHO) cells. The present study was aimed at elucidating the N-glycosylation of mouse sICAM-1 expressed in wild-type CHO cells with regard to sialylation, N-glycan profile, and N-glycosylation sites. Ion-exchange chromatography and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) of the released N-glycans showed that sICAM-1 mostly carried di- and trisialylated complex-type N-glycans with or without one fucose. In some sialylated N-glycans, one N-acetylneuraminic acid was replaced by N-glycolylneuraminic acid, and approximately 4% carried a higher number of sialic acid residues than of antennae. The N-glycosylation sites of mouse sICAM-1 were analyzed by MALDI-Fourier transform ion cyclotron resonance (FTICR)-MS and nanoLC-ESI-FTICR-MS of tryptic digests of mouse sICAM-1 expressed in the Lec1 mutant of CHO cells. All nine consensus sequences for N-glycosylation were found to be glycosylated. These results show that the N-glycans that enhance the MIP-2-inducing activity of mouse sICAM-1 are mostly di- and trisialylated complex-type N-glycans including a small fraction carrying more sialic acid residues than antennae and that the nine N-glycosylation sites of mouse sICAM-1 are all glycosylated.  相似文献   

11.
Ovomucin is a bioactive egg white glycoprotein responsible for the gel properties of fresh egg white and is believed to be involved in egg white thinning, a natural process that occurs during storage. Ovomucin is composed of two subunits: a carbohydrate-rich β-ovomucin with molecular weight of 400-610?KDa and a carbohydrate-poor α-ovomucin with molecular mass of 254?KDa. In addition to limited information on O-linked glycans of ovomucin, there is no study on either the N-glycan structures or the N-glycosylation sites. The purpose of the present study was to characterize the N-glycosylation of ovomucin from fresh eggs using nano LC ESI-MS, MS/MS and MALDI MS. Our results showed the presence of N-linked glycans on both glycoproteins. We found 18 potential N-glycosylation sites in α-ovomucin. 15 sites were glycosylated, one site was found in both glycosylated and non-glycosylated forms and two potential glycosylation sites were found unoccupied. The N-glycans of α-ovomucin found on the glycosylation sites are complex-type structures with bisecting N-acetylglucosamine. MALDI MS of the N-glycans released from α-ovomucin by PNGase F revealed that the most abundant glycan structure is a bisected type of composition GlcNAc(6)Man(3). Two N-glycosylated sites were found in β-ovomucin.  相似文献   

12.
Qian Y  Zhang X  Zhou L  Yun X  Xie J  Xu J  Ruan Y  Ren S 《Glycoconjugate journal》2012,29(5-6):399-409
Human LOX-1/OLR 1 plays a key role in atherogenesis and endothelial dysfunction. The N-glycosylation of LOX-1 has been shown to affect its biological functions in vivo and modulate the pathogenesis of atherosclerosis. However, the N-glycosylation pattern of LOX-1 has not been described yet. The present study was aimed at elucidating the N-glycosylation of recombinant human LOX-1 with regard to N-glycan profile and N-glycosylation sites. Here, an approach using nonspecific protease (Pronase E) digestion followed by MALDI-QIT-TOF MS and multistage MS (MS(3)) analysis is explored to obtain site-specific N-glycosylation information of recombinant human LOX-1, in combination with glycan structure confirmation through characterizing released glycans using tandem MS. The results reveal that N-glycans structures as well as their corresponding attached site of LOX-1 can be identified simultaneously by direct MS analysis of glycopeptides from non-specific protease digestion. With this approach, one potential glycosylation site of recombinant human LOX-1 on Asn(139) is readily identified and found to carry heterogeneous complex type N-glycans. In addition, manual annotation of multistage MS data utilizing diagnostic ions, which were found to be particularly useful in defining the structure of glycopeptides and glycans was addressed for proper spectra interpretation. The findings described herein will shed new light on further research of the structure-function relationships of LOX-1?N-glycan.  相似文献   

13.
The asparagine-linked carbohydrate structures at each of the three glycosylation sites of human thyrotrophin were investigated by 400 MHz 1H-NMR spectroscopy. Highly purified, biologically active human thyrotrophin (hTSH) was dissociated into its subunits hTSH alpha (glycosylated at Asn 52 and Asn 78) and hTSH beta (glycosylated at Asn 23). The alpha-subunit was further treated with trypsin which gave two glycopeptides that were subsequently separated by reverse-phase HPLC and identified by amino acid sequence analysis. The oligosaccharides were liberated from hTSH alpha glycopeptides and from intact hTSH beta by hydrazinolysis, and were fractionated as alditols by anion-exchange and ion-suppression amine-adsorption HPLC preparatory to structural analysis. The N-glycans present on hTSH were mainly diantennary complex-type structures with a common Man alpha 1-3 branch that terminated with 4-O-sulphated GalNAc. The Man alpha 1-6 branch displayed structural heterogeneity in the terminal sequence, with chiefly alpha 2-3-sialylated Gal and/or 4-O-sulphated GalNAc. The relative amounts of the two major complete diantennary oligosaccharides and their core fucosylation differed according to glycosylation site; the sulphated/sialylated diantennary oligosaccharide was most abundant at the two sites on the alpha-subunit, whereas the disulphated, core-fucosylated oligosaccharide was more plentiful on the beta-subunit. Some interesting structural features, not previously reported for the N-glycans of hTSH, included 3-O-sulphated galactose (SO4-3Gal) and peripheral fucose (Fuc alpha 1-3GlcNAc) in the Man alpha 1-6 branch of some diantennary structures; the former suggests the presence of a hitherto uncharacterized galactose-3-O-sulphotransferase in thyrotroph cells of the human anterior pituitary gland.  相似文献   

14.
A gel-based method for a mass spectrometric site-specific glycoanalysis was developed using a recombinant glycoprotein expressed in two different cell lines. Hydrophilic interaction liquid chromatography at nanoscale level was used to enrich for glycopeptides prior to MS. The glycoprofiling was performed using matrix-assisted laser desorption/ionization MS and MS/MS. The method proved to be fast and sensitive and furthermore yielded a comprehensive site-specific glycan analysis, allowing a differentiation of the glycoprofiles of the two sources of recombinant protein, both comprising N-glycans of a highly heterogeneous nature. To test the potential of the method, tissue inhibitor of metalloproteinases-1 (TIMP-1), a secreted low abundance N-glycosylated protein and a cancer marker, was purified in an individual-specific manner from plasma of five healthy individuals using IgG depletion and immunoaffinity chromatography. The corresponding TIMP-1 glycoprofiles were determined to be highly similar, comprising mainly bi- and triantennary complex oligosaccharides. Additionally it was shown that platelet-derived TIMP-1 displayed a similar glycoprofile. This is the first study to investigate the glycosylation of naturally occurring human TIMP-1, and the high similarity of the glycoprofiles showed that individual-specific glycosylation variations of TIMP-1 are minimal. In addition, the results showed that TIMP-1 derived from platelets and plasma is similarly glycosylated. This comprehensive and rapid glycoprofiling of a low abundance glycoprotein performed in an individual-specific manner allows for future studies of glycosylated biomarkers for person-specific detection of altered glycosylation and may thus allow early detection and monitoring of diseases.  相似文献   

15.
Glycoproteins play important roles in various biological processes including intracellular transport, cell recognition, and cell-cell interactions. The change of the cellular glycosylation profile may have profound effects on cellular homeostasis and malignancy. Therefore, we have developed a sensitive screening approach for the comprehensive analysis of N-glycans and glycosylation sites on human serum proteins. Using this approach, N-linked glycopeptides were extracted by double lectin affinity chromatography. The glycans were enzymatically cleaved from the peptides and then profiled using capillary hydrophilic interaction liquid chromatography coupled online with ESI-TOF MS. The structures of the separated glycans were determined by MALDI quadrupole ion-trap TOF mass spectrometry in both positive and negative modes. The glycosylation sites were elucidated by sequencing of PNGase F modified glycopeptides using nanoRP-LC-ESI-MS/MS. Alterations of glycosylation were analyzed by comparing oligosaccharide expression of serum glycoproteins at different disease stages. The efficiency of this method was demonstrated by the analysis of pancreatic cancer serum compared to normal serum. Ninety-two individual glycosylation sites and 202 glycan peaks with 105 unique carbohydrate structures were identified from approximately 25 mug glycopeptides. Forty-four oligosaccharides were found to be distinct in the pancreatic cancer serum. Increased branching of N-linked oligosaccharides and increased fucosylation and sialylation were observed in samples from patients with pancreatic cancer. The methodology described in this study may elucidate novel, cancer-specific oligosaccharides and glycosylation sites, some of which may have utility as useful biomarkers of cancer.  相似文献   

16.
Human apolipoprotein B100 (apoB100) has 19 potential N-glycosylation sites, and 16 asparagine residues were reported to be occupied by high-mannose type, hybrid type, and monoantennary and biantennary complex type oligosaccharides. In the present study, a site-specific glycosylation analysis of apoB100 was carried out using reversed-phase high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/ESI MS/MS). ApoB100 was reduced, carboxymethylated, and then digested by trypsin or chymotrypsin. The complex mixture of peptides and glycopeptides was subjected to LC/ESI MS/MS, where product ion spectra of the molecular ions were acquired data-dependently. The glycopeptide ions were extracted and confirmed by the presence of carbohydrate-specific fragment ions, such as m/z 204 (HexNAc) and 366 (HexHexNAc), in the product ion spectra. The peptide moiety of glycopeptide was determined by the presence of the b- and y-series ions derived from its amino acid sequence in the product ion spectrum, and the oligosaccharide moiety was deduced from the calculated molecular mass of the oligosaccharide. The heterogeneity of carbohydrate structures at 17 glycosylation sites was determined using this methodology. Our data showed that Asn2212, not previously identified as a site of glycosylation, could be glycosylated. It was also revealed that Asn158, 1341, 1350, 3309, and 3331 were occupied by high-mannose type oligosaccharides, and Asn 956, 1496, 2212, 2752, 2955, 3074, 3197, 3438, 3868, 4210, and 4404 were predominantly occupied by mono- or disialylated oligosaccharides. Asn3384, the nearest N-glycosylation site to the LDL-receptor binding site (amino acids 3359-3369), was occupied by a variety of oligosaccharides, including high-mannose, hybrid, and complex types. These results are useful for understanding the structure of LDL particles and oligosaccharide function in LDL-receptor ligand binding.  相似文献   

17.
Extracellular and cell surface proteins are generally modified with N-linked glycans and glycopeptide enrichment is an attractive tool to analyze these proteins. The role of N-linked glycoproteins in cardiovascular disease, particularly ischemia and reperfusion injury, is poorly understood. Observation of glycopeptides by mass spectrometry is challenging due to the presence of abundant, nonglycosylated analytes, and robust methods for purification are essential. We employed digestion with multiple proteases to increase glycoproteome coverage coupled with parallel glycopeptide enrichments using hydrazide capture, titanium dioxide, and hydrophilic interaction liquid chromatography with and without an ion-pairing agent. Glycosylated peptides were treated with PNGase F and analyzed by liquid chromatography-MS/MS. This allowed the identification of 1556 nonredundant N-linked glycosylation sites, representing 972 protein groups from ex vivo rat left ventricular myocardium. False positive "glycosylations" were observed on 44 peptides containing a deamidated Asn-Asp in the N-linked sequon by analysis of samples without PNGase F treatment. We used quantitation via isobaric tags for relative and absolute quantitation (iTRAQ) and validation with dimethyl labeling to analyze changes in glycoproteins from tissue following prolonged ischemia and reperfusion (40 mins ischemia and 20 mins reperfusion) indicative of myocardial infarction. The iTRAQ approach revealed 80 of 437 glycopeptides with altered abundance, while dimethyl labeling confirmed 46 of these and revealed an additional 62 significant changes. These were mainly from predicted extracellular matrix and basement membrane proteins that are implicated in cardiac remodeling. Analysis of N-glycans released from myocardial proteins suggest that the observed changes were not due to significant alterations in N-glycan structures. Altered proteins included the collagen-laminin-integrin complexes and collagen assembly enzymes, cadherins, mast cell proteases, proliferation-associated secreted protein acidic and rich in cysteine, and microfibril-associated proteins. The data suggest that cardiac remodeling is initiated earlier during reperfusion than previously hypothesized.  相似文献   

18.
Human butyrylcholinesterase (hBChE) is a highly glycosylated protein present in human plasma. The enzyme hydrolyses choline esters, for example benzoylcholine, butyrylthiocholine and acetylthiocholine as well as noncholine esters like heroin and aspirin. hBChE is primarily involved in neuronal transmission and is a potential bioscavenger of toxic organophosphates to protect acetylcholinesterase. A prerequisite for the therapeutic use of hBChE is a detailed characterization of this glycoprotein purified from human plasma. In this study, MS/MS could confirm most of the protein backbone, including the N- and the C-terminus. Site-specific analysis of all nine potential N-glycosylation sites revealed mainly mono- and disialylated N-glycans to be present on this glycoprotein. Sialic acids (Neu5Ac) are mainly alpha2,6-linked, however a fraction of the N-glycans contained Neu5Ac also in alpha2,3 linkage. On monosialylated N-glycans, sialic acid is exclusively located on the 3-arm and in alpha2,6 linkage, as verified by 2D-HPLC and exoglycosidase digests of 2-aminopyridine (PA)-labelled N-glycans. This first comprehensive glycoproteomic analysis of the important human plasma glycoprotein BChE did not give any indication of O-glycosylation or any other kind of PTMs as previously postulated.  相似文献   

19.
Inbred BALB/c mouse implanted with murine tumors serves as an attractive model system for the studies of cancer biology in immuno-competent individuals. It is anticipated that tumor progression would induce notable pathophysiological consequences, some of which manifested as alteration in serum proteomic and glycomic profiles. Similar to sera derived from human cancer patients and immuno-compromised mice bearing human tumors, we show in this work that BALB/c mice of the same genetic background but bearing two distinct tumor origins both exhibited elevated expression levels of acute phase proteins including haptoglobin and serum amyloid P protein, in response to tumor progression. Such common traits are generally not informative nor qualifying as biomarkers. Additional mass spectrometry (MS)-based glycomic mapping nevertheless detected distinctive changes of sialylation pattern on the complex type N-glycans. MALDI MS/MS sequencing afforded a facile but definitive identification of an increase in internal Neu5Gcalpha2-6 sialylation on the GlcNAc of the Neu5Gc2-3Gal1-3GlcNAc terminal sequence as a common feature whereas a substitution of Neu5Gc by Neu5Ac was found to be induced by colonic but not breast tumor. A more pronounced change was similarly detected on N-glycans derived from ascitic fluids representing late tumor progression stages. We next demonstrated that such distinct change in glycotope expression can be localized to a particular protein carrier by LC-MS/MS analysis of glycopeptides. Serotransferrin was identified as one such abundant serum glycoprotein, which changed significantly not in protein expression level but in terminal glycosylation pattern.  相似文献   

20.
Molluscan hemocyanins are very large biological macromolecules and they act as oxygen-transporting glycoproteins. Most of them are glycoproteins with molecular mass around 9000 kDa. The oligosaccharide structures of the structural subunit RvH2 of Rapana venosa hemocyanin (RvH) were studied by sequence analysis of glycans using MALDI-TOF-MS and tandem mass spectrometry on a Q-Trap mass spectrometer after enzymatical liberation of the N-glycans from the polypeptides. Our study revealed a highly heterogeneous mixture of glycans of the compositions Hex0-9 HexNAc2-4 Hex0-3 Pent0-3 Fuc0-3. A novel type of N-glycan, with an internal fucose residue connecting one GalNAc(β1-2) and one hexuronic acid, was detected, as also occurs in subunit RvH1. A glycan with the same structure but with two deoxyhexose residues was observed as a doubly charged ion. Antiviral effects of the native molecules of RvH and also of Helix lucorum hemocyanin (HlH), of their structural subunits, and of the glycosylated functional unit RvH2-e and the non-glycosylated unit RvH2-c on HSV virus type 1 were investigated. Only glycosylated FU RvH2-e exhibits this antiviral activity. The carbohydrate chains of the FU are likely to interact with specific regions of glycoproteins of HSV, through van der Waals interactions in general or with certain amino acid residues in particular. Several clusters of these residues can be identified on the surface of RvH2-e.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号