首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
杜若甫 《遗传学报》1990,17(3):243-248
运用聚丙烯酰胺凝胶等电聚焦(PAGIF)和免疫吸引技术,研究了3个地区汉族人群的C6多态性。得到的基因频率如下:漳州市——C6*A:0.4634、C6*B:0.5000、C6*R:0.0366(C6*B2:0.0317);成都市——C6*A:0.4975,C6*B:0.4484,C6*R:0.0545(C6*B2:0.0395);哈尔滨市——C6*A:0.4708,C6*B:0.5219,C6*R:0.0073(C6*B2:0.0073)。蒙古人种的C6*A频率一般都低于0.5,高加索人种的C6*A频率一般都高于0.6。黑人则介于两者之间。蒙古人种与高加索人种的另一个区别在于前者的C6*B2频率在0.03到0.07之间,而后者几乎没有C6*B2。  相似文献   

2.
胡交宇  杜若甫 《遗传学报》1992,19(6):481-485
用聚丙烯酰胺等电聚焦技术和免疫酶标法,调查分析了汉族5个群体补体第六成分(C6)的遗传多态性,得出基因频率如下。郑州汉族:C6*A 0.4521、C6*B 0.5228、C6*B_2 0.0183、和C6*R 0.0068。兰州汉族:C6*A 0.4612、C6*B 0.5218和C6*B_2 0.0170。呼和浩特汉族:C6*A 0.4452、C6*B 0.5286、C6*B_2 0.0214和C6*R 0.0048。西安汉族:C6*A 0.4899、C6*B 0.4874、C6*B_2 0.0126和C6*R 0.0101。广东梅州客家人:C6*A 0.4569、C6*B 0.5152和C6*B_2 0.0279。C6*R为罕见等位基因之频率。  相似文献   

3.
对110例广东汉族人血清作了补体C2, Bf, C4的测定,其基因频率分V1为:C2*C'0.9500, C2*B: 0.0227,C2-,4:0182, C2*QO:O.0091;Bf*S:0.8364, Bf^`F:0.1409, Bf*S07:0.0091, Bf *S025: 0.009i,Bf*S055:0,0045; C4*A3:0.6327,C4*A4:0.1327,C4*_00:0.1020, C4*A5:0.0255 (一4*A2: 0·0918,C4*,41:0.0053;C4*B1:0.4569, C4*B2:0.4416, C4*QO:O.0558,C4*B5:0.0152,C4"}B96: 0.0152, C4*B3:0.0102, C4*B92:0.0051。木调查在我国首次发现一例C2*QO纯合子。  相似文献   

4.
两种构祀植物花药培养单倍体的诱导   总被引:3,自引:1,他引:2  
对110例广东汉族人血清作了补体C2, Bf, C4的测定,其基因频率分V1为:C2*C'0.9500, C2*B: 0.0227,C2-,4:0182, C2*QO:O.0091;Bf*S:0.8364, Bf^`F:0.1409, Bf*S07:0.0091, Bf *S025: 0.009i,Bf*S055:0,0045; C4*A3:0.6327,C4*A4:0.1327,C4*_00:0.1020, C4*A5:0.0255 (一4*A2: 0·0918,C4*,41:0.0053;C4*B1:0.4569, C4*B2:0.4416, C4*QO:O.0558,C4*B5:0.0152,C4"}B96: 0.0152, C4*B3:0.0102, C4*B92:0.0051。木调查在我国首次发现一例C2*QO纯合子。  相似文献   

5.
中国武汉地区汉族人补体第四成份(C4)的遗传多态现象   总被引:3,自引:2,他引:1  
对神经氨酸酶处理去涎的血浆进行高压琼脂糖电泳后,分别应用免疫固定和溶血覆盖技术调查了我国武汉地区汉族180人的C4多态现象。在C4A座位发现5个变型:C4A4、3、2、1和91;在C4B座位发现6个变型:C4B 3、2、1、92、9W和96。两个座位均有静息等位基因(C4A~*QO和C4B~*QO)存在。它们相应的基因频率为:C4A~*4,0.014;3,0.633;2,0.192;1,0.011;91,0.003;QO,0.147;C4B~*3,0.006;2,0.127;1,0.751;92,0.041;9W,0.003;96,0.006;QO,0.0660单零C4A(c4A QO)表型个体占总体28.3%,单零C4B(C4B QO)占11.1%;纯合C4A缺乏(C4A QO,QO)和纯合C4B缺乏(C4BQO,QO)分别占0.56%。和1.11%卡方测验表明,C4A和C4B基因频率分别符合Hardy-Weinberg遗传平衡定律。  相似文献   

6.
补体第六、七成分(C6、C7)具有遗传多态性。本文研究了北京地区随机人群115人的C6及137人的C7多态性分布,共检出C6等位基因有C6*A、B、B2、M91、M1等5种。其中C6*A和B为常见型。多态性共4种,即C7*1、2、3、4,其中C7*1为常见型。  相似文献   

7.
李桢  邹红岩  邵超鹏  唐斯  王大明  程良红 《遗传》2007,29(11):1367-1372
使用FLOW-SSO、PCR-SSP以及测序等分型技术, 发现一个与HLA-B*270401基因相关的未知基因。设计基因特异性引物单独扩增B*27基因的外显子2-5, 包括内含子2-4, 并进行双向测序, 分析与B*270401基因序列的差异。该基因的扩增产物为1 815 bp。与B*270401相比在外显子3和4共有10个碱基的改变, 从而使相应氨基酸发生错义或同义突变。碱基634 A→C (密码子130丝氨酸→精氨酸); 670 A→T (密码子142苏氨酸→丝氨酸); 683 G→T (密码子146色氨酸→亮氨酸); 698 A→T (密码子151谷氨酸→缬氨酸); 774 G→C (密码子176谷氨酸→天冬氨酸); 776 C→A (密码子177苏氨酸→赖氨酸); 781 C→G (密码子179谷氨酰胺→谷氨酸); 789 G→T (密码子181丙氨酸同义突变); 1 438 C→T (密码子206甘氨酸同义突变); 1 449 G→C (密码子210甘氨酸→丙氨酸)。在IMGT/HLA数据库中B*27组只有3个基因(B*270502 / 2706 / 2732)提交了内含子序列。该未知基因的内含子2序列与B*2706相同, 显示了与B*27组基因的同源性, 但其同源性在内含子3、4均未得到支持, 与B*27组基因相比, 内含子3的第106个碱基C→G, 碱基168缺失, 碱基179 G→A, 碱基536 G→A; 内含子4中碱基82 T→C。但其内含子3、4序列却与B*070201完全相同。该基因序列已提交GenBank, 编号为被DQ915176, 被WHO确认为HLA-B*2736等位基因。  相似文献   

8.
构建CYP2C8及其3种突变体细胞表达体系,以紫杉醇为底物研究CYP2C8基因多态性对其酶活性的影响,以及构建CYP2C8和CYP3A4共转染细胞体系研究小分子激酶抑制剂对紫杉醇代谢途径的抑制。根据基因文库分别合成CYP3A4以及CYP2C8及其3种突变体CYP2C8*2(805AT)、CYP2C8*3(416GA,1196AG)、CYP2C8*4(792CG)的基因编码片段,将其连接到PEGFP-N1表达质粒,测序验证。将CYP2C8野生型及其突变体分别转染HepG2细胞,24 h后加入紫杉醇进行孵育,通过建立好的LC-MS/MS方法对代谢物进行定量分析。同时,也将野生型CYP2C8和CYP3A4质粒按一定的浓度比转入Hep G2细胞构建共表达体系。并筛选出合适的质粒浓度比转染细胞,在加入紫杉醇孵育时,同时加入小分子激酶抑制剂,考察小分子激酶抑制剂对紫杉醇代谢途径的抑制作用。结果表明,CYP2C8*4代谢酶对紫杉醇的代谢能力存在明显差异,其中CYP2C8*2和CYP2C8*3代谢活性分别是野生型的81%(P0.05)和87%(P0.05),而CYP2C8*4则是野生型的65%(P0.01)。尼洛替尼完全抑制了紫杉醇的代谢,阿法替尼对紫杉醇的两条代谢途径抑制达30%,而伊马替尼选择性抑制了CYPD3A4的活性。不同基因型CYP2C8对紫杉醇的代谢存在差异,可能是导致临床疗效不同的原因。小分子激酶抑制剂在与紫杉醇联合使用时,对紫杉醇代谢的抑制各不相同。  相似文献   

9.
构建CYP2C8及其3种突变体细胞表达体系,以紫杉醇为底物研究CYP2C8基因多态性对其酶活性的影响,以及构建CYP2C8和CYP3A4共转染细胞体系研究小分子激酶抑制剂对紫杉醇代谢途径的抑制。根据基因文库分别合成CYP3A4以及CYP2C8及其3种突变体CYP2C8*2(805A>T)、CYP2C8*3(416G>A,1196A>G)、CYP2C8*4(792C>G)的基因编码片段,将其连接到PEGFP-N1表达质粒,测序验证。将CYP2C8野生型及其突变体分别转染HepG2细胞,24 h后加入紫杉醇进行孵育,通过建立好的LC-MS/MS方法对代谢物进行定量分析。同时,也将野生型CYP2C8和CYP3A4质粒按一定的浓度比转入Hep G2细胞构建共表达体系。并筛选出合适的质粒浓度比转染细胞,在加入紫杉醇孵育时,同时加入小分子激酶抑制剂,考察小分子激酶抑制剂对紫杉醇代谢途径的抑制作用。结果表明,CYP2C8*4代谢酶对紫杉醇的代谢能力存在明显差异,其中CYP2C8*2和CYP2C8*3代谢活性分别是野生型的81%(P<0.05)和87%(P<0.05),而CYP2C8*4则是野生型的65%(P<0.01)。尼洛替尼完全抑制了紫杉醇的代谢,阿法替尼对紫杉醇的两条代谢途径抑制达30%,而伊马替尼选择性抑制了CYPD3A4的活性。不同基因型CYP2C8对紫杉醇的代谢存在差异,可能是导致临床疗效不同的原因。小分子激酶抑制剂在与紫杉醇联合使用时,对紫杉醇代谢的抑制各不相同。  相似文献   

10.
应用等电聚焦-免疫印迹法调查了广东省四个民族(汉、苗、黎和回族)C6遗传多态性。广州地区汉族C6等位基因频率分别为:C6*A0.4225,C6*B0.5288,C6*B2 0.0387和C6*R(M91,M92,M11,B21)0.0100。海南岛三个少数民族C6遗传特点与广州汉族相似,均处于Hardy-Weinberg平衡状态。共发现五个罕见基因的杂合子,其中三个等位基因为首次报道。  相似文献   

11.
Bilgen T  Tosun O  Luleci G  Keser I 《Genetika》2008,44(8):1133-1136
Cytochrome P450 (CYP) 1A2 gene is involved in the metabolic activation of several carcinogens and altered metabolization of some clinically used drugs. We aimed to investigate the distributions of genetic polymorphisms -3860 (G/A)(CYP1A2*1C) and -2467 (T/del)(CYP1A2*1D) in the 5'-flanking region and -739 (T/G)(CYP1A2*1E) and -163(C/A)(CYP1A2*1F) in the first intron of the CYP1A2 gene in 110 unrelated healthy Turkish volunteers by PCR-RFLP technique. The frequencies of each polymorphism in Turkish population were found as 0.04, 0.92, 0.01, 0.27 for CYP1A2*1C, CYP1A2*1D, CYP1A2*1E, CYP1A2*1F, respectively. Compared with other populations, CYP1A2*1D has been found to be significantly increased in Turkish population. On the other hand, in general, the frequencies of the other polymorphisms were concordant with those in the Egyptian and Caucasian populations, and were different from those in the Japanese, Chinese and Ethiopian populations. Our results suggest that due to increased frequency of CYP1A2*1D in Turkish population, functional significance of CYP1A2*1D should be evaluated. It might be screened to determine the relationship between CYP1A2*1D and CYP1A2 related drug metabolisms in associated groups.  相似文献   

12.
RV144 is the first phase 3 HIV vaccine clinical trial to demonstrate efficacy. This study consisted of more than 8,000 individuals in each arm of the trial, representing the four major regions of Thailand. Human leukocyte antigen (HLA) class I and killer cell immunoglobulin-like receptor (KIR) genes, as well as 96 genome-wide ancestry informative markers (AIMs) were genotyped in 450 placebo HIV-1-uninfected individuals to identify the immunogenetic diversity and population structure of this cohort. High-resolution genotyping identified the common HLA alleles as A*02:03, A*02:07, A*11:01, A*24:02, A*24:07, A*33:03, B*13:01, B*15:02, B*18:01, B*40:01, B*44:03, B*46:01, B*58:01, C*01:02, C*03:02, C*03:04, C*07:01, C*07:02, C*07:04, and C*08:01. The most frequent three-loci haplotype was B*46:01-C*01:02-A*02:07. Framework genes KIR2DL4, 3DL2, and 3DL3 were present in all samples, and KIR2DL1, 2DL3, 3DL1, 2DS4, and 2DP1 occurred at frequencies greater than 90 %. The combined HLA and KIR profile suggests admixture with neighboring Asian populations. Principal component and correspondence analyses comparing the RV144 samples to the phase 3 International HapMap Project (HapMap3) populations using AIMs corroborated these findings. Structure analyses identified a distinct profile in the Thai population that did not match the Asian or other HapMap3 samples. This shows genetic variability unique to Thais in RV144, making it essential to take into account population stratification while performing genetic association studies. The overall analyses from all three genetic markers indicate that the RV144 samples are representative of the Thai population. This will inform subsequent host genetic analyses in the RV144 cohort and provide insight for future genetic association studies in the Thai population.  相似文献   

13.
Molecular variants of polymorphic drug metabolizing enzymes and drug transporters are attributed to differences in individual's therapeutic response and drug toxicity in different populations. We sought to determine the genotype and allele frequencies of polymorphisms for major phase II drug-metabolizing enzymes (TPMT, UGT1A1) and drug transporter (MDR1) in South Indians. Allelic variants of TPMT (*2,*3A,*3B,*3C & *8), UGT1A1 (TA)6>7 and MDR1 (2677G>T/A & 3435C>T) were evaluated in 450-608 healthy South Indian subjects. Genomic DNA was extracted by phenol-chloroform method and genotype was determined by PCR-RFLP, qRT-PCR, allele specific PCR, direct sequencing and SNaPshot techniques. The frequency distributions of TPMT, UGT1A1 and MDR1 gene polymorphisms were compared between the individual 4 South Indian populations viz., Tamilian, Kannadiga, Andhrite and Keralite. The combined frequency distribution of the South Indian populations together, was also compared with that of other major populations. The allele frequencies of TPMT*3C, UGT1A1 (TA)7, MDR1 2677T, 2677A and 3435T were 1.2, 39.8, 60.3, 3.7, and 61.6% respectively. The other variant alleles such as TPMT*2, *3A, *3B and *8 were not identified in the South Indian population. Sub-population analysis showed that the distribution of UGT1A1 (TA)6>7 and MDR1 allelic variants differed between the four ethnic groups. However, the frequencies of TPMT*3C allele were similar in the four South Indian populations. The distribution of TPMT, UGT1A1 and MDR1 gene polymorphisms of the South Indian population was significantly different from other populations.  相似文献   

14.
Population genetic studies of the major histocompatibility complex (MHC) class III region, comprising C2, BF and C4 phenotypes, and molecular genetic data are rarely available for populations other than Caucasoids. We have investigated three Amerindian populations from Southern Brazil: 131 Kaingang from Ivaí (KIV), 111 Kaingang (KRC) and 100 Guarani (GRC) from Rio das Cobras. Extended MHC haplotypes were derived after standard C2, BF, C4 phenotyping and restriction fragment length polymorphism (RFLP) analysis with TaqI, together with HLA data published previously by segregation analysis. C2 and BF frequencies corresponded to other Amerindian populations. C4B*Q0 frequency was high in the GRC (0.429) but low in the Kaingang. Unusual C4 alleles were found, viz. C4A*58, A*55 and C4B*22 (presumably non-Amerindian) and aberrant C4A*3 of Amerindian origin occurring with a frequency of 0.223 in the GRC. C4A*3 bands of homo- and heterozygous individuals carrying this variant were Rodgers 1 positive and Chido 1,3 positive, showed a C4A specific lysis type and a C4A like α-chain. Polymerase chain reaction studies and sequencing showed that this is based on a C4A*3 duplication with a regular C4A*3 and a partially converted C4A*0304 carrying the C4B specific epitopes Ch 6 and Ch 1,3. Associations of class III haplotypes with particular RFLP patterns were similar to those reported for Caucasoids. The previously described association between combined C4A and CYP21P deletions and the 6.4 kb TaqI fragment was not seen in these Amerindians. This fragment occurred within a regular two locus gene structure in the Kaingang, representing a “short” gene at C4 locus I. C4 and CYP21 duplications were frequently observed. The distribution of extended MHC haplotypes provides evidence for a close relationship between the KIV and KRC and a larger genetic distance between the two Kaingang groups and the GRC. Received: 6 March 1997 / Accepted: 13 May 1997  相似文献   

15.
Population genetic data on Gagauzes from Moldova are reported for the first time. Blood groups AB0 and Rh and biochemical markers of genes HP, TF, GC, and PGM1 were determined in 190 Gagauzes. The following allelic frequencies were determined: AB0*0, 0.5241; AB0*A, 0.3279; RH*d, 0.4571; HP*1, 0.3544; TF*C1, 0.7472; TF*C2, 0.1770; TFC3, 0.0730; TF*B, 0.0028; GC*1F, 0.1025; GC*1S, 0.5932; GC*2, 0.3043; PGM1*1+, 0.5286; PGM*1-, 0.1000; PGM1*2+, 0.2607; and PGM1*2-, 0.1107. The data obtained indicate that the gene pool of Gagauzes is similar to those of neighboring southeastern European populations.  相似文献   

16.
Population genetic data on Gagauzes from Moldavia are reported here for the first time. AB0 and Rhesus blood groups, serum protein group (HP, TF, GC) and the red cell enzyme polymorphism PGM1 were determined in 190 Gagauzes. In addition to this the ability to taste PTC was tested. The following allele frequencies were found: AB0*0 = 0.5241, AB0*A = 0.3279, AB0*B = 0.1480; RH*D = 0.6083, RH*d = 0.3917; HP*1 = 0.3544, HP*2 = 0.6456; TF*C1 = 0.7472, TF*C2 = 0.1770, TF*C3 = 0.0730, TF*B = 0.0028; GC*1F = 0.1025, GC*1S = 0.5932, GC*2 = 0.3043; PGM*1+ = 0.5932; PGM*1- = 0.1000, PGM*2+ = 0.2607, PGM*2- = 0.1107. The frequency of the PTC*T allele was found to be 0.5298. These frequencies and genetic distance analyses show that the gene pool of the Gagauzes is similar to that of neighbouring southeastern European populations.  相似文献   

17.
Cytochrome P450 (CYP) 1A2 gene is involved in the metabolic activation of several carcinogens and altered metabolization of some clinically used drugs. We aimed to investigate the distributions of genetic polymorphisms-3860 (G/A)(CYP1A2*1C) and-2467 (T/del)(CYP1A2*1D) in the 5′-flanking region and-739 (T/G)(CYP1A2*1E) and-163(C/A)(CYP1A2*1F) in the first intron of the CYP1A2 gene in 110 unrelated healthy Turkish volunteers by PCR-RFLP technique. The frequencies of each polymorphism in Turkish population were found as 0.04, 0.92, 0.01, 0.27 for CYP1A2*1C, CYP1A2*1D, CYP1A2*1E, CYP1A2*1F, respectively. Compared with other populations, CYP1A2*1Dhas been found to be significantly increased in Turkish population. On the other hand, in general, the frequencies of the other polymorphisms were concordant with those in the Egyptian and Caucasian populations, and were different from those in the Japanese, Chinese and Ethiopian populations. Our results suggest that due to increased frequency of CYP1A2*1D in Turkish population, unctional significance of CYP1A2*1D should be evaluated. It might be screened to determine the relationship between CYP1A2*1D and CYP1A2 related drug metabolisms in associated groups. This article was submitted by the authors in English.  相似文献   

18.
Potential causes of variability in drug response include intrinsic factors such as ethnicity and genetic differences in the expression of enzymes that metabolize drugs, such as those from Cytochrome P450 (CYPs) superfamily. Pharmacogenetic studies search for genetic differences between populations since relevant alleles occur with varying frequencies among different ethnic populations. The Brazilian population is one of the most heterogeneous in the world, resulting from multiethnic admixture of Amerindians, Europeans, and Africans across centuries. Since the knowledge of CYP allele frequency distributions is relevant to pharmacogenetic strategies and these data are scarce in the Brazilian population, this study aimed to describe genotype and allele distributions of 15 single nucleotide polymorphisms (SNPs) at CYP 1A2, 2C19, 3A4, and 3A5 genes in African and European descents from South Brazil. A sample of 179 healthy individuals of European and African ancestry was genotyped by the MassARRAY SNP genotyping system. CYP3A5*3, CYP1A2*1F, CYP3A4*1B, and CYP2C19*2 were the most frequent alleles found in our sample. Significant differences in genotype and allelic distribution between African and European descents were observed for CYP3A4 and CYP3A5 genes. CYP3A4*1B was observed in higher frequency in African descents (0.379) than in European descents (0.098), and European descents showed higher frequency of CYP3A5*3 (0.810) than African descents (0.523). Our results indicate that only a few polymorphisms would have impact in pharmacogenetic testing in South Brazilians. Further studies with larger sample sizes are required also among other Brazilian regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号