首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of ondansetron (5-HT3-receptor antagonist) was studied on the working memory deficits induced by scopolamine, a muscarinic receptor antagonist in rats using a three-panel runway apparatus. Varying doses of scopolamine (0.1-0.56mg/kg, ip) were administered alone or in combination with ondansetron (0.01-1.0 mg/kg, ip) and memory errors and latency period of the session were recorded on a three-panel runway apparatus. Treatment with scopolamine (0.56 mg/kg) produced working memory deficits in rats. Treatment with ondansetron (1.0 mg/kg) significantly reduced the scopolamine-induced working memory deficits.  相似文献   

2.
It was shown, that administration of methyl ether N-(beta-carboline-3-carbonyl)-glycine (GA) at dose level of 1-10 mg/kg markedly reduced exploratory behavior and motor activity in the open field test and facilitated manifestation of different rats defend reaction types. Methyl ether N-(beta-carboline-3-carbonyl)-leucine (LA) at the same doses was less effective. Besides GA (10 mg/kg) like earlier described anxiogenic compound FG 7142 suppressed isolation induced muricide behavior of rats. The results obtained combined with literary data allow us to conclude, that GA possesses expressed anxiogenic activity.  相似文献   

3.
Physostigmine (0.7-0.8 mg/kg, i.p.) decreased and pentobarbital (13.4-14.6 mg/kg) increased the locomotor and emotional activity of rats in the "open field". Both drugs induced the reversible amnesia to a conditioned reaction in a double T-maze with positive (nutritional) reinforcement. These changes in behavioral activity were correlated with dissociated learning of rats after the injection of the drugs: physostigmine largely decreased the number of errors during learning as compared with pentobarbital. However, in both cases rats reached the learning criterion sooner than the control animals due to the shorter reaction latency (physostigmine) and increase in general motor activity (pentobarbital).  相似文献   

4.
Methyl beta-carboline-3-carboxylate (beta-CCM) and flumazenil (Ro15-1788) are known to be respectively an inverse agonist and an antagonist of the central benzodiazepine-receptor. Surprisingly, these two drugs have shown a similar enhancing effect in a negatively reinforced multiple-trial brightness discrimination task in mice. Thus, to evaluate the role of anxiety in this task, the action of these two drugs were compared in the same learning task with a positive or a negative reinforcement. Mice were trained for sessions of ten trials per day for six consecutive days. The sessions during the first three days took place after administration of beta-CCM (0.3 mg/kg), flumazenil (15 mg/kg) or vehicles of these drugs. A negative reinforcement (electric foot-shock) was used in a first experiment, and a positive one (food reward) in a second experiment. Results showed that, whatever the reinforcement, the two drugs enhance learning in a brightness discrimination task. The hypothesis is that flumazenil could have an inverse agonist profile in learning tasks. The question remains as to whether the flumazenil enhancing learning process results from increased arousal and/or anxiogenic factors, or from a negative modulatory influence of endogenous diazepam-like ligands for benzodiazepine receptors.  相似文献   

5.
Caffeine (10–40 mg/kg, p.o.) enhanced locomotor activity (LA). Administration of GABA antagonist, bicuculline (0.5–1.0 mg/kg, i.p.), potentiated this caffeine-induced increase of LA, as well as LA of control rats. Treatment with the GABA agonist, muscimol (0.25–1 mg/kg, i.p.) or dopaminergic antagonist, haloperidol (0.25–1 mg/kg, i.p.) or muscarinic receptor blocker, atropine (3.75–5 mg/kg, i.p.), or inhibitor of acetylcholine esterase physostigmine (0.05–0.30 mg/kg, i.p.) or nicotine (0.5–1.5 mg/kg, i.p.) an nicotinic receptor agonist all decreased the LA of both caffeinetreated and control rats. Haloperidol-induced reduction in caffeine-induced increase in LA was found to be withdrawn with higher dose of caffeine. The dopamine agonist L-Dopa (75–150 mg/kg, p.o.) along with carbidopa (10 mg/kg, p.o.) increased the LA in control rats and potentiated the LA of caffeine treated rats. The haloperidol attenuated the bicuculline-induced increase in LA and atropine or physostigmine attenuated the bicuculline or L-Dopa+carbidopa-induced increase in LA in both caffeine treated and control rats when those drugs were administered concomitantly with bicuculline or L-Dopa+carbidopa. These results suggest that (a) the GABAergic system has direct role in the regulation of LA, and (b) caffeine potentiates LA by antagonism of the adenosine receptor and activation of the dopaminergic system which, in turn, reduces GABAergic activity through the reduction of cholinergic system.  相似文献   

6.
Exposure (2 h) of adult male albino rats to higher environmental temperature (HET, 40°C) significantly increased body temperature (BT). Administration of (a) 5-HTP (5 mg/kg, i.p.) or morphine (1 mg/kg, i.p.) or physostigmine (0.2 mg/kg, i.p.) alone significantly increased and (b) methysergide (1 mg/kg, i.p.) or naloxone (1 mg/kg, i.p.) or atropine (5 mg/kg, i.p.) reduced the BT of both normal and HET exposed rats. Further, it was observed that morphine prevented the methysergide-induced hypothermia and 5-HTP potentiated the morphine-induced hyperthermia in both normal and HET exposed conditions. Biochemical study also indicates that serotonin metabolism was increased but GABA utilization was reduced following exposure to HET. 5-HTP or bicuculline-induced hyperthermia in control and HET exposed rat was potentiated with the coadministration of bicuculline and 5-HTP. The cotreatment of bicuculline with methysergide prevented the methysergide-induced attenuation of BT of heat exposed rat, rather BT was significantly enhanced indicating that inhibition of GABA system under heat exposed condition may activate the serotonergic activity. Further (a) enhancement of (i) morphine-induced hyperthermia with physostigmine (ii) physostigmine- or morphine + physostigmine-induced increase of BT with 5-HTP and (b) reduction of (i) morphine- or morphine + 5-HTP-induced hyperthermia with atropine and (ii) atropine-induced hypothermia with 5-HTP in both normal and HET exposed conditions suggest that HET exposure activates the cholinergic system through the activation of opioidergic and serotonergic system and hence increased the BT. Thus, it may be concluded that there is an involvement of serotonergic regulation in the opioidergic-cholinergic interaction via GABA system in HET-induced increase in BT.  相似文献   

7.
The aim of this study was to determine if the display of lordosis behavior in the male rat could be influenced by the olfactory environment. Unexperienced adult male rats were orchidectomized (ORCH). They were primed with 75 μg estradiol benzoate and 1 mg progesterone was injected at an interval of 39 hr following long-term (LT = 3 weeks) or short-term (SHT = 8 hr 30 min) exposure to the odor of male or female urine. For 10 min they were placed in the presence of a “stimulus” male of proven sexual vigor 9 hr 30 min ± 1 hr after progesterone injection. Both LT and SHT exposure to the odor of male urine caused a significant increase in the number of ORCH rats which showed lordosis response to male mounts compared to either the ORCH rats exposed to the odor of female urine or to the controls. Following complete olfactory bulb removal (COBR), no difference was observed in the occurrence of lordosis behavior between the ORCH rats whether or not exposed to the odor of urine. For the ORCH-COBR rats exposed to male urine the proportion of animals responding to mounts did not differ from that of their nonbulbectomized counterparts. In comparing the effects of COBR vs anterior olfactory bulb removal (AOBR) lordosis behavior occurred more frequently in COBR than in AOBR-ORCH rats. The lordosis quotient (LQ) was not affected by exposure to the odor of male urine in the nonbulbectomized ORCH rats. In contrast, it appeared to be higher in both COBR and AOBR animals than in their nonbulbectomized counterparts. The olfactory bulbs were then concluded to inhibit the display of lordosis behavior in the male rat. It was also thought that the olfactory stimuli originating from male urine were capable of releasing the hypothalamic structures involved in the control of lordosis behavior of the male rat from an olfactory inhibitory influence.  相似文献   

8.
White rats were given 4 g/lag daily of 40% ethyl alcohol from the 5th till the 20th day of pregnancy. Males of the off-spring from the 5th till 19th day were subjected to treatment with 0.6 mg/kg DMCM (4-ethyl-6, 7-dimethoxy-beta-carboline-3-carboxylate methyl ether) or 2.5 mg/kg of diazepam daily. It has been shown that both drugs normalize increased locomotor activity; treatment with DMCM corrects passive avoidance conditioned reflex retention; both drugs restore active avoidance conditioned reflex elaboration in rats alcoholized prenatally. Moreover, treatment with DMCM or diazepam restores correlations between behaviour indices and binding of 3H-diazepam which have been altered by prenatal alcoholization.  相似文献   

9.
The hydrogen bonding interactions of methyl beta-carboline-3-carboxylate (BCCM) in both ground and first singlet excited electronic states have been studied in solvents with different properties in the presence of acetic acid, a hydrogen-bonding donor/acceptor. The methyl ester substituent reduces the pyridinic nitrogen basicity of this beta-carboline derivative. This fact has let us study the hydrogen bonding interactions in a higher range of acetic acid concentrations than for other beta-carboline derivatives previously studied. Steady and non-steady photophysical studies have been carried out in two non-polar solvents, benzene and p-dioxane; and in two polar solvents, acetonitrile and dichloromethane. Six different fluorescence emissions have been isolated corresponding to the uncomplexed BCCM, the protonated species and four different complexes between BCCM and acetic acid whose structures we have tried to elucidate.  相似文献   

10.
In experiments on rats learned to passive avoidance reaction in one trial with subsequent administration of electroconvulsive shock (two hours after learning), the influence of different factors on the retrieval of the lost reaction was tested after three days. The greatest restoring capacity was exhibited by a non-specific reminding agent, the bell, gamma-amino-butyric acid (200 mg/kg) and etimizol (1.5 mg/kg). In animals with a preserved reaction, a number of pharmacological agents impaired retrieval of the habit (caffeine 5 mg/kg, carbocholine 0.01 mg/kg and metamizil 0.5 mg/kg). Optimal conditions for the restoration of the lost reaction were formed by etimizol and gamma-aminobutyric acid. Cholinergic mechanisms play a certain role in the functioning of the retrieval apparatus.  相似文献   

11.
For the first ten days of gestation, rats received daily intraperitoneal injections of 10-40 mg/kg of caffeine. Open field behavior of their fostered offspring was observed 61, 145 and 188 days after birth. While there were no obvious physical effects of the prenatal experience, at 61 days caffeine exposure led to an increase in the number of times seen walking for males only and increased ambulation (distance travelled) for both sexes. At 145 days occupancy of centre squares of the apparatus and latencies of emergence from a dark box into an illuminated arena were higher for caffeine-exposed males only. When 188 days old, rats exposed to 20 mg/kg of caffeine tended to exhibit less locomotor activity and more grooming behavior while spending more time in corners of the apparatus. Male rats prenatally exposed to 20 mg/kg of caffeine avoided the centre squares of the apparatus. It was concluded that prenatal caffeine had modified the development of mechanisms controlling voluntary motor activity in the youngest rats. However, at older ages, the prenatal effect was probably manifested as increased timidity or emotional reactivity. Males were often affected differently from females by the prenatal treatment.  相似文献   

12.
Statistical analysis of EEG spectra averaged over 10-min periods showed that inhibitor of acetylcholinesterase physostigmine induced the long-term (tens of minutes) characteristic changes in the electric activity of the dorsal hippocampus (CA1 field) and somatosensory cortex of unrestrained rats. With increasing the physostigmine dose from 0.05 to 0.5 or 1 mg/kg the averaged power of the theta-rhythm did not rise in the range of 3.6-4.9 Hz and was suppressed in the range of 5.7-11.9 Hz both in the hippocampus and neocortex. The maximal frequency shifted to the left (from 3.6-6.4 to 3.6-4.9 Hz). In contrast to this, the averaged power in the delta (1-1.5 Hz)-I and beta-2 ranges (20.3-26.5 Hz) significantly nonlinearly increased and that of the beta-1 substantially decreased. Scopolamine eliminated all extrema of the hippocampal and neocortical EEG spectra induced by physostigmine, which is indicative of the role of M-cholinoreceptors in these effects. The increased dose of physostigmine (1 mg/kg) produced inversion of the ratio between the averaged power of beta-2 in neocortex and hippocampus: it became significantly higher than in the neocortex. All these data suggest that the mechanisms of cholinergic modulation of the theta- and beta-rhythms are essentially different. We think that significant enhancement of the content of endogenous acetylcholine content produce a long-term tonic decay of the functional activity of the hippocampus and neocortex and play an important role in the mechanisms of dissociated states of memory and consciousness, contextual learning and conditioned switching.  相似文献   

13.
The effects of a single or repeated dermal administration of methyl parathion on motor function, learning and memory were investigated in adult female rats and correlated with blood cholinesterase activity. Exposure to a single dose of 50 mg/kg methyl parathion (75% of the dermal LD(50)) resulted in an 88% inhibition of blood cholinesterase activity and was associated with severe acute toxicity. Spontaneous locomotor activity and neuromuscular coordination were also depressed. Rats treated with a lower dose of methyl parathion, i.e. 6.25 or 12.5 mg/kg, displayed minimal signs of acute toxicity. Blood cholinesterase activity and motor function, however, were depressed initially but recovered fully within 1-3 weeks. There were no delayed effects of a single dose of methyl parathion on learning acquisition or memory as assessed by a step-down inhibitory avoidance learning task. Repeated treatment with 1 mg/kg/day methyl parathion resulted in a 50% inhibition of blood cholinesterase activity. A decrease in locomotor activity and impairment of memory were also observed after 28 days of repeated treatment. Thus, a single dermal exposure of rats to doses of methyl parathion which are lower than those that elicit acute toxicity can cause decrements in both cholinesterase activity and motor function which are reversible. In contrast, repeated low-dose dermal treatment results in a sustained inhibition of cholinesterase activity and impairment of both motor function and memory.  相似文献   

14.
Recent studies have shown that learning and memory capacity is disturbed in depressive patients, and it is important to reveal the effects of antidepressant drugs on cognitive function in depressive patients with memory problems. Citalopram, a selective serotonin reuptake inhibitor (SSRI), is one of the most widely used drugs for the treatment of disorders related to serotonergic dysfunction like depression and anxiety. Contradictory findings exist regarding the effects of SSRIs on memory. The aim of this study is to investigate whether citalopram affects memory in various models of learning and memory tasks in rats. Citalopram (at 20 and 50 mg/kg) significantly shortened the retention latency in the passive avoidance test and prolonged the transfer latency on the second day at 10 and 50 mg/kg doses in the elevated plus-maze test. Citalopram also significantly increased the number of errors (at the 10 mg/kg dose) and prolonged the latency values compared to the control group in both reference and working memory trials in the three-panel runway test. Citalopram also impaired reference memory trials of animals at the 20 mg/kg dose. In conclusion, citalopram impaired cognitive performance in passive avoidance, elevated plus-maze and three-panel runway tasks in naive rats. These effects might be related to serotonergic and nitrergic mechanisms, which need to be investigated in further studies.  相似文献   

15.
Tolerance to the effects of physostigmine and oxotremorine in rats was evaluated using a multiple fixed-ratio 10, extinction schedule of food presentation. Physostigmine was administered either once daily or three times daily for 18 consecutive days. Tolerance to physostigmine's response decreasing effects was observed under both administration regimens. Cumulative dose-effect functions for oxotremorine (0.0056-0.562 mg/kg) were determined before and after chronic physostigmine administration. Oxotremorine's potency to produce response rate suppression decreased in rats receiving physostigmine three times daily but did not substantially change in rats receiving single daily injections. These results demonstrate that the dose or duration of action of physostigmine can determine whether tolerance to physostigmine's effects is accompanied by cross-tolerance to oxotremorine's effects.  相似文献   

16.
Estrogens act in the adult brain to modulate cognition, enhancing performance on some learning tests and impairing performance on others. Our previous research has revealed an impairing effect of chronic 17β-estradiol treatment in young and aged rats on a prefrontally-mediated working memory task, delayed spatial alternation (DSA). Little is known about the mechanisms of these impairing effects. The current study examined the effects of selective estrogen receptor (ER) α or ERβ activation on DSA performance in middle-aged female rats. Ovariectomized 12 month old Long–Evans (LE) rats were treated by subcutaneous injection with the ERα agonist propyl pyrazole triol (PPT) or the ERβ agonist diarylpropionitrile (DPN) at 0.02, 0.08, or 0.20 mg/kg/day, or with oil vehicle and tested on an operant variable delay DSA task. A 17β-estradiol group (10% in cholesterol) was included as a positive control group. We replicated our previous finding of a 17β-estradiol induced deficit on DSA performance and this effect was paralleled by low dose (0.02 mg/kg/day) DPN treatment. Higher doses of DPN failed to produce a significant change in performance. The highest dose of PPT (0.20 mg/kg/day) also impaired performance, but this effect was subtle and limited to the longest delay during the final block of testing. These data confirm our earlier findings that chronic 17β-estradiol treatment has an impairing effect on the DSA task, and suggest that ERβ activation may underlie the deficit.  相似文献   

17.
《Hormones and behavior》2011,59(5):878-890
Estrogens act in the adult brain to modulate cognition, enhancing performance on some learning tests and impairing performance on others. Our previous research has revealed an impairing effect of chronic 17β-estradiol treatment in young and aged rats on a prefrontally-mediated working memory task, delayed spatial alternation (DSA). Little is known about the mechanisms of these impairing effects. The current study examined the effects of selective estrogen receptor (ER) α or ERβ activation on DSA performance in middle-aged female rats. Ovariectomized 12 month old Long–Evans (LE) rats were treated by subcutaneous injection with the ERα agonist propyl pyrazole triol (PPT) or the ERβ agonist diarylpropionitrile (DPN) at 0.02, 0.08, or 0.20 mg/kg/day, or with oil vehicle and tested on an operant variable delay DSA task. A 17β-estradiol group (10% in cholesterol) was included as a positive control group. We replicated our previous finding of a 17β-estradiol induced deficit on DSA performance and this effect was paralleled by low dose (0.02 mg/kg/day) DPN treatment. Higher doses of DPN failed to produce a significant change in performance. The highest dose of PPT (0.20 mg/kg/day) also impaired performance, but this effect was subtle and limited to the longest delay during the final block of testing. These data confirm our earlier findings that chronic 17β-estradiol treatment has an impairing effect on the DSA task, and suggest that ERβ activation may underlie the deficit.  相似文献   

18.
Androgens have been found to inhibit lordosis activated by estrogen treatment of ovariectomized female rats. In the present experiments, dihydrotestosterone propionate (200 micrograms for 3 days) inhibited the incidence of lordosis in ovariectomized females treated with estradiol benzoate (1 microgram for 3 days). This inhibition of lordosis was reversed 15 min after bilateral intraventricular infusion of physostigmine (10 micrograms/cannula), an acetylcholinesterase inhibitor, or carbachol (0.5 microgram/cannula), a cholinergic receptor agonist. This reversal of inhibition appears to be mediated by cholinergic muscarinic receptors since pretreatment with scopolamine (4 mg/kg, ip), a muscarinic receptor blocker, prevented the reversal of androgen inhibition by physostigmine. These results indicate that androgens may inhibit estrogen-activated lordosis through interference with central cholinergic muscarinic mechanisms.  相似文献   

19.
Rats received 7 daily injections with baclofen (40 mg/kg), GBL (750 mg/kg) or HA-966 (100 mg/kg). Dopamine (DA) was measured in the striatum and olfactory tubercle (OT) of rats, sacrificed 0.5 h or 1 h after the last injection. Marked tolerance and cross-tolerance for the DA-elevating effect of these drugs was seen in the striatum, but not in OT. When on day 7 a unilateral lesion of the nigrostriatal pathway was made, also some tolerance to the DA increase in the striatum on the lesioned side was seen in HA-966-pretreated rats, but it was small compared to the tolerance after an additional drug administration in non-lesioned animals. A low dose of apomorphine (0.25 mg/kg, i.p.) had no effect on DA, dihydroxyphenylacetic acid DOPAC) or homovanillic acid (HVA) levels in the lesioned striata, whether the rats had been pretreated for 6 days with HA-966 or not. However, this dose of apomorphine had a significantly more lowering effect on striatal DOPAC and HVA levels on the unlesioned side of HA-966 pretreated rats. The results show that tolerance develops to the increase of DA synthesis, which is possibly receptor-mediated. This tolerance develops more readily in the striatum than in the olfactory tubercle.  相似文献   

20.
Juvenile female and male (young) and 16-mo-old male (old) rats inhaled manganese in the form of manganese sulfate (MnSO4) at 0, 0.01, 0.1, and 0.5 mg Mn/m3 or manganese phosphate at 0.1 mg Mn/m3 in exposures of 6h/d, 5d/wk for 13 wk. We assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Although most brain regions in the three groups of animals were unaffected by manganese exposure in terms of GS protein levels, there was significantly increased protein (p<0.05) in the hippocampus and decreased protein in the hypothalamus of young male rats exposed to manganese phosphate as well as in the aged rats exposed to 0.1 mg/m3 MnSO4. Conversely, GS protein was elevated in the olfactory bulb of females exposed to the high dose of MnSO4. Statistically significant decreases (p<0.05) in MT and GS mRNA as a result, of manganese exposure were observed in the cerebellum, olfactory bulb, and hippocampus in the young male rats, in the hypothalamus in the young female rats, and in the hippocampus in the senescent males. Total GSH levels significantly (p<0.05) decreased in the olfactory bulb of manganese exposed young male rats and increased in the olfactory bulb of female rats exposed to manganese. Both the aged and young female rats had significantly decreased (p<0.05) GSH in the striatum resulting from manganese inhalation. The old male rats also had depleted GSH levels in the cerebellum and hypothalamus as a result, of the 0.1-mg/m3 manganese phosphate exposure. These results demonstrate that age and sex are variables that must be considered whenassessing the neurotoxicity of manganese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号