首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
AS160 (Akt substrate of 160 kDa) mediates insulin-stimulated GLUT4 (glucose transporter 4) translocation, but is widely expressed in insulin-insensitive tissues lacking GLUT4. Having isolated AS160 by 14-3-3-affinity chromatography, we found that binding of AS160 to 14-3-3 isoforms in HEK (human embryonic kidney)-293 cells was induced by IGF-1 (insulin-like growth factor-1), EGF (epidermal growth factor), PMA and, to a lesser extent, AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). AS160-14-3-3 interactions were stabilized by chemical cross-linking and abolished by dephosphorylation. Eight residues on AS160 (Ser318, Ser341, Thr568, Ser570, Ser588, Thr642, Ser666 and Ser751) were differentially phosphorylated in response to IGF-1, EGF, PMA and AICAR. The binding of 14-3-3 proteins to HA-AS160 (where HA is haemagglutinin) was markedly decreased by mutation of Thr642 and abolished in a Thr642Ala/Ser341Ala double mutant. The AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases RSK1 (p90 ribosomal S6 kinase 1), SGK1 (serum- and glucocorticoid-induced protein kinase 1) and PKB (protein kinase B) displayed distinct signatures of AS160 phosphorylation in vitro: all three kinases phosphorylated Ser318, Ser588 and Thr642; RSK1 also phosphorylated Ser341, Ser751 and to a lesser extent Thr568; and SGK1 phosphorylated Thr568 and Ser751. AMPK (AMP-activated protein kinase) preferentially phosphorylated Ser588, with less phosphorylation of other sites. In cells, the IGF-1-stimulated phosphorylations, and certain EGF-stimulated phosphorylations, were inhibited by PI3K (phosphoinositide 3-kinase) inhibitors, whereas the RSK inhibitor BI-D1870 inhibited the PMA-induced phosphorylations. The expression of LKB1 in HeLa cells and the use of AICAR in HEK-293 cells promoted phosphorylation of Ser588, but only weak Ser341 and Thr642 phosphorylations and binding to 14-3-3s. Paradoxically however, phenformin activated AMPK without promoting AS160 phosphorylation. The IGF-1-induced phosphorylation of the novel phosphorylated Ser666-Pro site was suppressed by AICAR, and by combined mutation of a TOS (mTOR signalling)-like sequence (FEMDI) and rapamycin. Thus, although AS160 is a common target of insulin, IGF-1, EGF, PMA and AICAR, these stimuli induce distinctive patterns of phosphorylation and 14-3-3 binding, mediated by at least four protein kinases.  相似文献   

2.
The tumour metastasis suppressor, N-myc Downstream Regulated Gene (NDRG) 1, is a by the protein kinases SGK1 and GSK3β, but the relevance of its phosphorylation remains unclear. Analysis of HCT116 cells, either proficient or deficient for p53 revealed NDRG1 protein expression and phosphorylation by SGK1 was increased basally in p53-deficient cells. Treatment with the cell cycle inhibitors, aphidicolin or nocodazole also revealed increased NDRG1 phosphorylation in p53-deficient cells. Finally, phosphorylated NDRG1 was found to co-localise with γ-tubulin on centromeres and also to the cleavage furrow during cytokinesis. Taken together, this work demonstrates that NDRG1 phosphorylation, by the protein kinase SGK1, is temporally and spatially controlled during the cell cycle, suggesting a role for NDRG1 in successful mitosis.  相似文献   

3.
The growth factor-activated AGC protein kinases RSK, S6K, PKB, MSK and SGK are activated by serine/threonine phosphorylation in the activation loop and in the hydrophobic motif, C-terminal to the kinase domain. In some of these kinases, phosphorylation of the hydrophobic motif creates a specific docking site that recruits and activates PDK1, which then phosphorylates the activation loop. Here, we discover a pocket in the kinase domain of PDK1 that recognizes the phosphoserine/phosphothreonine in the hydrophobic motif by identifying two oppositely positioned arginine and lysine residues that bind the phosphate. Moreover, we demonstrate that RSK2, S6K1, PKBalpha, MSK1 and SGK1 contain a similar phosphate-binding pocket, which they use for intramolecular interaction with their own phosphorylated hydrophobic motif. Molecular modelling and experimental data provide evidence for a common activation mechanism in which the phosphorylated hydrophobic motif and activation loop act on the alphaC-helix of the kinase structure to induce synergistic stimulation of catalytic activity. Sequence conservation suggests that this mechanism is a key feature in activation of >40 human AGC kinases.  相似文献   

4.
Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells   总被引:2,自引:0,他引:2  
The 90 kDa ribosomal S6 kinases (p90RSKs) are a family of broadly expressed serine/threonine kinases with two kinase domains activated by extracellular signal-regulated protein kinase in response to many growth factors. Our recent study demonstrated that severe acute respiratory syndrome (SARS)-coronavirus (CoV) infection of monkey kidney Vero E6 cells induces phosphorylation and dephosphorylation of signaling pathways, resulting in apoptosis. In the present study, we investigated the phosphorylation status of p90RSK, which is a well-known substrate of these signaling pathways, in SARS-CoV-infected cells. Vero E6 mainly expressed p90RSK1 and showed weak expression of p90RSK2. In the absence of viral infection, Ser221 in the N-terminal kinase domain was phosphorylated constitutively, whereas both Thr573 in the C-terminal kinase domain and Ser380 between the two kinase domains were not phosphorylated in confluent cells. Ser380, which has been reported to be involved in autophosphorylation by activation of the C-terminal kinase domain, was phosphorylated in confluent SARS-CoV-infected cells, and this phosphorylation was inhibited by , which is an inhibitor of p38 mitogen-activated protein kinases (MAPK). Phosphorylation of Thr573 was not upregulated in SARS-CoV-infected cells. Thus, in virus-infected cells, phosphorylation of Thr573 was not necessary to induce phosphorylation of Ser380. On the other hand, Both Thr573 and Ser380 were phosphorylated by treatment with epidermal growth factor (EGF) in the absence of p38 MAPK activation. Ser220 was constitutively phosphorylated despite infection. These results indicated that phosphorylation status of p90RSK by SARS-CoV infection is different from that by stimulation of EGF. This is the first detailed report regarding regulation of p90RSK phosphorylation by virus infection.  相似文献   

5.
SGK1 (serum- and glucocorticoid-induced protein kinase 1) is a member of the AGC (protein kinase A/protein kinase G/protein kinase C) family of protein kinases and is activated by agonists including growth factors. SGK1 regulates diverse effects of extracellular agonists by phosphorylating regulatory proteins that control cellular processes such as ion transport and growth. Like other AGC family kinases, activation of SGK1 is triggered by phosphorylation of a threonine residue within the T-loop of the kinase domain and a serine residue lying within the C-terminal hydrophobic motif (Ser(422) in SGK1). PDK1 (phosphoinositide-dependent kinase 1) phosphorylates the T-loop of SGK1. The identity of the hydrophobic motif kinase is unclear. Recent work has established that mTORC1 [mTOR (mammalian target of rapamycin) complex 1] phosphorylates the hydrophobic motif of S6K (S6 kinase), whereas mTORC2 (mTOR complex 2) phosphorylates the hydrophobic motif of Akt (also known as protein kinase B). In the present study we demonstrate that SGK1 hydrophobic motif phosphorylation and activity is ablated in knockout fibroblasts possessing mTORC1 activity, but lacking the mTORC2 subunits rictor (rapamycin-insensitive companion of mTOR), Sin1 (stress-activated-protein-kinase-interacting protein 1) or mLST8 (mammalian lethal with SEC13 protein 8). Furthermore, phosphorylation of NDRG1 (N-myc downstream regulated gene 1), a physiological substrate of SGK1, was also abolished in rictor-, Sin1- or mLST8-deficient fibroblasts. mTORC2 immunoprecipitated from wild-type, but not from mLST8- or rictor-knockout cells, phosphorylated SGK1 at Ser(422). Consistent with mTORC1 not regulating SGK1, immunoprecipitated mTORC1 failed to phosphorylate SGK1 at Ser(422), under conditions which it phosphorylated the hydrophobic motif of S6K. Moreover, rapamycin treatment of HEK (human embryonic kidney)-293, MCF-7 or HeLa cells suppressed phosphorylation of S6K, without affecting SGK1 phosphorylation or activation. The findings of the present study indicate that mTORC2, but not mTORC1, plays a vital role in controlling the hydrophobic motif phosphorylation and activity of SGK1. Our findings may explain why in previous studies phosphorylation of substrates, such as FOXO (forkhead box O), that could be regulated by SGK, are reduced in mTORC2-deficient cells. The results of the present study indicate that NDRG1 phosphorylation represents an excellent biomarker for mTORC2 activity.  相似文献   

6.
Qi Z  Bu X  Huang P  Zhang N  Han S  Fang L  Li J 《Neurochemical research》2007,32(9):1450-1459
Our previous studies have demonstrated that hypoxic precondition (HPC) increased membrane translocation of protein kinase C isoforms and decreased phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the brain of mice. The goal of this study was to determine the involvement of p90 KD ribosomal S6 kinase (RSK) in cerebral HPC of mice. Using Western-blot analysis, we found that the levels of membrane/nuclear translocation, but not protein expression of RSK increased significantly in the frontal cortex and hippocampus of HPC mice. In addition, we found that the phosphorylation levels of RSK at the Ser227 site (a PDK1 phosphorylation site), but not at the Thr359/Ser363 sites (ERK1/2 phosphorylated sites) increased significantly in the brain of HPC mice. Similar results were confirmed by an immunostaining study of total RSK and phospho-Ser227 RSK. To further define the cellular populations to express phospho-Ser227 RSK, we found that the expression of phospho-Ser227 RSK co-localized with neurogranin, a neuron-specific marker, in cortex and hippocampus of HPC mice by using double-labeled immunofluorescent staining method. These results suggest that increased RSK membrane/nuclear translocation and PDK1 mediated neuron-specific phosphorylation of RSK at Ser227 might be involved in the development of cerebral HPC of mice.  相似文献   

7.
N-myc downstream regulated gene 1 (NDRG1) is an intriguing metastasis suppressor protein, which plays an important role in suppressing multiple oncogenic signaling pathways. Interestingly, multiple isoforms of NDRG1 have been identified, although the molecular mechanisms involved in their generation remains elusive. Herein, we demonstrate the role of two mechanisms involving autophagic and proteasomal machinery as part of an intricate system to generate different NDRG1 isoforms. Examining multiple pancreatic cancer cell-types using immunoblotting demonstrated three major isoforms of NDRG1 at approximately 41-, 46- and 47-kDa. The top NDRG1 band at 47-kDa was shown to be processed by the proteasome, followed by autophagic metabolism of the middle NDRG1 band at 46-kDa. The role of the proteasomal and autophagic pathways in NDRG1 processing was further confirmed by co-localization analysis of confocal images using PSMD9 and LC3 as classical markers of these respective pathways. All NDRG1 isoforms were demonstrated to be, at least in part, phosphorylated forms of the protein. Inhibition of two well-characterized upstream kinases of NDRG1, namely GSK3β and SGK1, resulted in decreased levels of the top NDRG1 band. Studies demonstrated that inhibition of GSK3β decreased levels of the top 47-kDa NDRG1 band, independent of its kinase activity, and this effect was not mediated via the proteasomal pathway. In contrast, the decrease in the top NDRG1 band at 47-kDa after SGK1 inhibition, was due to suppression of its kinase activity. Overall, these studies elucidated the complex and intricate regulatory pathways involving both proteasomal and autophagic processing of the metastasis suppressor protein, NDRG1.  相似文献   

8.
Resistance to anti-estrogen therapy is a major clinical concern in treatment of breast cancer. Estrogen-independent phosphorylation of estrogen receptor α, specifically on Ser167, is one of the contributing causes to development of resistance, and a prognostic marker for the disease. Here, we dissect the signaling pathways responsible for Ser167 phosphorylation. We report that the mTOR/S6K1 and MAPK/RSK contribute non-overlapping inputs into ERα activation via Ser167 phosphorylation. This cooperation may be targeted in breast cancer treatment by a combination of mTOR and MAPK inhibitors.  相似文献   

9.
BACKGROUND: Protein kinase B (PKB) is activated by phosphorylation of Thr308 and of Ser473. Thr308 is phosphorylated by the 3-phosphoinositide-dependent protein kinase-1 (PDK1) but the identity of the kinase that phosphorylates Ser473 (provisionally termed PDK2) is unknown. RESULTS: The kinase domain of PDK1 interacts with a region of protein kinase C-related kinase-2 (PRK2), termed the PDK1-interacting fragment (PIF). PIF is situated carboxy-terminal to the kinase domain of PRK2, and contains a consensus motif for phosphorylation by PDK2 similar to that found in PKBalpha, except that the residue equivalent to Ser473 is aspartic acid. Mutation of any of the conserved residues in the PDK2 motif of PIF prevented interaction of PIF with PDK1. Remarkably, interaction of PDK1 with PIF, or with a synthetic peptide encompassing the PDK2 consensus sequence of PIF, converted PDK1 from an enzyme that could phosphorylate only Thr308 of PKBalpha to one that phosphorylates both Thr308 and Ser473 of PKBalpha in a manner dependent on phosphatidylinositol (3,4,5) trisphosphate (PtdIns(3,4,5)P3). Furthermore, the interaction of PIF with PDK1 converted the PDK1 from a form that is not directly activated by PtdIns(3,4,5)P3 to a form that is activated threefold by PtdIns(3,4,5)P3. We have partially purified a kinase from brain extract that phosphorylates Ser473 of PKBalpha in a PtdIns(3,4,5)P3-dependent manner and that is immunoprecipitated with PDK1 antibodies. CONCLUSIONS: PDK1 and PDK2 might be the same enzyme, the substrate specificity and activity of PDK1 being regulated through its interaction with another protein(s). PRK2 is a probable substrate for PDK1.  相似文献   

10.
Mechanism of activation of protein kinase B by insulin and IGF-1.   总被引:53,自引:1,他引:52       下载免费PDF全文
Insulin activated endogenous protein kinase B alpha (also known as RAC/Akt kinase) activity 12-fold in L6 myotubes, while after transfection into 293 cells PKBalpha was activated 20- and 50-fold in response to insulin and IGF-1 respectively. In both cells, the activation of PKBalpha was accompanied by its phosphorylation at Thr308 and Ser473 and, like activation, phosphorylation of both of these residues was prevented by the phosphatidylinositol 3-kinase inhibitor wortmannin. Thr308 and/or Ser473 were mutated to Ala or Asp and activities of mutant PKBalpha molecules were analysed after transfection into 293 cells. The activity of wild-type and mutant PKBalpha was also measured in vitro after stoichiometric phosphorylation of Ser473 by MAPKAP kinase-2. These experiments demonstrated that activation of PKBalpha by insulin or insulin-like growth factor-1 (IGF-1) results from phosphorylation of both Thr308 and Ser473, that phosphorylation of both residues is critical to generate a high level of PKBalpha activity and that the phosphorylation of Thr308 in vivo is not dependent on phosphorylation of Ser473 or vice versa. We propose a model whereby PKBalpha becomes phosphorylated and activated in insulin/IGF-1-stimulated cells by an upstream kinase(s).  相似文献   

11.
The carboxyl-terminal domain (CTD) of the p90 ribosomal S6 kinases (RSKs) is an important regulatory domain in RSK and a model for kinase regulation of FXXFXF(Y) motifs in AGC kinases. Its properties had not been studied. We reconstituted activation of the CTD in Escherichia coli by co-expression with active ERK2 mitogen-activated protein kinase (MAPK). GST-RSK2-(aa373-740) was phosphorylated in the P-loop (Thr(577)) by MAPK, accompanied by increased phosphorylation on the hydrophobic motif site, Ser(386). Activated GST-RSK2-(aa373-740) phosphorylates synthetic peptides based on Ser(386). The peptide RRQLFRGFSFVAK, which was termed CTDtide, was phosphorylated with K(m) and V(max) values of approximately 140 microm and approximately 1 micromol/min/mg, respectively. Residues Leu at p -5 and Arg at p -3 are important for substrate recognition, but a hydrophobic residue at p +4 is not. RSK2 CTD is a much more selective peptide kinase than MAPK-activated protein kinase 2. CTDtide was used to probe regulation of hemagglutinin-tagged RSK proteins immunopurified from epidermal growth factor-stimulated BHK-21 cells. K100A but not K451A RSK2 phosphorylates CTDtide, indicating a requirement for the CTD. RSK2-(aa1-389) phosphorylates the S6 peptide, and this activity is inactivated by S386A mutation, but RSK2-(aa1-389) does not phosphorylate CTDtide. In contrast, RSK2-(aa373-740) containing only the CTD phosphorylates CTDtide robustly. Thus, CTDtide is phosphorylated by the CTD but not the NH(2)-terminal domain (NTD). Epidermal growth factor activates the CTD and NTD in parallel. Activity of the CTD for peptide phosphorylation correlates with Thr(577) phosphorylation. CTDtide activity is constrained in full-length RSK2. Interestingly, mutation of the conserved lysine in the ATP-binding site of the NTD completely eliminates S6 kinase activity, but a similar mutation of the CTD does not completely ablate kinase activity for intramolecular phosphorylation of Ser(386), even though it greatly reduces CTDtide activity. The standard lysine mutation used routinely to study kinase functions in vivo may be unsatisfactory when the substrate is intramolecular or in a tight complex.  相似文献   

12.
The nonapeptide DTDSEEEIR, corresponding to amino acid residues 78-86 of calmodulin, was synthesized, and its kinetics of phosphorylation by casein kinase 2 was examined. In the presence of 4 microM polylysine, the phosphorylation rate by casein kinase 2 was 16 times greater than that of synthetic substrate peptide RRREEETEEE reported previously, and almost 1 mol of 32p was incorporated per mol of nonapeptide in 60 min at 37 degrees C. The peptide was not phosphorylated by any other protein kinase. The Thr residue was phosphorylated by casein kinase 2, but Ser was not. The Km value of casein kinase 2 for the nonapeptide was 60 microM, comparable to that of casein, and Vmax for the nonapeptide was 4 times greater than that for casein. Addition of polylysine did not affect the Km value but markedly increased Vmax.  相似文献   

13.
The members of p90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of MAPK/ERK pathway that regulate diverse cellular processes including cell growth, proliferation and survival. In carcinogenesis, RSKs are thought to modulate cell motility, invasion and metastasis. Herein, we have studied an involvement of RSKs in FGF2/FGFR2-driven behaviours of mammary epithelial and breast cancer cells. We found that both silencing and inhibiting of FGFR2 attenuated phosphorylation of RSKs, whereas FGFR2 overexpression and/or its stimulation with FGF2 enhanced RSKs activity. Moreover, treatment with ERK, Src and p38 inhibitors revealed that p38 kinase acts as an upstream RSK2 regulator. We demonstrate for the first time that in FGF2/FGFR2 signalling, p38 but not MEK/ERK, indirectly activated RSK2 at Tyr529, which facilitated phosphorylation of its other residues (Thr359/Ser363, Thr573 and Ser380). In contrast to FGF2-triggered signalling, inhibition of p38 in the EGF pathway affected only RSK2-Tyr529, without any impact on the remaining RSK phosphorylation sites. p38-mediated phosphorylation of RSK2-Tyr529 was crucial for the transactivation of residues located at kinase C-terminal domain and linker-region, specifically, in the FGF2/FGFR2 signalling pathway. Furthermore, we show that FGF2 promoted anchorage-independent cell proliferation, formation of focal adhesions and cell migration, which was effectively abolished by treatment with RSKs inhibitor (FMK). These indicate that RSK2 activity is indispensable for FGF2/FGFR2-mediated cellular effects. Our findings identified a new FGF2/FGFR2-p38-RSK2 pathway, which may play a significant role in the pathogenesis and progression of breast cancer and, hence, may present a novel therapeutic target in the treatment of FGFR2-expressing tumours.  相似文献   

14.
In myocardium, the 90-kDa ribosomal S6 kinase (RSK) is activated by diverse stimuli and regulates the sarcolemmal Na(+)/H(+) exchanger through direct phosphorylation. Only limited information is available on other cardiac RSK substrates and functions. We evaluated cardiac myosin-binding protein C (cMyBP-C), a sarcomeric regulatory phosphoprotein, as a potential RSK substrate. In rat ventricular myocytes, RSK activation by endothelin 1 (ET1) increased cMyBP-C phosphorylation at Ser(282), which was inhibited by the selective RSK inhibitor D1870. Neither ET1 nor D1870 affected the phosphorylation status of Ser(273) or Ser(302), cMyBP-C residues additionally targeted by cAMP-dependent protein kinase (PKA). Complementary genetic gain- and loss-of-function experiments, through the adenoviral expression of wild-type or kinase-inactive RSK isoforms, confirmed RSK-mediated phosphorylation of cMyBP-C at Ser(282). Kinase assays utilizing as substrate wild-type or mutated (S273A, S282A, S302A) recombinant cMyBP-C fragments revealed direct and selective Ser(282) phosphorylation by RSK. Immunolabeling with a Ser(P)(282) antibody and confocal fluorescence microscopy showed RSK-mediated phosphorylation of cMyBP-C across the C-zones of sarcomeric A-bands. In chemically permeabilized mouse ventricular muscles, active RSK again induced selective Ser(282) phosphorylation in cMyBP-C, accompanied by significant reduction in Ca(2+) sensitivity of force development and significant acceleration of cross-bridge cycle kinetics, independently of troponin I phosphorylation at Ser(22)/Ser(23). The magnitudes of these RSK-induced changes were comparable with those induced by PKA, which phosphorylated cMyBP-C additionally at Ser(273) and Ser(302). We conclude that Ser(282) in cMyBP-C is a novel cardiac RSK substrate and its selective phosphorylation appears to regulate cardiac myofilament function.  相似文献   

15.
Identifying isoform-specific inhibitors for closely related kinase family members remains a substantial challenge. The necessity for achieving this specificity is exemplified by the RSK family, downstream effectors of ERK1/2, which have divergent physiological effects. The natural product, SL0101, a flavonoid glycoside, binds specifically to RSK1/2 through a binding pocket generated by an extensive conformational rearrangement within the RSK N-terminal kinase domain (NTKD). In modelling experiments a single amino acid that is divergent in RSK3/4 most likely prevents the required conformational rearrangement necessary for SL0101 binding. Kinetic analysis of RSK2 association with SL0101 and its derivatives identified that regions outside of the NTKD contribute to stable inhibitor binding. An analogue with an n-propyl-carbamate at the 4” position on the rhamnose moiety was identified that forms a highly stable inhibitor complex with RSK2 but not with RSK1. These results identify a SL0101 modification that will aid the identification of RSK2 specific inhibitors.  相似文献   

16.
A substrate for protein kinase B (PKB)alpha in HeLa cell extracts was identified as methyltransferase-like protein-1 (METTL1), the orthologue of trm8, which catalyses the 7-methylguanosine modification of tRNA in Saccharomyces cerevisiae. PKB and ribosomal S6 kinase (RSK) both phosphorylated METTL1 at Ser27 in vitro. Ser27 became phosphorylated when HEK293 cells were stimulated with insulin-like growth factor-1 (IGF-1) and this was prevented by inhibition of phosphatidyinositol 3-kinase. The IGF-1-induced Ser27 phosphorylation did not occur in 3-phosphoinositide-dependent protein kinase-1 (PDK1)-deficient embryonic stem cells, but occurred normally in PDK1[L155E] cells, indicating that the effect of IGF-1 is mediated by PKB. METTL1 also became phosphorylated at Ser27 in response to phorbol-12-myristate 13-acetate and this was prevented by PD 184352 or pharmacological inhibition of RSK. Phosphorylation of METTL1 by PKB or RSK inactivated METTL1 in vitro, as did mutation of Ser27 to Asp or Glu. Expression of METTL1[S27D] or METTL1[S27E] did not rescue the growth phenotype of yeast lacking trm8. In contrast, expression of METTL1 or METTL1[S27A] partially rescued growth. These results demonstrate that METTL1 is inactivated by PKB and RSK in cells, and the potential implications of this finding are discussed.  相似文献   

17.
18.
N-alpha-tosyl-l-phenylalanyl chloromethyl ketone (TPCK) has anti-tumorigenic properties, but its direct cellular targets are unknown. Previously, we showed TPCK inhibited the PDKl-dependent AGC kinases RSK, Akt and S6K1 without inhibiting PKA, ERK1/2, PI3K, and PDK1 itself. Here we show TPCK-inhibition of the RSK-related kinases MSK1 and 2, which can be activated independently of PDK1. Mass spectrometry analysis of RSK1, Aktl, S6K1 and MSK1 immunopurified from TPCK-treated cells identified TPCK adducts on cysteines located in conserved activation loop Phenylalanine-Cysteine (Phe-Cys) motifs. Mutational analysis of the Phe-Cys residues conferred partial TPCK resistance. These studies elucidate a primary mechanism by which TPCK inhibits several AGC kinases, inviting consideration of TPCK-like compounds in chemotherapy given their potential for broad control of cellular growth, proliferation and survival.  相似文献   

19.
The Rictor/mTOR complex plays a pivotal role in a variety of cellular functions including cellular metabolism, cell proliferation and survival by phosphorylating Akt at Ser473 to fully activate the Akt kinase. However, its upstream regulatory pathways as well as whether it has additional function(s) remain largely unknown. We recently reported that Rictor contains a novel ubiquitin E3 ligase activity by forming a novel complex with Cullin-1, but not with other Cullin family members. Furthermore, we identified SGK1 as its downstream target. Interestingly, Rictor, but not Raptor or mTOR, promotes SGK1 ubiquitination. As a result, SGK1 expression is elevated in Rictor--/-- MEFs. We further defined that as a feedback mechanism, Rictor can be phosphorylated by multiple AGC family kinases including Akt, S6K and SGK1. Phosphorylation of Rictor at the Thr1135 site did not affect its kinase activity towards phosphorylating its conventional substrates including Akt and SGK1. On the other hand, it disrupted the interaction between Rictor and Cullin-1. Consequently, T1135E Rictor was defective in promoting SGK1 ubiquitination and destruction. This finding further expands our knowledge of Rictor’s function. Furthermore, our work also illustrates that Rictor E3 ligase activity could be governed by specific signaling kinase cascades, and that misregulation of this process might contribute to SGK overexpression which is frequently observed in various types of cancers.  相似文献   

20.
RSK in tumorigenesis: Connections to steroid signaling   总被引:1,自引:0,他引:1  
The Ser/Thr kinase family, RSK, has been implicated in numerous types of hormone-dependent and -independent cancers. However, there has been little consideration of RSKs as downstream mediators of steroid hormone non-genomic effects or of their ability to facilitate steroid receptor-mediated gene expression. Steroid hormone signaling can directly stimulate the MEK/ERK/RSK pathway to regulate cellular proliferation and survival in transformed cells. To date, multiple mechanisms of RSK and steroid hormone receptor-mediated proliferation/survival have been elucidated. For example, RSK enhances proliferation of breast and prostate cancer cells via its ability to control the levels of the estrogen receptor co-activator, cyclin D1. While in lung and other tumors RSK may control apoptosis via estrogen-mediated regulation of mitochondrial integrity. Thus the RSKs could be important anti-cancer therapeutic targets in many different transformed tissues. The recent discovery of RSK-specific inhibitors will advance our current understanding of RSK in transformation and drive these studies into animal and clinical models. In this review we explore the mechanisms associated with RSK in tumorigenesis and their relationship to steroid hormone signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号