首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of delta 9-tetrahydrocannabinol (THC) and ethidium bromide (EB) on the developmental life cycle and DNA metabolism of Volvox carteri have been investigated. THC, previously shown to interfere specifically with cytoplasmic DNA (cDNA) in this organism, was used at different concentrations and at different times during the life cycle. The morphological consequences observed were found to be dependent on the nature and time of treatment. This study also indicates that ethidium bromide induces degradatin of cDNA similar to that mediated by THC. However, unlike THC, it also causes the cessation of nuclear DNA synthesis. The consequences of EB treatment on morphological development are different from those observed with THC. A correlatin of these observations with the biochemical results presented suggests possible models in which the amounts and proportions of nuclear and cytoplasmic DNA play a role in the regulation of embryogenesis in this organism.  相似文献   

2.
Summary The composition and synthesis of DNA in synchronous cultures of Chlorella pyrenoidosa strain 211/8b has been investigated. Analytical CsCl density gradient centrifugation gave a homogenous major DNA component with a (G+C) content of 51% and a minor component containing 28% (G+C). The (G+C) contents derived from melting profiles were 2–3% lower. A second minor component with approximately 41% (G+C) content was inferred from banding patterns of labelled DNA in preparative CsCl density gradients. 14C-uracil was readily incorporated into the pyrimidine moieties of the major (nuclear) DNA between the 10th and 18th hour after beginning of the light period, but not at any other time. 14C-uracil incorporation into the minor (satellite) component was low but continuous throughout the whole cell cycle. The incorporation is correlated with an increase in the proportion of satellite DNA from 6% up to 20% during the time when no nuclear DNA replication takes place. The results suggest that different regulatory mechanisms exist for the nuclear and for satellite DNA synthesis.  相似文献   

3.
The green alga Volvox represents the simplest multicellular organism: Volvax is composed of only two cell types, somatic and reproductive. Volvox, therefore, is an attractive model system for studying various aspects of multicellularity. With the biolistic nuclear transformation of Volvox carteri, the powerful molecular genetic manipulation of this organism has been established, but applications have been restricted to an auxotrophic mutant serving as the DNA recipient. Therefore, a dominant selectable marker working in all strains and mutants of this organism is required. Among several gene constructs tested, the most advantageous results were obtained with a chimeric gene composed of the coding sequence of the bacterial ble gene, conferring resistance to the antibiotic zeocin, modified with insertions of two endogenous introns from the Volvox arylsulfatase gene and fused to 5' and 3' untranslated regions from the Volvox beta 2-tubulin gene. In the most suitable plasmid used, the gene dosage was increased 16-fold by a technique that allows exponential multiplication of a DNA fragment. Co-transformation of this plasmid and a non-selectable plasmid allowed the identification of zeocin resistant transformants with nuclear integration of both selectable and non-selectable plasmids. Stable expression of the ble gene and of genes from several non-selectable plasmids is demonstrated. The modified ble gene provides the first dominant marker for transformation of both wild-type and mutant strains of Volvox.  相似文献   

4.
SYNOPSIS. Methods for the isolation and purification of DNA from the intraerythrocytic stages of the avian malaria parasite Plasmodium lophurae are described. The DNA of P. lophurae was found to have a 19 mole-percent guanine plus cytosine (G+C) composition as determined by melting temperature and density measurements in CsCl gradients, whereas that of the host cell nucleus was 35 molepercent G+C. Synthesis of DNA by P. lophurae was studied by following the incorporation of P32 during the in vitro growth of plasmodia in infected cell suspension cultures. DNA synthesis was linear during the multiple nuclear divisions of a single growth cycle in highly synchronous cultures. Separation of P32 labeled parasite DNA from the DNA of the duck erythrocyte on CsCl gradients showed that only parasite DNA was synthesized.  相似文献   

5.
Three thermophilic strains of chemolithoautotrophic Fe(III)-reducers were isolated from mixed sediment and water samples (JW/KA-1 and JW/KA-2(T): Calcite Spring, Yellowstone N.P., WY, USA; JW/JH-Fiji-2: Savusavu, Vanu Levu, Fiji). All were Gram stain positive rods (approximately 0.5 x 1.8 microm). Cells occurred singly or in V-shaped pairs, and they formed long chains in complex media. All utilized H(2) to reduce amorphous iron (III) oxide/hydroxide to magnetite at temperatures from 50 to 75 degrees C (opt. approximately 73 degrees C). Growth occurred within the pH(60C) range of 6.5-8.5 (opt. pH(60C) 7.1-7.3). Magnetite production by resting cells occurred at pH(60C) 5.5-10.3 (opt. 7.3). The iron (III) reduction rate was 1.3 mumol Fe(II) produced x h(-1) x ml(-1) in a culture with 3 x 10(7) cells, one of the highest rates reported. In the presence or absence of H(2), JW/KA-2(T) did not utilize CO. The G + C content of the genomic DNA of the type strain is 52.7 +/- 0.3 mol%. Strains JW/KA-1 and JW/KA-2(T) each contain two different 16S rRNA gene sequences. The 16S rRNA gene sequences from JW/KA-1, JW/KA-2(T), or JW/JH-Fiji-2 possessed >99% similarity to each other but also 99% similarity to the 16S rRNA gene sequence from the anaerobic, thermophilic, hydrogenogenic CO-oxidizing bacterium 'Carboxydothermus restrictus' R1. DNA-DNA hybridization between strain JW/KA-2(T) and strain R1(T) yielded 35% similarity. Physiological characteristics and the 16S rRNA gene sequence analysis indicated that the strains represent two novel species and are placed into the novel genus Thermolithobacter within the phylum 'Firmicutes'. In addition, the levels of 16S rRNA gene sequence similarity between the lineage containing the Thermolithobacter and well-established members of the three existing classes of the 'Firmicutes' is less than 85%. Therefore, Thermolithobacter is proposed to constitute the first genus within a novel class of the 'Firmicutes', Thermolithobacteria. The Fe(III)-reducing Thermolithobacter ferrireducens gen. nov., sp. nov. is designated as the type species with strain JW/KA-2(T) (ATCC 700985(T), DSM 13639(T)) as its type strain. Strain R1(T) is the type strain for the hydrogenogenic, CO-oxidizing Thermolithobacter carboxydivorans sp. nov. (DSM 7242(T), VKM 2359(T)).  相似文献   

6.
The binucleate dinoflagellates Glenodinium (Peridinium) foliaceum Stein and Peridinium balticum (Levander) Lemmermann were found to contain two major buoyant density classes of DNA. The heavier peak (1.730 g/cm3) was derived from the "dinokaryotic" nucleus and the lighter peak (1.706 g/cm3) from the "endosymbiont" nucleus and this allowed for the fractionation of G. foliaceum DNA in CsCl/EtBr density gradients. An initial CsCl/Hoechst Dye gradient removed a minor A-T rich satellite species which was identified as plastid DNA with a size of about 100-106 kb. Analysis of the nuclear DNA by agarose gel electrophoresis and renaturation studies showed that the endosymbiont nucleus lacked amplified gene-sized DNA molecules, however, this nucleus did have a comparatively high level of DNA. The total amount of DNA per cell and the relative contributions of the two nuclei appeared to vary between two strains of G. foliaceum (75 pg/cell in CCAP strain and 58 pg in UTEX strain). The only strain of P. balticum examined contained 73 pg cell. These results are discussed in relation to the status and possible functioning of the endosymbiont nucleus and the idea that these dinoflagellates provide model systems with which to study the evolution of plastids.  相似文献   

7.
Prolactin (PRL) gene expression in three strains of GH cells (rat pituitary tumor cells) has been quantitated by measurement of: (a) intracellular and extracellular PRL, (b) cytoplasmic translatable PRL-specific mRNA (mRNAPRL), and (c) molecular hybridization of cytoplasmic poly(A) RNA to cDNAPRL (DNA complementary to mRNAPRL). Three GH cell lines utilized in this investigation were a PRL-producing (PRL+) strain, GH4C1, a PRL nonproducing 5-bromo-deoxyuridine resistnat (PRL- BrdUrdr) strain, F1BGH12C1, and a new strain, 928-9b, derived by fusion of PRL+ cells with a nuclear monolayer of the PRL-, BrdUrdr GH cell strain. PRL production is a characteristic of 928-9b cells, but the level of PRL production (2-4 micrograms/mg protein/24 h) is much lower than that of the PRL+ strain, GH4C1 (15-25 micrograms/mg protein/24 h). Levels of cytoplasmic translatable mRNAPRL and cytoplasmic PRL-RNA sequences quantitated with a cDNAPRL probe were also much lower in 928-9b as compared to the PRL+ parent. PRL-RNA sequences could not be detected in the PRL- strain. Thyrotopin-releasing hormone (TRH) stimulates PRL synthesis about threefold and inhibit a growth hormone (GH) synthesis 72% in the PRL+ strain. TRH has no effect on the synthesis of either PRL or GH in the 928-9b strain, although TRH receptors could be detected in these cells. Stimulation of PRL synthesis in the PRL+ strain by TRH could be correlated with increases in levels of cytoplasmic translatable mRNAPRL and increases in cytoplasmic PRL-RNA sequences. These results demonstrate that the graded expression of the PRL gene at the basal level, and in response to TRH, is caused by the regulated production of specific mRNA, i.e., mRNAPRL in these three GH cell strains.  相似文献   

8.
Rhinovirus type 14 (RV14) incuced a transient statistically significant stimulation in synthesis of DNA which appeared between 0 and 3 h post-inoculation in the cytoplasm of high density monolayer cultures of KB cells. Newly synthesized DNA was measured by incorporation of [3H] thymidine into acid-insoluble DNAase-sensitive material and the cytoplasmic location established by cell fractionation and electron microscope radioautographic methods. A minimum of 10 plaque-forming units per cell of RV14 was required to stimulate DNA synthesis which did not occur above 34.5 degrees C, a temperature optimal for virus replication. Cytoplasmic DNA taken from RV14-infected or control cells could be differentiated from the bulk of cell (nuclear) DNA by several criteria, including: (1) RV14 induction of synthesis; (2) lower buoyant density and greater heterogeneity in CsCl and ethidium bromide/CsCl gradients; and (3) a different kinetic complexity upon reannealing. The Cot 1/2 value of cytoplasmic DNA, calclated as 50--100 from reassociation profiles, was about 10-fold less complex than the Cot 1/2 value of nuclear DNA (800-1000). These data rule out the possibility that cytoplasmic DNA arises by random breakage of nuclear DNA during cell disruption and extraction and are compatible with the hypothesis that inoculation of KB cells with RV14 results in stimulation of synthesis of a specific class of cell DNA which is detected in the cytoplasm.  相似文献   

9.
10.
Cytoplasmic DNA from mouse myeloma cells comprised between 1% and 2% of the total cellular DNA. Detergent-prepared cytoplasmic lysate consisted mainly of 8-S and 22-S species. While these DNA species were present in the 13000 times g pellet of the detergent-prepared cytoplasmic lysate, only the light DNA species was present in the 13000 times g supernatant fraction. In neutral CsCl gradients the DNA of both cytoplasmic fractions had a buoyant density of 1700 g/cm3, which is identical to that of nuclear DNA. The similarity between the cytoplasmic and nuclear DNA was also demonstrated by analysis on alkaline CsCl gradients. A small proportion of closed-circular DNA, presumably of mitochondrial origin, was demonstrated only in cytoplasmic fraction obtained from mechanically disrupted cells and not in detergent-prepared cytoplasmic lysate. It was found that poly (A)-containing mRNA and 28-S ribosomal RNA hybridized to about the same extent to the cytoplasmic DNA as compared to nuclear DNA. The results indicate that most of the cytoplasmic DNA in myeloma cells is similar to nuclear DNA and does not consist of mitochondrial DNA.  相似文献   

11.
Amoeba proteus synthesizes DNA in G2 phase of the cell cycle upon feeding after starvation. The characteristics of the DNA synthesized in G2 have been studied by microscope photometry of individual Feulgen-stained nuclei and by buoyant density centrifugation of nuclear DNA in CsCl. Amoeba nuclei were found to contain 42.8 pg of DNA. This DNA bands in CsCl at a density of 1.693 g/cm3 with a satellite at 1.714 g/cm3 which makes up 24% of nuclear DNA. DNA from whole cells has an additional non-nuclear satellite at 1.726 g/cm3. When cells are starved and re-fed with food labeled with [3H]thymidine, the DNA synthesized is predominantly the 1.714 satellite. The amount of DNA synthesized in G2 is small since there is no measurable difference in Feulgen dye binding to nuclei of starved vs starved and re-fed cells. The data suggest that refeeding induces a resumption of late S phase DNA synthesis, or the preferential synthesis of specific DNA sequences such as rRNA genes.  相似文献   

12.
Double-stranded nucleic acids from a strain of Penicillium chrysogenum containing RNA viruses were isolated by agarose-gel filtration, and separated into DNA and double-stranded RNA fractions by agarose-gel chromatography in 2.5m-NaCl. The DNA fraction contained less than 1% alkali-labile polynucleotides, and sedimented homogeneously at 8-10S in alkaline sucrose gradients. In CsCl gradients it tended to band in the density region of 1.66-1.72g/ml. It had a ;melting' temperature (T(m)) of 75 degrees C in 0.015m-NaCl-0.0015m-trisodium citrate, corresponding to 51.5mol% of G+C. The double-stranded RNA fraction did not contain detectable DNA. It could not band in CsCl up to a density of 1.78g/ml, and mainly consisted of a 14-15S RNA species with a T(m) of 88.5 degrees C in the above solvent, and a G+C content of 49.3 mol%.  相似文献   

13.
The nuclear DNA content during normal vegetative growth and division has been examined in three species of Volvocales, Chlamydomonas reinhardtii Dangeard, Pandorina morum Bory, and Volvox carteri f. nagariensis Iyengar. The results are consistent with the nuclear cycle reported in the literature for Eudorina. Nuclear DNA content does not increase during the prolonged cell growth phase. At the time of colony formation, nuclear DNA doubles, the nucleus divides, and this alternation continues until the final 2n complement of progeny nuclei is formed. The 4- and 8-nucleate stages of dividing gonidia of V. carteri have a nuclear DNA content in the same range as the somatic cells; they are not polyploid or polytene. Four normal clones of Pandorina, having 2, 5 or 12 chromosomes, all had similar amounts of DNA per nucleus, suggesting that the species has a nuclear genome of fairly constant size rather than consisting of many strains representing a polyploid series. One unique clone, a hybrid with double the chromosome number of either its parents, had twice as much DNA as the normal clones. The Feulgen spectrophotometric method is sufficiently sensitive to detect 2-fold differences in DNA content at the level of 2 × 10?13 g of DNA /nucleus, and its use avoids the complications associated with the presence of organelle DNA.  相似文献   

14.
Summary The deoxyribonucleic acids of 70 hyphomicrobia were examined at equilibrium in neutral CsCl density gradients. The guanine plus cytosine (%G+C) content was estimated to range from 59.2 to 66.8% G+C. The strains could be divided into three groups with different base composition of their DNA; 61.0±1.1%, 64.1±0.6%, and 66.5±0.6% G+C. The values are compared with those for the base composition of DNA of a number of phototrophic, budding bacteria.  相似文献   

15.
Ribosomal DNA in spores of Physarum polycephalum   总被引:2,自引:0,他引:2  
DNA was isolated from plasmodia, spores and newly hatched amoebae of the slime mould Physarum polycephalum. The DNA preparations were fractionated in CsCl gradients and each fraction hybridised to combined 19 S + 26 S rRNA. In all three DNA preparations hybridisation was found to be limited to satellite DNA (rho = 1.714 g/cm3) and at saturation was found to reach a level of 0.16--0.18 % of total DNA. The main band of nuclear DNA (rho = 1.702 g/cm3) did not hybridise appreciably. Further experiments using analytical CsCl gradients revealed that the ratio of satellite to main band DNA was similar in all three preparations. It is concluded that the genes for ribosomal RNA are equally reiterated in spores, hatching amoebae and in plasmodia. They appear to be similarly organised in all stages of the life cycle examined so far.  相似文献   

16.
The morphology of the bacterial endosymbiont of Volvox carteri Stein (Clone KA-1) was studied with the electron microscope. Endosymbionts were found in the cytoplasm of somatic cells, gonidia and sperm, but never in nuclei, chloroplasts or mitochondria. DNA preparations contained, an extra DNA species assumed to be endosymbiont DNA. Attempts to isolate the endosymbionts or to “cure” the alga with antibiotics were unsuccessful. All progeny from crosses of infected and noninfected strains contained the endosymbiont.  相似文献   

17.
DNA isolated from purified nuclei of Polytoma obtusum has a buoyant density of 1.711 g/ml in CsCl, a Tm of 91.3° C in SSC, and a G + C content of 52.5% as determined by base composition analysis. Thermal dissociation and reassociation studies indicated that this nuclear DNA contains a considerable amount of heterogeneity. Under appropriate reannealing conditions for denatured DNA, about 15% of the DNA reannealed to form a satellite peak at a density of 1.711 g/ml within one hour. Native DNA fractions of different average buoyant densities, ranging from 1.723 to 1.708 g/ml were also obtained in a preparative CsCl gradient, indicating the presence of intermolecular heterogeneity at a molecular size of 8.5×106 daltons. The nuclear DNA reassociated as three distinct classes. The very fast species constituted about 20 % of the total hyperchromicity, the class of intermediate rate comprised roughly 10% of the nuclear DNA, while the remaining 70% consisted of unique sequences. The haploid genome set was estimated by renaturation kinetics studies to contain 5.0×1010 daltons of DNA or 7.5×107 nucleotide pairs. The analytical complexity of the total nuclear genome was found to be 9.35×1010 daltons, thus indicating that vegetative cells of P. obtusum are diploid.  相似文献   

18.
Cheng Q  Hallmann A  Edwards L  Miller SM 《Gene》2006,371(1):112-120
The green alga Volvox carteri possesses several thousand cells, but just two cell types: large reproductive cells called gonidia, and small, biflagellate somatic cells. Gonidia are derived from large precursor cells that are created during embryogenesis by asymmetric cell divisions. The J domain protein GlsA (Gonidialess A) is required for these asymmetric divisions and is believed to function with an Hsp70 partner. As a first step toward identifying this partner, we cloned and characterized V. carteri hsp70A, which is orthologous to HSP70A of the related alga Chlamydomonas reinhardtii. Like HSP70A, V. carteri hsp70A contains multiple heat shock elements (HSEs) and is highly inducible by heat shock. Consistent with these properties, Volvox transformants that harbor a glsA antisense transgene that is driven by an hsp70A promoter fragment express Gls phenotypes that are temperature-dependent. hsp70A appears to be the only gene in the genome that encodes a cytoplasmic Hsp70, so we conclude that Hsp70A is clearly the best candidate to be the chaperone that participates with GlsA in asymmetric cell division.  相似文献   

19.
Two conflicting hypotheses for chromosome replication in the Volvocaceae, one postulating multiple rounds of replication prior to cell division (endoreduplication) and the other claiming a canonical sequence of one round of nuclear DNA replication preceding each cell division, have been tested experimentally. Competitive PCR of the single-copy actin gene (target) of Volvox carteri f. nagariensis Iyengar and a shortened gene version (competitor) containing the same primer binding sites were used to assess the genome equivalents present in a given number of cells. Determining the molar ratio of the PCR products generated from target DNA (extracted from a known number of cells) and defined numbers of competitor molecules revealed that Volvox embryos between the one- and 16-cell stages possess an average of between one and two—but never more than two—copies of the actin gene. This led us to conclude that the number of genome equivalents per nucleus in dividing Volvox embryos varies only between one and two and that, unlike the case predicted by endoreduplication, the nuclear genome undergoes only one round of replication prior to each cell division.  相似文献   

20.
A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4 degrees C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases. These studies show that chromosomal DNA replication in isolated nuclei is mediated by stable replication forks that are assembled in a temporally specific fashion in vivo and indicate that the synthetic mechanisms observed in vitro accurately reflect those operative in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号