首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A combination of cytogenetic and molecular biology techniques were used to study the molecular composition and organisation of the pericentromeric regions of house mouse metacentric chromosomes, the products of Robertsonian (Rb) translocations between telocentrics. Regardless of whether mitotic or meiotic preparations were used, in situ hybridisation failed to reveal pericentromeric telomeric sequences on any of the Rb chromosomes, while all metacentrics retained detectable, although reduced (average 50 kb), amounts of minor satellite DNA in the vicinity of their centromeres. These results were supported by slot blot hybridisation which indicated that mice with 2n=22 Rb chromosomes have 65% of telomeric sequences (which are allocated to the distal telomeres of both Rb and telocentric chromosomes and to the proximal telomeres of telocentrics) and 15% the amount of minor satellite, compared with mice with 2n=40 all-telocentric chromosomes. Pulsed field gel electrophoresis and Southern analysis of DNA from Rb mice showed that the size of the telomeric arrays is similar to that of mice with all-telocentric chromosomes and that the minor satellite sequences were hybridising to larger fragments incorporating major satellite DNA. Since the telomeric sequences are closer to the physical end of the chromosome than the minor satellite sequences, the absence of telomeric sequences and the reduced amount of minor satellite sequences at the pericentromeric region of the Rb metacentrics suggest that the breakpoints for the Rb translocation occur very close to the minor satellite-major satellite border. Moreover, it is likely that the minor satellite is required for centromeric function, 50–67 kb being enough DNA to organise one centromere with a functionally active kinetochore.  相似文献   

2.
Contrasting results (random segregation or cosegregation of isomorphic chromosomes) have been reported up to now on the segregation pattern of Robertsonian metacentric chromosomes of Mus musculus domesticus in multiple heterozygotes, using different approaches (karyotypical analysis of the progeny or of second meiotic metaphases). In the present contribution data are presented based on FISH (Fluorescence In Situ Hybridisation) analysis with telomeric probes, which allowed us to distinguish metacentric chromosomes from pairs of acrocentric chromosomes with their centromeric regions close to each other. Probes were hybridized to DAPI stained metaphases of spermatocytes II of mice heterozygous for two, three or four Robertsonian metacentrics in an all-acrocentric background, the karyotype of which has been reconstructed starting from laboratory strains. Isomorphic chromosomes tend to cosegregate (metacentrics with metacentrics, acrocentrics with acrocentrics); the values found for cosegregation have a clear even if moderate effect on the reproductive isolation caused by underdominant chromosomal rearrangements.  相似文献   

3.
Fedyk S  Chetnicki W 《Heredity》2007,99(5):545-552
One of the hypotheses explaining preferential transmission of metacentrics among simple Robertsonian (Rb) heterozygotes of the common shrew (Sorex araneus L.) invokes the existence of meiotic drive. Thus far, evidence that metacentrics are favoured at meiosis has been obtained indirectly, on the basis of crosses made under controlled conditions. The aim of the present work was to test the hypothesis in a direct study. We analysed products of chromosome segregation among 12 simple heterozygote male subjects from a wild population, with regard to jl, io, nr and mn Rb fusions. We were able to demonstrate significant segregation distortion in favour of all four metacentrics. The level of preferential segregation was independent either of the composition of chromosome arms or the dimensions of metacentrics. We also found that X chromosomes were favoured over Y1Y2 chromosomes during segregation. We discuss the role of meiotic drive in the evolutionary success of metacentric chromosomes in S. araneus, as well as in the emergence of post-hybridization modifications in the zones of contact between races.  相似文献   

4.
Dual-colour FISH painting with alternative fluorescent chromosome-specific probes allowed us to distinguish chromosomes 1, 4, 6 and 14. The purpose was to check whether nondisjunction rates of specific chromosomes involved in heterozygous Robertsonian fusions are independent of the number of trivalents, or an epistatic effect among Rb chromosomes takes place affecting nondisjunction rates. Probes were used on DAPI-stained metaphases of spermatocytes II of laboratory strains of mice with reconstructed karyotypes heterozygous for one, two, three or four Robertsonian metacentrics in an all-acrocentric background. The existence of such epistatic interactions was not verified.  相似文献   

5.
We describe the chromosomal evolution of the metacentric populations of the house mouse, Mus musculus domesticus , which constitute the Robertsonian System of Aeolian Islands (Sicily, Italy). Eighty-nine specimens from all the seven islands that form the Archipelago were cytogenetically examined. The analysis shows the presence of 4 Rb races with a large number of shared metacentric chromosomes: 2 n  = 36 on Panarea, 2 n  = 34 on Alicudi, 2 n  = 26 on Lipari and Stromboli, and a different 2 n  = 26 race on Vulcano. On Salina and Filicudi, the standard karyotype was found. Polymorphism was only found in a population on Panarea Island and this population shares no metacentrics with the other races. The distribution of metacentrics among the races and the comparison between the Aeolian metacentrics and those found in the 97 previously documented metacentric populations allows us to formulate a hypothesis of chromosomal evolution for the Aeolian Robertsonian system. Six of the twelve metacentric chromosomes found in the Aeolian Islands come from localities outside the archipelago. The evolutionary model highlights how the chromosomal races originated inside the Archipelago and involve several factors, such as formation in situ of metacentrics, zonal raciation and, whole arm reciprocal translocation. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 194–202.  相似文献   

6.
Robertsonian chromosome formation and fixation: the genomic scenario   总被引:2,自引:0,他引:2  
Little agreement exists regarding the biological factors able to promote karyotype diversification; the main efforts, however, to explain the fixation and spreading of rearranged chromosomes are based on population genetics theories. Considering the karyotype structure in relation to genome structuring and functioning we found a close relationship between the rate of karyotypic diversification and the degree of homology of the telomeric DNA sequences in a given genome. We suggest for Robertsonian (Rb) chromosome formation and fixation a molecular mechanism triggered by intrinsic genomic traits: this is able to explain the differential rate at which Rb chromosomes arise in different karyotypes, why the house mouse karyotypic diversification occurs so fast and the présence of so many Rb populations that differ in terms of number and arm-composition of Rb chromosomes.  相似文献   

7.
Mice heterozygous for one or more Robertsonian (Rb) translocation chromosomes have been used to analyze synaptonemal complex (SC) configurations and kinetochore arrangements in trivalents and multivalents. Rb heterozygosity without arm homologies leads to the formation of heteromorphic trivalents in meiosis I; alternating homology of the chromosome arms produces ringlike or chainlike multivalents. Immunofluorescence double-labeling with human antibodies to SCs and kinetochores was performed on surface-spread pachytene spermatocytes. Both Rb bivalents and Rb trivalents clearly showed that metacentrics possess only one centromere. In heteromorphic trivalent SCs, the nonhomologous kinetochores of the two acrocentrics were closely paired in a cis-configuration and juxtaposed opposite the kinetochore of the metacentric; the latter appeared to be an integral part of the longitudinal SC axis. Meiotic multivalents of interpopulation hybrids included up to 36 chromosome arms. In multivalent SCs, the kinetochores always lay together, with the SC arms arranged away from the central centromere cluster. The paracentromeric regions of the Rb chromosomes appeared to remain unsynapsed on both sides of the centromeres. The SC arms were often linked by end-to-end associations. Following desynapsis of the multivalent SC, the kinetochores of the Rb metacentrics showed a highly nonrandom topologic distribution within the nucleus, reminiscent of their arrangement during synapsis.  相似文献   

8.
Robertsonian metacentrics in the mouse   总被引:22,自引:1,他引:21  
A survey is given on the occurrence, the geographic origin and the arm composition of 27 Robertsonian fusion metacentric chromosomes of wild populations of the mouse. Their study is of twofold interest: a) it is possible to introduce these naturally occurring metacentrics in laboratory strains for experimental use. At present, altogether 34 metacentric chromosomes of different composition are available including 7 cases of metacentrics known from laboratory strains of the mouse. b) With the search for metacentrics in the mouse and with their identification insights are permitted in the role of Robertsonian changes in the course of mammalian evolution — Several separate populations of the mouse with different sets of multiple (up to 9) metacentrics have been found in Switzerland and Italy. Some of the individual metacentrics may occur in different populations. The participation of an acrocentric autosome in the formation of metacentrics seem to be at random, but the sex chromosomes are never included in a metacentric. — Homology of the arms involved in metacentrics is conserved, so that in meiosis of interpopulation hybrids long chains or rings are observed. They may include up to 16 metacentrics arranged according to the alternating homologies of their arms. — Reduction of fertility of single or multiple metacentric heterozygotes and of the interpopulation hybrids is due to mechanisms of segregational imbalance and subsequent prenatal elimination of fetal offspring, but it follows also the pattern of male limited hybrid sterility. — From an evolutionary view point, karyotype rearrangements of Robertsonian type may initiate reproductive isolation, which prepares the ground for further genetic diversification and, as in the case of the mouse, of incipient speciation.  相似文献   

9.
The ancestral karyotype of the house mouse (Mus musculus) consists of 40 acrocentric chromosomes, but numerous races exist within the domesticus subspecies characterized by different metacentric chromosomes formed by the joining at the centromere of two acrocentrics. An exemplary case is present on the island of Madeira where six highly divergent chromosomal races have accumulated different combinations of 20 metacentrics in 500-1000 years. Chromosomal cladistic phylogenies were performed to test the relative performance of Robertsonian (Rb) fusions, Rb fissions and whole-arm reciprocal translocations (WARTs) in resolving relationships between the chromosomal races. The different trees yielded roughly similar topologies, but varied in the number of steps and branch support. The analyses using Rb fusions/fissions as characters resulted in poorly supported trees requiring six to eight homoplasious events. Allowance for WARTs considerably increased nodal support and yielded the most parsimonious trees since homoplasy was reduced to a single event. The WART-based trees required five to nine WARTs and 12 to 16 Rb fusions. These analyses provide support for the role of WARTs in generating the extensive chromosomal diversification observed in house mice. The repeated occurrence of Rb fusions and WARTs highlights the contribution of centromere-related rearrangements to accelerated rates of chromosomal change in the house mouse.  相似文献   

10.
Robertsonian karyotype variation in wild house mice from Rhaeto-Lombardia   总被引:3,自引:0,他引:3  
The European longtailed house mouse (M. m. brevirostris and domesticus) in the Rhaetian Alps and Lombardia presents a complex system of Robertsonian (Rb) variation and karyotype diversity, several adjoining populations homozygous for multiple Rb metacentric chromosomes, sites of coexistence of different Rb types, and zones of hybridization with non-Rb populations. The original "tobacco mouse" is just one of many local Rb variants, such as those from other Alpine areas (e.g., Orobian Alps) or from Central Lombardia, where a relatively large region within which the population is homogeneous for multi-Rb metacentrics is found. The present study is based strictly on material in which the chromosome arms were identified by G-banding, so that karyotypes within the areas under investigation could be compared. Altogether 111 mice were studied.  相似文献   

11.
Meiotic drive has attracted much interest because it concerns the robustness of Mendelian segregation and its genetic and evolutionary stability. We studied chromosomal meiotic drive in the common shrew (Sorex araneus, Insectivora, Mammalia), which exhibits one of the most remarkable chromosomal polymorphisms within mammalian species. The open question of the evolutionary success of metacentric chromosomes (Robertsonian fusions) versus acrocentrics in the common shrew prompted us to test whether a segregation distortion in favor of metacentrics is present in female and/or male meiosis. Performing crosses under controlled laboratory conditions with animals from natural populations, we found a clear trend toward a segregation distortion in favor of metacentrics during male meiosis, two chromosome combinations (gm and jl) being significantly preferred over their acrocentric homologs. Apart for one Robertsonian fusion (hi), this trend was absent in female meiosis. We propose a model based on recombination events between twin acrocentrics to explain the difference in transmission ratios of the same metacentric in different sexes and unequal drive of particular metacentrics in the same sex. Pooled data for female and male meiosis revealed a trend toward stronger segregation distortion for larger metacentrics. This is partially in agreement with the frequency of metacentrics occurring in natural populations of a chromosome race showing a high degree of chromosomal polymorphism.  相似文献   

12.
The Robertsonian (Rb) fusion, a chromosome rearrangement involving centric fusion of two acro-(telo)centric chromosomes to form a single metacentric, is one of the most frequent events in mammalian karyotype evolution. Since one of the functions of telomeres is to preserve chromosome integrity, a prerequisite for the formation of Rb fusions should be either telomere loss or telomere inactivation. Possible mechanisms underlying the formation of various types of Rb fusion are discussed here. For example, Rb fusion in wild mice involves complete loss of p-arm telomeres by chromosome breakage within minor satellite sequences. By contrast, interstitial telomeric sites are found in the pericentromeric regions of chromosomes originating from a number of vertebrate species, suggesting the occurrence of Rb-like fusion without loss of telomeres, a possibility consistent with some form of telomere inactivation. Finally, a recent study suggests that telomere shortening induced by the deletion of the telomerase RNA gene in the mouse germ-line leads to telomere loss and high frequencies of Rb fusion in mouse somatic cells. Thus, at least three mechanisms in mammalian cells lead to the formation of Rb fusions. Received: 11 November 1997 / Accepted: 21 December 1997  相似文献   

13.
In situ hybridization with synthetic plant telomeric sequences resulted in labeling of all broad bean (Vicia faba) chromosomes at their ends only. Telocentric chromosomes derived by fission of the metacentric satellite chromosome of V. faba also showed signals at both of their ends, whereas the ancestral metacentric did not display signals at its primary constriction, the point of fission. As in V. faba, all acrocentric mouse chromosomes were labeled by in situ hybridization with a vertebrate telomeric probe at both ends of each chromatid exclusively. However, different metacentric Robertsonian chromosomes derived by fusion of defined acrocentrics did not show signals at their primary constrictions. The mechanism of Robertsonian rearrangement leading to a pseudoaneuploid increase or decrease in chromosome number therefore cannot consist solely of a simple fission or fusion of chromosomes without a concomitant gain or loss of chromatin material. The additional assumption of a subdetectable deletion of telomeric sequences after fusion and amplification of these sequences following fission is necessary to explain the present observations.  相似文献   

14.
本文采用骨髓染色体制片法,对捕自我国浙江萧山市的臭鼩进行了组型、G-带、C-带和核仁组织区银染的观察分析。结果表明,我国臭鼩染色体数目为2n=40,组型为8(m)+2(sm)+10(st)+18(t),性染色体为,(?):X(m或sm),Y(m或sm);♀:XX(m或sm)。G-带较为丰富,每一对染色体都有其特定的带型,较易于辨别与配对。在C-带方前,4对中间着丝粒染色体与5对亚端着丝粒染色体均具有不同程度的着丝粒带,1对亚中着丝粒染色体与9对端着丝粒染色体缺乏C-带物质,性染色体具丰富的远端带及中间带.银染的结果显示,第5、12和13对染色体具银染物质。  相似文献   

15.
Cytogenetic studies of feral mice (M. musculus) from various but predominantly Alpine areas of Switzerland, carried out on random samples collected by spot-checks, established the widespread existence of metacentric chromosomes in the somatic karyotype. Despite the finding of the common occurrence of some of the metacentrics in different places, the examination of the possible homology or heterology by breeding procedures revealed the surprising fact that independence, partial or heterobrachial homology of the metacentric chromosomes prevail among mice from different geographical areas. Thus, the general picture is that of an array of different metacentric chromosomes derived from independent events of Robertsonian variation in the process of evolution. — While heterozygosity with independent metacentrics within a Robertsonian system may have a bearing on the fertility rate of a given mouse population, a more severe impairment of the reproductive capacity must be taken into account in mouse populations which possess different metacentrics with mono- or heterobrachial homologies. These conditions favour the assumption of the existence of a selective system of reproductive barriers further subdividing the species in many, more or less stable, micro-populations. — The chromosomal arms (telocentrics) involved in the formation of the metacentric chromosomes could be identified by Q- and G-banding techniques in combination with the results of crossbreeding, and were assigned to the corresponding telocentric autosomes of the mouse (Comm. Standard. Genet. Nomenclat. for Mice, 1972). Most of the telocentric autosomes of the mouse are included in one or more of the metacentrics found in the feral populations. By means of their isolation in separate lines, these metacentrics may be useful in experimental biology as marker chromosomes of defined identity carrying known linkage groups.  相似文献   

16.
Several long-term temporal analyses of the structure of Robertsonian (Rb) hybrid zones in the western house mouse, Mus musculus domesticus, have been performed. Nevertheless, the detection of gradual or very rapid variations in a zone may be overlooked when the time elapsed between periods of study is too long. The Barcelona chromosomal polymorphism zone of the house mouse covers about 5000, km(2) around the city of Barcelona and is surrounded by 40 chromosome telocentric populations. Seven different metacentrics and mice with diploid numbers between 27 and 40 chromosomes and several fusions in heterozygous state (from one to seven) have been reported. We compare the present (period 2008-2010) and past (period 1996-2000) structure of this zone before examining its dynamics in more detail. Results indicate that there is not a Rb race in this area, which is consistent with the proposal that this zone was probably originated in situ, under a primary intergradation scenario. The lack of individuals with more than five metacentrics in heterozygous state in the current period suggests that selection acted against such mice. By contrast, this situation did not occur for mice with fewer than five fusions in heterozygous condition. Changes in human activity may affect the dynamics of gene flow between subpopulations, thus altering the chromosomal composition of certain sites. Although these local variations may have modified the clinal trend for certain metacentrics, the general staggered structure of the zone has not varied significantly in a decade.  相似文献   

17.
Modern mole voles of the genus Ellobius are characterized by species-specific features of autosomes and sex chromosomes. Owing to the use of the Zoo-FISH method, the nomenclature of chromosomes was refined and nonhomologous Robertsonian translocations indistinguishable by G-staining were identified for Ellobius tancrei, which is a species with a wide chromosome variation of the Robertsonian type. The electron-microscopic analysis of synaptonemal complexes in F1 hybrids of forms with 2n = 50 and 2n = 48 revealed the formation of a closed SC-pentavalent composed of three metacentrics with monobrachial homology and two acrocentrics. Segregation of chromosomes of such complex systems is impeded by disturbances in the nucleus architecture leding to the formation of unbalanced gametes and to a dramatic reduction in fertility of hybrids. Our data support the hypothesis that the formation of monobrachial homologous metacentric chromosomes can be considered as a way of chromosomal speciation.  相似文献   

18.
Fluctuating asymmetry (FA) levels were assessed within the Barcelona Robertsonian polymorphic zone of Mus musculus domesticus as a measure of developmental instability (DI). This zone is characterized by populations with a reduced diploid number (2n = 27–39) surrounded by others with standard karyotype (2n = 40). Mice were distributed into four classes according to mean diploid number at each collecting site, and differences in their FA levels were studied. Three different FA indices were calculated on interlandmark distances from two major morphogenetic units of the mandible: the teeth and muscular areas. Three kinds of analysis were performed: trait‐by‐trait, considering the two regions separately and pooling all traits. In univariate analyses few differences were detected between classes. Nevertheless, when characters were pooled, differences in FA values were found between one Robertsonian group and standard mice, and between several Robertsonian classes. Teeth area traits showed higher FA levels in Rb I mice, i.e. those geographically close to the standard populations. However, FA levels decreased in more introgressed Robertsonian groups and showed significant differences with Rb I. Muscular area traits showed lower DI levels in the Robertsonian mice, especially those with an intermediate mean diploid number (Rb II). When all traits were pooled, FA levels increased in Rb I, whilst the other Robertsonian groups showed similar, or even lower, FA values to those of the standard mice. The higher FA levels found in Rb I suggest an increase in the disruption of genetic coadaptation. Furthermore, in Rb I the presence of metacentrics is more recent than in more introgressed populations; we therefore suggest that Rb I have had less time to restore genetic coadaptation. In addition, the teeth region of the mandible seems to be more sensitive to genomic stress than the muscular region. In the light of these results we suggest that hybrids should be separated into groups and that mandible morphogenetic units be differentiated when using FA in hybrid zones to analyse DI.  相似文献   

19.
Keith Jones 《Chromosoma》1974,45(4):353-368
The plant species Gibasis schiedeana (Kunth) D. R. Hunt sens. lat. contains two cytotypes viz. a self-sterile diploid with 2n=10 (x=5) and a selffertile cytological autotetraploid with 2n=16 (x=4). Single chromosome sets of these plants consist of 2 metacentrics +3 acrocentrics, and 3 metacentrics +1 acrocentric chromosomes respectively suggesting a Robertsonian relationship between them. Their artificial F1 hybrids show the pairing of acrocentrics with metacentric arms confirming the supposed nature of the chromosome affinities. Both breeding systems and ploidy levels show that the direction of the change has been from x=5 to x=4 by a translocation of the Robertsonian type.  相似文献   

20.
Modern mole voles of the genus Ellobius are characterized by species-specific features of autosomes and sex chromosomes. Owing to the use of the Zoo-FISH method, the nomenclature of chromosomes was refined and nonhomologous Robertsonian translocations indistinguishable by G-staining were identified for Ellobius tancrei, which is a species with a wide chromosome variation of the Robertsonian type. The electron-microscopic analysis of synaptonemal complexes in F1 hybrids of forms with 2n = 50 and 2n = 48 revealed the formation of a closed SC-pentavalent composed of three metacentrics with monobrachial homology and two acrocentrics. Segregation of chromosomes of such complex systems is impeded by disturbances in the nucleus architecture leading to the formation of unbalanced gametes and to a dramatic reduction in fertility of hybrids. Our data support the hypothesis that the formation of monobrachial homologous metacentric chromosomes can be considered as a way of chromosomal speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号