首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Man-Yin W. Tso  Torbj  rn Ljones  R. H. Burris 《BBA》1972,267(3):600-604
A method is described for the purification of the nitrogenase proteins from Clostridium pasteurianum by two polyethylene glycol precipitations and chromatography on columns of DEAE-cellulose, Sephadex G-100 and Sephadex G-200. The Mo-Fe protein and the Fe protein have been purified 70–80-fold from the crude extract, and they appear essentially pure when tested by anaerobic polyacrylamide gel electrophoresis.  相似文献   

2.
Kim BJ  Mangala SL  Hayashi K 《FEBS letters》2005,579(14):3075-3080
Four sites of the non-homologous region (coding amino acid residues of 347, 421, 466 and 533) of a gene were randomly selected for splitting to investigate the function of β-glucosidase from Agrobacterium tumefaciens in the co-refolding of peptides into the catalytically active enzyme. As a result of gene splitting, four N- and C-terminal domain peptides were obtained as insoluble inclusion bodies. No catalytic activity was observed when these fragments refolded individually. However, a considerable amount of activity was restored when the two fragments derived from N- and C- terminal peptides were co-refolded together. The deletion of amino acid residues in the non-homologous region resulted in a complete loss of enzyme activity, which suggests that truncation of amino acids in this region strongly affects the co-refolding ability of the enzyme to maintain activity.  相似文献   

3.
Besides Onconase (ONC) and its V11/N20/R103-variant, oocytes of the Northern Leopard frog (Rana pipiens) contain another homologue of ribonuclease A, which we named Amphinase (Amph). Four variants (Amph-1-4) were isolated and sequenced, each 114 amino acid residues in length and N-glycosylated at two positions. Sequence identities (a) among the variants and (b) versus ONC are 86.8-99.1% and 38.2-40.0%, respectively. When compared with other amphibian ribonucleases, a typical pattern of cysteine residues is evident but the N-terminal pyroglutamate residue is replaced by a six-residue extension. Amph variants have relatively weak ribonucleolytic activity that is insensitive to human ribonuclease inhibitor protein (RI). Values of k(cat)/K(M) with hypersensitive fluorogenic substrates are 10(4) and 10(2)-fold lower than the maximum values exhibited by ribonuclease A and ONC, respectively, and there is little cytosine/uracil or adenine/guanine discrimination at the B(1) or B(2) subsites, respectively. Amph variants have cytotoxic activity toward A-253 carcinoma cells that requires intact ribonucleolytic activity. The glycan component has little or no influence over single-stranded RNA cleavage, RI evasion or cytotoxicity. The crystal structures of natural and recombinant Amph-2 (determined at 1.8 and 1.9 A resolution, respectively) reveal that the N terminus is unlikely to play a catalytic role (but an unusual alpha2-beta1 loop may do so) and the B(2) subsite is rudimentary. At the active site, structural features that may contribute to the enzyme's low ribonucleolytic activity are the fixture of Lys14 in an obstructive position, the accompanying ejection of Lys42, and a lack of constraints on the conformations of Lys42 and His107.  相似文献   

4.
A novel intracellular cycloalternan-degrading enzyme (CADE) was purified to homogeneity from the cell pellet of Bacillus sp. NRRL B-21195. The enzyme has a molecular mass of 125 kDa on SDS-PAGE. The pH optimum was 7.0, and the enzyme was stable from pH 6.0 to 9.2. The temperature optimum was 35 degrees C and the enzyme exhibited stability up to 50 degrees C. The enzyme hydrolyzed cycloalternan [CA; cyclo(-->6)-alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->6)-alpha-d-Glcp-(-->3)-alpha-d-Glcp-(1-->)] as the best substrate, to produce only isomaltose via an intermediate, alpha-isomaltosyl-(1-->3)-isomaltose. This enzyme also hydrolyzed isomaltosyl substrates, such as panose, alpha-isomaltosyl-(1-->4)-maltooligosaccharides, alpha-isomaltosyl-(1-->3)-glucose, and alpha-isomaltosyl-(1-->3)-isomaltose to liberate isomaltose. Neither maltooligosaccharides nor isomaltooligosaccharides were hydrolyzed by the enzyme, indicating that CADE requires alpha-isomaltosyl residues connected with (1-->4)- or (1-->3)-linkages. The K(m) value of cycloalternan (1.68 mM) was 20% of that of panose (8.23 mM). The k(cat) value on panose (14.4s(-1)) was not significantly different from that of cycloalternan (10.8 s(-1)). Judging from its specificity, the systematic name of the enzyme should be cycloalternan isomaltosylhydrolase. This intracellular enzyme is apparently involved in the metabolism of starch via cycloalternan in Bacillus sp. NRRL B-21195, its role being to hydrolyze cycloalternan inside the cells.  相似文献   

5.
1. When 2,3,5,6-tetramethyl-p-phenylenediamine (diaminodurene), which is an activator of cyclic electron flow, was added to chromatophores isolated from the photosynthetic bacterium, Rhodopseudomonas spheroides, it caused a large increase in the emission of delayed light measured at 5–10 ms after excitation. This increase was pH dependent, and ranged from 5–100 times the control intensity. Substances that counteract light-induced proton uptake, such as ammonium salts, amines and nigericin, caused a further increase in the delayed light emission. These compounds also markedly slowed a characteristic decline of the delayed light that occurs during sustained illumination. This decline in the delayed light may be related to the quenching of prompt fluorescence that is seen in the presence of diaminodurene. Substances, like valinomycin, that dissipate the membrane potential, almost completely abolish the diaminodurene-catalyzed increase in the delayed light.  相似文献   

6.
Edward A. Berry  Dong-Woo Lee  Kazuo Nagai 《BBA》2010,1797(3):360-7281
Ascochlorin is an isoprenoid antibiotic that is produced by the phytopathogenic fungus Ascochyta viciae. Similar to ascofuranone, which specifically inhibits trypanosome alternative oxidase by acting at the ubiquinol binding domain, ascochlorin is also structurally related to ubiquinol. When added to the mitochondrial preparations isolated from rat liver, or the yeast Pichia (Hansenula) anomala, ascochlorin inhibited the electron transport via CoQ in a fashion comparable to antimycin A and stigmatellin, indicating that this antibiotic acted on the cytochrome bc1 complex. In contrast to ascochlorin, ascofuranone had much less inhibition on the same activities. On the one hand, like the Qi site inhibitors antimycin A and funiculosin, ascochlorin induced in H. anomala the expression of nuclear-encoded alternative oxidase gene much more strongly than the Qo site inhibitors tested. On the other hand, it suppressed the reduction of cytochrome b and the generation of superoxide anion in the presence of antimycin A3 in a fashion similar to the Qo site inhibitor myxothiazol. These results suggested that ascochlorin might act at both the Qi and the Qo sites of the fungal cytochrome bc1 complex. Indeed, the altered electron paramagnetic resonance (EPR) lineshape of the Rieske iron-sulfur protein, and the light-induced, time-resolved cytochrome b and c reduction kinetics of Rhodobacter capsulatus cytochrome bc1 complex in the presence of ascochlorin demonstrated that this inhibitor can bind to both the Qo and Qi sites of the bacterial enzyme. Additional experiments using purified bovine cytochrome bc1 complex showed that ascochlorin inhibits reduction of cytochrome b by ubiquinone through both Qi and Qo sites. Moreover, crystal structure of chicken cytochrome bc1 complex treated with excess ascochlorin revealed clear electron densities that could be attributed to ascochlorin bound at both the Qi and Qo sites. Overall findings clearly show that ascochlorin is an unusual cytochrome bc1 inhibitor that acts at both of the active sites of this enzyme.  相似文献   

7.
An important antitumour effect of SYD-1 (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) has been shown. We now report the effects of this mesoionic compound on mitochondrial metabolism. SYD-1 (1.5 micromol mg(-1) protein) dose-dependently inhibited the respiratory rate by 65% and 40% in state 3 using sodium glutamate and succinate, respectively, as substrates. Phosphorylation efficiency was depressed by SYD-1, as evidenced by stimulation of the state 4 respiratory rate, which was more accentuated with glutamate ( approximately 180%) than with succinate ( approximately 40%), with 1.5 micromol mg(-1) protein of SYD-1. As a consequence of the effects on states 3 and 4, the RCC and ADP/O ratios were lowered by SYD-1 using both substrates, although this effect was stronger with glutamate. The formation of membrane electrical potential was inhibited by approximately 50% (1.5 micromol SYD-1mg(-1) protein). SYD-1 interfered with the permeability of the inner mitochondrial membrane, as demonstrated by assays of mitochondrial swelling in the presence of sodium acetate and valinomycin +K(+). SYD-1 (1.5 micromol mg(-1) protein) inhibited glutamate completely and succinate energized-mitochondrial swelling by 80% in preparations containing sodium acetate. The swelling of de-energized mitochondria induced by K(+) and valinomycin was inhibited by 20% at all concentrations of SYD-1. An analysis of the segments of the respiratory chain suggested that the SYD-1 inhibition site goes beyond the complex I and includes complexes III and IV. Glutamate dehydrogenase was inhibited by 20% with SYD-1 (1.5 micromol mg(-1) protein). The hydrolytic activity of complex F(1)F(o) ATPase in intact mitochondria was greatly increased ( approximately 450%) in the presence of SYD-1. Our results show that SYD-1 depresses the efficiency of electron transport and oxidative phosphorylation, suggesting that these effects may be involved in its antitumoural effect.  相似文献   

8.
The yeast DEAD-box protein Mss116p functions as a general RNA chaperone in splicing mitochondrial group I and group II introns. For most of its functions, Mss116p is thought to use ATP-dependent RNA unwinding to facilitate RNA structural transitions, but it has been suggested to assist in the folding of one group II intron (aI5γ) primarily by stabilizing a folding intermediate. Here we compare three aI5γ constructs: one with long exons, one with short exons, and a ribozyme construct lacking exons. The long exons result in slower splicing, suggesting that they misfold and/or stabilize nonnative intronic structures. Nevertheless, Mss116p acceleration of all three constructs depends on ATP and is inhibited by mutations that compromise RNA unwinding, suggesting similar mechanisms. Results of splicing assays and a new two-stage assay that separates ribozyme folding and catalysis indicate that maximal folding of all three constructs by Mss116p requires ATP-dependent RNA unwinding. ATP-independent activation is appreciable for only a subpopulation of the minimal ribozyme construct and not for constructs containing exons. As expected for a general RNA chaperone, Mss116p can also disrupt the native ribozyme, which can refold after Mss116p removal. Finally, using yeast strains with mitochondrial DNA containing only the single intron aI5γ,? we show that Mss116p mutants promote splicing in vivo to degrees that correlate with their residual ATP-dependent RNA-unwinding activities. Together, our results indicate that, although DEAD-box proteins play multiple roles in RNA folding, the physiological function of Mss116p in aI5γ splicing includes a requirement for ATP-dependent local unfolding, allowing the conversion of nonfunctional RNA structure into functional RNA structure.  相似文献   

9.
The ribonuclease inhibitor protein (RI) binds to members of the bovine pancreatic ribonuclease (RNase A) superfamily with an affinity in the femtomolar range. Here, we report on structural and energetic aspects of the interaction between human RI (hRI) and human pancreatic ribonuclease (RNase 1). The structure of the crystalline hRI x RNase 1 complex was determined at a resolution of 1.95 A, revealing the formation of 19 intermolecular hydrogen bonds involving 13 residues of RNase 1. In contrast, only nine such hydrogen bonds are apparent in the structure of the complex between porcine RI and RNase A. hRI, which is anionic, also appears to use its horseshoe-shaped structure to engender long-range Coulombic interactions with RNase 1, which is cationic. In accordance with the structural data, the hRI.RNase 1 complex was found to be extremely stable (t(1/2)=81 days; K(d)=2.9 x 10(-16) M). Site-directed mutagenesis experiments enabled the identification of two cationic residues in RNase 1, Arg39 and Arg91, that are especially important for both the formation and stability of the complex, and are thus termed "electrostatic targeting residues". Disturbing the electrostatic attraction between hRI and RNase 1 yielded a variant of RNase 1 that maintained ribonucleolytic activity and conformational stability but had a 2.8 x 10(3)-fold lower association rate for complex formation and 5.9 x 10(9)-fold lower affinity for hRI. This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells. Together, these results provide new insight into an unusual and important protein-protein interaction, and could expedite the development of human ribonucleases as chemotherapeutic agents.  相似文献   

10.
Zhao HF  Wang X  Zhang GJ 《FEBS letters》2005,579(6):1551-1556
Lysosomal disintegration is a crucial event for living cells, but mechanisms for the event are still unclear. In this study, we established that the cytosolic extracts could enhance lysosomal osmotic sensitivity and osmotically destabilize the lysosomes. The cytosol also caused the lysosomes to become more swollen in the hypotonic sucrose medium. The results indicate that the cytosol induced an osmotic shock to the lysosomes and an influx of water into the organelle. Since the effects of cytosol on the lysosomes could be abolished by O-tricyclo[5.2.1.0(2,6)]dec-9-yl dithiocarbonate potassium salt (D609), a specific inhibitor of cytosolic phospholipase C (PLC), the PLC might play an important role in the lysosomal osmotic destabilization. The activity of cytosolic PLC and the extent of enzyme latency loss of the cytosol-treated lysosomes exhibited a similar biphasic dependence on the cytosolic Ca2+ concentration. In addition, the cytosol did not osmotically destabilize the lysosomes until the cytosolic calcium ions rose above 100 nM. It suggests that the destabilization effect of cytosol on the lysosomes is Ca(2+)-dependent.  相似文献   

11.
One- and two-parameter quantitative structure toxicity relationship (QSTR) equations were obtained to describe the cytotoxicity of isolated rat hepatocytes induced by 23 catechols in which LD(50) represents the catechol concentration required to induce 50% cytotoxicity in 2 h. A QSTR equation logLD(50) (microM = - 0.464(+/-0.065) log P + 3.724(+/-0.114) (n = 20, r(2) = 0.740, s(y,x) = 0.372, P < 1 x 10(-6), outliers: 4-methoxycatechol, 3-methoxycatechol, L-dopa) was derived where logP represents octanol/water partitioning. Outliers were determined by adopting a statistical method to standardize the identification of outliers. When pK(a1), the first ionization constant, was considered as a contributing parameter a two-parameter QSTR equation was derived: logLD(50) (microM = - 0.343(+/-0.058) log P - 0.116(+/-0.041) pK(a1)+4.389 (+/-0.315) (n = 22, r(2) = 0.738, s(y,x) = 0.375, P < 0.01, outlier: 4-methoxycatechol). Replacing logP with logD(7.4), the partition coefficient at pH 7.4, improved the first correlation by limiting the outlier to 4-methoxycatechol: logLD(50) (microM)=-0.252(+/-0.039) logD(7.4)+3.168(+/-0.090) (n = 22, r(2) = 0.671, s(y,x) = 0.420, P < 1 x 10(-5). In this study, 4-methoxycatechol (readily autooxidizable) was found to be an outlier for all QSTR equations derived. These findings point to lipophilicity and pK(a1) as two important characteristics of catechols that can be used to predict their cytotoxicity towards isolated rat hepatocytes. The catechols with the higher lipophilicity/distribution coefficient, the lower degree of ionization and the higher pK(a(catechol)) were more toxic towards hepatocytes than the other catechols.  相似文献   

12.
Employing adult Hymenolepis diminuta SMP and exogenous pyridine nucleotide-generating systems, reduced pyridine nucleotide-dependent net 32P incorporation into ATP was examined. NADH supported rotenone-sensitive 32P incorporation and this rate increased markedly with fumarate addition, in keeping with an active fumarate reductase. Interestingly, corresponding evaluations with NADPH did not result in detectable phosphorylation in the absence or presence of fumarate. However, with NAD addition, but without NAD generation, active NADPH-dependent phosphorylation occurred, thereby demonstrating mitochondrial transhydrogenase involvement, and 32P incorporation increased significantly with fumarate addition. More importantly, in the presence of rotenone and both NADPH and NAD generation, significant net 32P incorporation was noted, but was undetectable in the presence of DCCD or protonophores (e.g., niclosamide). Without NAD generation, minimal phosphorylation occurred. These data demonstrate that with ongoing NADPH and NAD generation, the H. diminuta, proton-translocating, mitochondrial transhydrogenase can serve as an additional anaerobic phosphorylation site. A model is presented.  相似文献   

13.
The dimensions of a denatured protein, fully reduced ribonuclease A (r-RNase A), have been measured using synchrotron-based small angle X-ray scattering. The radius of gyration, 34-35 A, is unchanged from 0-6 M guanidinium chloride and from 20-90 degrees C at pH 2.5, and agrees with the known scaling behavior for a multitude of chemically denatured states. The polypeptide is behaving as a statistical coil in the non-interacting, high-temperature limit.  相似文献   

14.
Costunolide is an active sesquiterpene lactone of medicinal herbs with anti-inflammatory and potential anti-cancer activity. Nevertheless, the pharmacological pathways of costunolide have not yet been fully elucidated. In this study we showed that costunolide exerts a dose-dependent antiproliferative activity in the human breast cancer MCF-7 cells. In addition, light microscopy observations indicated that costunolide affected nuclear organization and reorganized microtubule architecture. The antiproliferative and antimicrotubular effects of costunolide were not influenced by paclitaxel, well-known microtubule-stabilizing anticancer agent. The microtubule-interacting activity of costunolide was confirmed by in vitro studies on purified microtubular protein. In fact, costunolide demonstrated polymerizing ability, by inducing the formation of well organized microtubule polymers. Our data suggest an interaction of costunolide with microtubules, which may represent a new intracellular target for this drug.  相似文献   

15.
Cleavage by RNase E is believed to be the rate-limiting step in the degradation of many RNAs. These cleavages are modulated by 5' end-phosphorylation, folding and translation of the mRNA in question. Here, we present data suggesting that these cleavages are also regulated by environmental conditions. We report that rpsO mRNA, 15 minutes after a shift to 44 degrees C, is stabilized in cells grown in minimal medium. This stabilization is correlated with a reduction in the efficiency of the RNase E cleavage which initiates its decay. We also observe the appearance of RNA fragments previously detected following RNase E inactivation and a defect in the adaptation of RNase E concentration. These observations, coupled to the fact that RNase E overproduction slightly reduces the accumulation of the rpsO mRNA, suggest that this stabilization is caused in part by a limitation in RNase E concentration. An increase in the steady-state level of rpsT mRNA is also observed following a shift to 44 degrees C in minimal medium; however, processing of the 9 S rRNA precursor is not affected under these conditions. We thus propose that RNase E concentration changes in the cell in response to environmental conditions and that these changes can selectively affect the processing and the stability of individual mRNAs. Our data also indicate that the efficiency of cleavage of the rpsO mRNA by RNase E is modified by other factor(s) which remain to be identified.  相似文献   

16.
(1-->3)-alpha-glucanases catalyze the hydrolysis of fungal cell wall (1-->3)-alpha-glucan, and function during cell division of yeasts containing this cell wall component or act in mycoparasitic processes. Here, we characterize the mechanism of action of the (1-->3)-alpha-glucanase MutAp from the mycoparasitic fungus Trichoderma harzianum. We observed that MutAp releases predominantly beta-glucose upon hydrolysis of crystalline (1-->3)-alpha-glucan, indicating inversion of the anomeric configuration. After having identified (1-->3)-alpha-glucan tetrasaccharide as the minimal substrate for MutAp, we showed that reduced (1-->3)-alpha-glucan pentasaccharide is cleaved into a trisaccharide and a reduced disaccharide, demonstrating that MutAp displays endo-hydrolytic activity. We propose a model for the catalytic mechanism of MutAp, whereby the enzyme breaks an intrachain glycosidic linkage of (1-->3)-alpha-glucan, and then continues its hydrolysis towards the non-reducing end by releasing beta-glucose residues in a processive manner.  相似文献   

17.
The vinyl ether bond of plasmalogens could be among the first target of free radicals attack. Consequently, because of their location in the membranes of cells, plasmalogens represent a first shield against oxidative damages by protecting other macromolecules and are often considered as antioxidant molecules. However, under oxidative conditions their disruption leads to the release of fatty aldehydes. In this paper, we showed using gas chromatography-mass spectrometry (GC-MS) analyses that fatty aldehydes released from plasmalogens after oxidation (UV irradiation and Fe2+/ascorbate) of cerebral cortex homogenates can generate covalent modifications of endogenous macromolecules such as phosphatidylethanolamine (PE), like the very reactive and toxic malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). These newly formed Schiff base adducts could be responsible for deleterious effects on cells thus making the protective role of plasmalogens potentially questionable.  相似文献   

18.
M  rten K. F. Wikstr  m  Jan A. Berden 《BBA》1972,283(3):403-420
1. The effect of oxidizing equivalents on the redox state of cytochrome b in the presence of antimycin has been studied in the presence and absence of various redox mediators.

2. The antimycin-induced extra reduction of cytochrome b is always dependent on the initial presence of an oxidant such as oxygen. After removal of the oxidant this effect remains or is partially (under some conditions even completely) abolished depending on the redox potential of the substrate used and the leak through the antimycin-inhibited site.

3. The increased reduction of cytochrome b induced by oxidant in the presence of antimycin involves all three spectroscopically resolvable b components (b-562, b-566 and b-558.

4. Redox mediators with an actual redox potential of less than 100–170 mV cause the oxidation of cytochrome b reduced under the influence of antimycin and oxidant.

5. Redox titrations of cytochrome b with the succinate/fumarate couple were performed aerobically in the presence of cyanide. In the presence of antimycin two b components are separated potentiometrically, one with an apparent midpoint potential above 80 mV (at pH 7.0), outside the range of the succinate/fumurate couple, and one with an apparent midpoint potential of 40 mV and an n value of 2. In the absence of antimycin cytochrome b titrates essentially as one species with a midpoint potential of 39 mV (at pH 7.0) and n = 1.14.

6. The increased reducibility of cytochrome b induced by antimycin plus oxidant is considered to be the result of two effects: inhibition of oxidation of ferrocytochrome b by ferricytochrome c1 (the effect of antimycin), and oxidation of the semiquinone form of a two-equivalent redox couple such as ubiquinone/ubiquinol by the added oxidant, leading to a decreased redox potential of the QH2/QH couple and reduction of cytochrome b.  相似文献   


19.
Arabinan and galactan side chains of sugar beet pectins are esterified by ferulic acid residues that can undergo in vivo oxidative reactions to form dehydrodiferulates. After acid and enzymatic degradation of sugar beet cell walls and fractionation of the solubilized products by hydrophobic interaction chromatography, three dehydrodiferulate-rich fractions were isolated. The structural identification of the different compounds present in these fractions was performed by electrospray-ion trap-mass spectrometry (before and after (18)O labeling) and high-performance anion-exchange chromatography. Several compounds contained solely Ara (terminal or alpha-1-->5-linked-dimer) and dehydrodiferulate. The location of the dehydrodiferulate was assigned in some cases to the O-2 and in others to the O-5 of non-reducing Ara residues. One compound contained Gal (beta-1-->4-linked-dimer), Ara (alpha-1-->5-linked-dimer) and dehydrodiferulate. The location of the dehydrodiferulate was unambiguously assigned to the O-2 of the non-reducing Ara residue and O-6 of the non-reducing Gal residue. These results provide direct evidence that pectic arabinans and galactans are covalently cross-linked (intra- or inter-molecularly) through dehydrodiferulates in sugar beet cell walls. Molecular modeling was used to compute and structurally characterize the low energy conformations of the isolated compounds. Interestingly, the conformations of the dehydrodiferulate-bridged arabinan and galactan fragments selected from an energetic criterion, evidenced very nice agreement with the experimental occurrence of the dehydrodiferulated pectins. The present work combines for the first time intensive mass spectrometry data and molecular modeling to give structural relevance of a molecular cohesion between rhamnogalacturonan fragments.  相似文献   

20.
Replacement of a cis-proline by glycine at position 114 in ribonuclease A leads to a large decrease in thermal stability and simplifies the refolding kinetics. A crystallographic approach was used to determine whether the decrease in thermal stability results from the presence of a cis glycine peptide bond, or from a localized structural rearrangement caused by the isomerization of the mutated cis 114 peptide bond. The structure was solved at 2.0 A resolution and refined to an R-factor of 19.5% and an R(free) of 21.9%. The overall conformation of the protein was similar to that of wild-type ribonuclease A; however, there was a large localized rearrangement of the mutated loop (residues 110-117-a 9.3 A shift of the Calpha atom of residue 114). The peptide bond before Gly114 is in the trans configuration. Interestingly, a large anomalous difference density was found near residue 114, and was attributed to a bound cesium ion present in the crystallization experiment. The trans isomeric configuration of the peptide bond in the folded state of this mutant is consistent with the refolding kinetics previously reported, and the associated protein conformational change provides an explanation for the decreased thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号