首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrastructural/immunocytochemical studies with well defined antibodies suggest that distal segments of olfactory cilia are the main sites of early events in olfactory signal transduction. Such studies also begin to provide specifics of the cytoskeletal make-up of olfactory epithelial cells, but knowledge about relationships between cytoskeletal and transduction components is still incomplete. Probes to less well defined chemical entities, but that distinctly label olfactory cilia, supporting cell microvilli and microvilli of microvillous cells, may serve as markers for further studies on olfactory signaling. Ultrastructural/immunocytochemical studies also suggest that supporting cells help to balance the mucous environment of olfactory cilia.  相似文献   

2.
Olfactory sensory neurons expose to the inhaled air chemosensory cilia which bind odorants and operate as transduction organelles. Odorant receptors in the ciliary membrane activate a transduction cascade which uses cAMP and Ca2+ for sensory signaling in the ciliary lumen. Although the canonical transduction pathway is well established, molecular components for more complex aspects of sensory transduction, like adaptation, regulation, and termination of the receptor response have not been systematically identified. Moreover, open questions in olfactory physiology include how the cilia exchange solutes with the surrounding mucus, assemble their highly polarized set of proteins, and cope with noxious substances in the ambient air. A specific ciliary proteome would promote research efforts in all of these fields. We have improved a method to detach cilia from rat olfactory sensory neurons and have isolated a preparation specifically enriched in ciliary membrane proteins. Using LC‐ESI‐MS/MS analysis, we identified 377 proteins which constitute the olfactory cilia proteome. These proteins represent a comprehensive data set for olfactory research since more than 80% can be attributed to the characteristic functions of olfactory sensory neurons and their cilia: signal processing, protein targeting, neurogenesis, solute transport, and cytoprotection. Organellar proteomics thus yielded decisive information about the diverse physiological functions of a sensory organelle.  相似文献   

3.
R R Anholt  A E Petro  A M Rivers 《Biochemistry》1990,29(13):3366-3373
We have used a library of monoclonal antibodies (mAbs) against chemosensory cilia of the olfactory epithelium of Rana catesbeiana to identify proteins that are unique to the ciliary membrane. Five different antibodies (mAb 8, 26, 34, 42/45, and 43) identify novel proteins in olfactory cilia that are not detected in olfactory nerve membranes, nonchemosensory cilia from respiratory epithelium, or membranes from brain, heart, liver, kidney, and lung. Deglycosylation of olfactory cilia with endoglycosidase H shows that most of these antibodies (mAb 8, 42/45, 43, and possibly 26) react with antigenic determinants comprised partially or entirely of carbohydrate, while only one (mAb 34) recognizes an 87-kDa protein that is resistant to endoglycosidase H treatment. Furthermore, a 59-kDa glycoprotein visualized by mAb 8 exists as membrane-associated oligomers connected via intermolecular disulfide bonds. These proteins, tagged with distinct high-mannose-containing carbohydrate moieties and found only in chemosensory cilia of olfactory receptor cells, may be involved in odorant recognition and/or olfactory transduction.  相似文献   

4.
The olfactory epithelium has the ability to respond to a large number of volatile compounds of small molecular weight. Ultimately, such a property lies on a specialized type of neuron, the olfactory receptor cell. In the presence of odorants, the olfactory receptor neuron responds with action potentials whose frequency depends on odorant concentration. The primary events in the process of olfactory transduction are thought to occur at the cilia of olfactory receptor neurons and involve the binding of odorants to receptor molecules followed by the opening of ion channels. A crucial step in understanding olfactory transduction requires identifying the mechanisms that regulate the electrical activity of olfactory cells. In the last couple of years, patch-clamp recording from isolated olfactory cells and reconstitution of olfactory membranes in planar lipid bilayers have begun to shed light on some of these mechanisms. Although the information emerging from such studies is still preliminary, there are already well-defined hypotheses on the molecular events that might underlie the primary events in olfactory transduction. Currently, attention is being focused on the notions that second messengers might be involved in the activation of ion channels in olfactory cilia, and that odorant binding to a receptor molecule might lead directly to the gating of ion channels in chemosensory olfactory membranes. The coming years promise to be exciting ones in the field of olfactory transduction. We have now the necessary tools to be able to confront hypotheses and experimental facts.  相似文献   

5.
Several studies have indicated that olfactory responses are impeded by amiloride. Therefore, it was of interest to see whether, and if so which, olfactory epithelial cellular compartments have amiloride- sensitive structures. Using ultrastructural methods that involved rapid freezing, freeze-substitution and low temperature embedding of olfactory epithelia, this study shows that, in the rat, this tissue is immunoreactive to antibodies against amiloride sensitive Na(+)- channels. However, microvilli of olfactory supporting cells, as opposed to receptor cilia, contained most of the immunoreactive sites. Apices from which the microvilli sprout and receptor cell dendritic knobs had much less if any of the amiloride-antibody binding sites. Using a direct ligand-binding cytochemical method, this study also confirms earlier ones that showed that olfactory receptor cell cilia have Na+, K(+)-ATPase. It is proposed that supporting cell microvilli and the receptor cilia themselves have mechanisms, different but likely complementary, that participate in regulating the salt concentration around the receptor cell cilia. In this way, both structures help to provide the ambient mucous environment for receptor cells to function properly. This regulation of the salt concentration of an ambient fluid environment is a function that the olfactory epithelium shares with cells of transporting epithelia, such as those of kidney.   相似文献   

6.
The cilia of mammalian olfactory receptor neurons (ORNs) represent the sensory interface that is exposed to the air within the nasal cavity. The cilia are the site where odorants bind to specific receptors and initiate olfactory transduction that leads to excitation of the neuron. This process involves a multitude of ciliary proteins that mediate chemoelectrical transduction, amplification, and adaptation of the primary sensory signal. Many of these proteins were initially identified by their enzymatic activities using a membrane protein preparation from olfactory cilia. This so-called "calcium-shock" preparation is a versatile tool for the exploration of protein expression, enzyme kinetics, regulatory mechanisms, and ciliary development. To support such studies, we present a first proteomic analysis of this membrane preparation. We subjected the cilia preparation to liquid chromatography-electrospray ionisation (LC-ESI-MS/MS) tandem mass spectrometry and identified 268 proteins, of which 49% are membrane proteins. A detailed analysis of their cellular and subcellular localization showed that the cilia preparation obtained by calcium shock not only is highly enriched in ORN proteins but also contains a significant amount of nonciliary material. Although our proteomic study does not identify the entire set of ciliary and nonciliary proteins, it provides the first estimate of the purity of the calcium-shock preparation and provides valuable biochemical information for further research.  相似文献   

7.
Two different polyclonal antibodies were raised to synthetic peptides corresponding to distinct putative odour receptors of rat and mouse. Both antibodies selectively labelled olfactory cilia as seen with cryofixation and immunogold ultrastructural procedures. Regions of the olfactory organ where label was detected were consistent with those found at LM levels. Immunopositive cells were rare; only up to about 0.4% of these receptor cells were labelled. Despite chemical, species, and topographic differences both antibodies behaved identically in their ultrastructural labelling patterns. For both antibodies, labelling was very specific for olfactory cilia; both bound amply to the thick proximal and the thinner and long distal parts of the cilia. Dendritic knobs showed little labelling if any. Dendritic receptor cell structures below the knobs, supporting cell structures, and respiratory cilia did not immunolabel. There were no obvious differences in morphology between labelled and unlabelled receptor cells and their cilia. Labelling could be followed up to a distance of about 15 μm from the knobs along the distal parts of the cilia. When labelled cells were observed, this signal was detectable in two, sometimes three, sections taken through these cells while being consistently absent in neighbouring cells. This pattern argues strongly for the specificity of the labelling. In conclusion, very few receptor cells labelled with the antibodies to putative odour receptors. Additionally the olfactory cilia, the cellular regions that first encounter odour molecules and that are thought to transduce the odorous signal, displayed the most intense labelling with both antibodies. Consequently, the results showed these cilia as having many copies of the putative receptors. Finally, similar patterns of subcellular labelling were displayed in two different species, despite the use of different antibodies. Thus, this study provides compelling evidence that the heptahelical putative odour receptors localize in the olfactory cilia.  相似文献   

8.
Two different polyclonal antibodies were raised to synthetic peptides corresponding to distinct putative odour receptors of rat and mouse. Both antibodies selectively labelled olfactory cilia as seen with cryofixation and immunogold ultrastructural procedures. Regions of the olfactory organ where label was detected were consistent with those found at LM levels. Immunopositive cells were rare; only up to about 0.4% of these receptor cells were labelled. Despite chemical, species, and topographic differences both antibodies behaved identically in their ultrastructural labelling patterns. For both antibodies, labelling was very specific for olfactory cilia; both bound amply to the thick proximal and the thinner and long distal parts of the cilia. Dendritic knobs showed little labelling if any. Dendritic receptor cell structures below the knobs, supporting cell structures, and respiratory cilia did not immunolabel. There were no obvious differences in morphology between labelled and unlabelled receptor cells and their cilia. Labelling could be followed up to a distance of about 15 μm from the knobs along the distal parts of the cilia. When labelled cells were observed, this signal was detectable in two, sometimes three, sections taken through these cells while being consistently absent in neighbouring cells. This pattern argues strongly for the specificity of the labelling. In conclusion, very few receptor cells labelled with the antibodies to putative odour receptors. Additionally the olfactory cilia, the cellular regions that first encounter odour molecules and that are thought to transduce the odorous signal, displayed the most intense labelling with both antibodies. Consequently, the results showed these cilia as having many copies of the putative receptors. Finally, similar patterns of subcellular labelling were displayed in two different species, despite the use of different antibodies. Thus, this study provides compelling evidence that the heptahelical putative odour receptors localize in the olfactory cilia.  相似文献   

9.
The role of phosphoinositide signaling in olfactory transduction is still being resolved. Compelling functional evidence for the transduction of odor signals via phosphoinositide pathways in olfactory transduction comes from invertebrate olfactory systems, in particular lobster olfactory receptor neurons. We now provide molecular evidence for two components of the phosphoinositide signaling pathway in lobster olfactory receptor neurons, a G protein alpha subunit of the G(q) family and an inositol 1,4, 5-trisphosphate-gated channel or an inositol 1,4,5-trisphosphate (IP(3)) receptor. Both proteins localize to the site of olfactory transduction, the outer dendrite of the olfactory receptor neurons. Furthermore, the IP(3) receptor localizes to membranes in the ciliary transduction compartment of these cells at both the light microscopic and electron microscopic levels. Given the absence of intracellular organelles in the sub-micron diameter olfactory cilia, this finding indicates that the IP(3) receptor is associated with the plasma membrane and provides the first definitive evidence for plasma membrane localization of an IP(3)R in neurons. The association of the IP(3) receptor with the plasma membrane may be a novel mechanism for regulating intracellular cations in restricted cellular compartments of neurons.  相似文献   

10.
Summary An indirect gold-labeling method utilizing the lectin from Limax flavus was employed to characterize the subcellular distribution of sialic acid in glycoconjugages of the salamander olfactory mucosa. The highest density of lectin binding sites was in secretory vesicles of sustentacular cells. Significantly lower densities of lectin binding sites were found in secretory granules of acinar cells of both Bowman's and respiratory glands. Lectin binding in acinar cells of Bowman's glands was confined primarily to electron-lucent regions and membranes of secretory granules. In the olfactory mucus, the density of lectin binding sites was greater in the region of mucus closest to the nasal cavity than in that closest to the epithelial surface. At the epithelial surface, the density of lectin binding sites associated with olfactory cilia was 2.4-fold greater than that associated with microvilli of sustentacular cells or non-ciliary plasma membranes of olfactory receptor neurons, and 7.9-fold greater than non-microvillar sustentacular cell plasma membranes. Lectin binding sites were primarily associated with the glycocalyx of olfactory receptor cilia. The cilia on cells in the respiratory epithelium contained few lectin binding sites. Thus, sialylated glycoconjugates secreted by sustentacular cells are preferentially localized in the glycocalyx of the cilia of olfactory receptor neurons.  相似文献   

11.
OLFACTORY CILIA IN THE FROG   总被引:7,自引:4,他引:3       下载免费PDF全文
Olfactory epithelium from the frog was examined in the living state by light microscopy and in the fixed state by electron microscopy. Particular attention was paid to the layer of cilia and mucus which covers the surface of the epithelium. The olfactory cilia differed from typical cilia in that they (a) arose from bipolar neurons and had centrioles near their basal bodies, (b) were up to 200 microns in length, of which the greater part was a distal segment containing an atypical array of ciliary fibers, (c) were often immotile, (d) had their distal segments arranged in parallel rows near the surface of the mucus, and (e) had many vesicles along their shafts and had splits in the array of fibers in their distal segments. These specializations make the olfactory cilia similar to cilia found on other sensory cells and support the theory that they are the locus where electrical excitation in the olfactory organ is initiated by contact with odorous substances.  相似文献   

12.
Most vertebrates have two nasal epithelia: the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). The apical surfaces of OE and VNE are covered with cilia and microvilli, respectively. In rodents, signal transduction pathways involve G alpha olf and G alpha i2/G alpha o in OE and VNE, respectively. Reeve's turtles (Geoclemys reevesii) live in a semiaquatic environment. The aim of this study was to investigate the localization of G proteins and the morphological characteristics of OE and VNE in Reeve's turtle. In-situ hybridization analysis revealed that both G alpha olf and G alpha o are expressed in olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs). Immunocytochemistry of G alpha olf/s and G alpha o revealed that these two G proteins were located at the apical surface, cell bodies, and axon bundles in ORNs and VRNs. Electron microscopic analysis revealed that ORNs had both cilia and microvilli on the apical surface of the same neuron, whereas VRNs had only microvilli. Moreover G alpha olf/s was located on only the cilia of OE, whereas G alpha o was not located on cilia but on microvilli. Both G alpha olf/s and G alpha o were located on microvilli of VNE. These results imply that, in Reeve's turtle, both G alpha olf/s and G alpha o function as signal transduction molecules for chemoreception in ORNs and VRNs.  相似文献   

13.
Chemoreception in vertebrates is beginning to be understood. Numerous anatomical, behavioral, and physiological studies are now available. Current research efforts are examining the molecular basis of chemoreception. Rainbow trout (Salmo gairdneri) have a functional olfactory system and are a suitable vertebrate model for studying odorant interactions with receptors. Using a biochemical approach, initial events of olfactory recognition were examined; the aim was to determine the location and specificity of odor receptors. Cilia occupy the distal region of the receptor neuron on the trout olfactory epithelium, and their membranes are the postulated locus of odorant receptor sites. A cilia preparation was isolated from the olfactory rosette. The preparation was characterized by quantifying biochemical markers for cilia, along with electron microscopy, all of which substantiated enrichment of cilia. Functional activity was assessed by quantifying binding of several radioactively labeled odorant amino acids. The odorants bound to the cilia in a manner similar to the sedimentable preparation previously isolated from t h e olfactory rosette of the same animal, thus verifying the presence of odor receptors in the cilia preparation. Evidence also confirmed a site TSA which binds L-threonine, L-serine, and L-alanine and a site L which binds L-lysine (and L-arginine). Binding of L-serine and D-alanine showed evidence for a single affinity site while the others showed two affinity sites. Separation of membrane fractions from the cilia preparation revealed that binding activity is associated with a very low density membrane fraction B.  相似文献   

14.
Olfactory transduction: cross-talk between second-messenger systems   总被引:6,自引:0,他引:6  
R R Anholt  A M Rivers 《Biochemistry》1990,29(17):4049-4054
Chemosensory cilia of olfactory receptor neurons contain an adenylate cyclase which is stimulated by high concentrations of odorants. Cyclic AMP produced by this enzyme has been proposed to act as second messenger in olfactory transduction. Here we report that olfactory cilia contain calmodulin and that calmodulin potently activates olfactory adenylate cyclase by a mechanism additive to and independent from direct stimulation by odorants. Activation by calmodulin is calcium dependent and enhanced by GTP. Thus, olfactory transduction may involve a second-messenger cascade in which an odorant-induced increase in intracellular calcium concentration leads to activation of adenylate cyclase by calmodulin.  相似文献   

15.
Odorant receptors and signaling proteins are localized to sensory cilia on olfactory dendrites. Using a GFP-tagged odorant receptor protein, Caenorhabditis elegans ODR-10, we characterized protein sorting and transport in olfactory neurons in vivo. ODR-10 is transported in rapidly moving dendritic vesicles that shuttle between the cell body and the cilia. Anterograde and retrograde vesicles move at different speeds, suggesting that dendrites have polarized transport mechanisms. Residues immediately after the seventh membrane-spanning domain of ODR-10 are required for localization; these residues are conserved in many G protein-coupled receptors. UNC-101 encodes a mu1 subunit of the AP-1 clathrin adaptor complex. In unc-101 mutants, dendritic vesicles are absent, ODR-10 receptor is evenly distributed over the plasma membrane, and other cilia membrane proteins are also mislocalized, implicating AP-1 in protein sorting to olfactory cilia.  相似文献   

16.
Signal transduction in many cells involves pathways that coupleligand binding to receptor proteins at the cell surface withspecialized GTP binding proteins (G proteins) which, in turn,activate a variety of intracellular effector proteins. Ciliaisolated from vertebrate olfactory receptor neurons containa unique stimulatory G protein (Golf) an odor-stimulated adenylylcyclase (AC) and both odor-gated and cyclic AMP (cAMP)-gatedchannels. Thus, it has become commonplace to emphasize the roleof this odor-activated second messenger system in the mediationof important steps in the transduction cascade which culminatesin the production of electrical activity in receptor neuronswhich, in turn, collectively participate in odor perception.Although a number of the compounds evaluated biochemically inearlier studies failed to modulate AC, the import of this findinghas remained ambiguous because the compounds’ abilityto elicit olfactory perceptions in the test animal has beenobscure. Here we have characterized the AC system in hamsterolfactory cilia and compared the regulation of cAMP productionin this tissue to the electncal activity of individual hamsterolfactory receptor neurons Several different odors, includingthe behaviorally relevant hamster sex attractant pheromone,dimethyl disulfide (DMDS) were evaluated. Amyl acetate is arobust activator of AC, a potent stimulator of action potentialproduction in individual hamster olfactory receptor neuronsand a behaviorally discriminable odor. In contrast, DMDS provesto bean ineffective modulator of AC in spite of its considerableability to activate action potential production and stimulatemale hamster investigatory behavior. Thus, it is reasonableto conclude that odor transduction involves multiple pathwaysand that DMDS, and perhaps other biologically relevant compounds,may be transduced by mechanisms other than those that involvethe modulation of cAMP production.  相似文献   

17.
Summary Intracellular calcium was measured in single olfactory neurons from the channel catfish (Icatalurus punctatus) using the fluorescent Ca2+ indicator fura 2. In 5% of the cells, olfactory stimuli (amino acids) elicited an influx of calcium through the plasma membrane which led to a rapid transient increase in intracellular calcium concentration. Amino acids did not induce release of calcium from internal stores in these cells. Some cells responded specifically to one stimulus (l-alanine,l-arginine,l-norleucine andl-glutamate) while one cell responded to all stimuli. An increase in intracellular calcium could also be elicited in 50% of the cells by direct G-protein stimulation using aluminum fluoride. Because the fraction of cells which respond to direct G-protein stimulation is substantially larger than the fraction of cells responding to amino acids, we tested for possible damage of receptor proteins due to exposure of the olfactory neurons to papain during cell isolation. We find that pretreatment with papain does not alter specific binding ofl-alanine andl-arginine to olfactory receptor sites in isolated olfactory cilia. The results are discussed in terms of their relevance to olfactory transduction.  相似文献   

18.
Cyclic AMP (cAMP) is one of the intracellular messengers that mediate odorant signal transduction in vertebrate olfactory cilia. Therefore, the diffusion coefficient of cAMP in olfactory cilia is an important factor in the transduction of the odorous signal. We have employed the excised cilium preparation from the grass frog (Rana pipiens) to measure the cAMP diffusion coefficient. In this preparation an olfactory cilium is drawn into a patch pipette and a gigaseal is formed at the base of the cilium. Subsequently the cilium is excised, allowing bath cAMP to diffuse into the cilium and activate the cyclic nucleotide-gated channels on the plasma membrane. In order to estimate the cAMP diffusion coefficient, we analyzed the kinetics of the currents elicited by step changes in the bath cAMP concentration in the absence of cAMP hydrolysis. Under such conditions, the kinetics of the cAMP-activated currents has a simple dependence on the diffusion coefficient. From the analysis we have obtained a cAMP diffusion coefficient of 2.7 +/- 0.2. 10(-6) cm2 s-1 for frog olfactory cilia. This value is similar to the expected value in aqueous solution, suggesting that there are no significant diffusional barriers inside olfactory cilia. At cAMP concentrations higher than 5 microM, diffusion slowed considerably, suggesting the presence of buffering by immobile cAMP binding sites. A plausible physiological function of such buffering sites would be to prolong the response of the cell to strong stimuli.  相似文献   

19.
Summary Adenylate cyclase activity was demonstrated in the cilia, dendritic knob and axon of rat olfactory cells by using a strontium-based cytochemical method. The activity in the cilia and the dendritic knob was enhanced by non-hydrolyzable GTP (guanosine triphosphate) analogues and forskolin, and inhibited by Ca2+, all in agreement with biochemical reports of the odorant-sensitive adenylate cyclase. The results support the hypothesis of cyclic AMP working as a second messenger in olfactory transduction and imply that the transduction sites exist not only in the olfactory cilia but also in the dendritic knob. Enzymatic activity was also observed in the olfactory dendritic shaft by treating the tissue with 0.0002% Triton X-100, although the properties and role of the enzyme in this region are uncertain. The detergent inhibited the enzymatic activity in the cilia and the dendritic knob.  相似文献   

20.
Excitatory responses recorded from vertebrate olfactory sensory neurons are characterized by long latencies compared with those from other sensory receptors. Explanations which assume free access of the stimuli to receptor molecules presumably located on the olfactory cilia necessarily imply an intrinsic delay in the transduction mechanism. In contrast, the possibility of restricted or delayed access due to diffusion of the stimulus to molecular receptors located on the dendritic know or proximal portions of the cilia suggests transduction processes having time courses similar to those in other sensory systems. We show that the threshold stimulus concentrations and the latency of the excitatory response of the salamander can be predicted primarily on the basis of a diffusional delay and that the receptor molecules are well below the surface of the mucus. Examination of response latencies for other species reported in the literature support the generality of diffusional delay. The predicted location of molecular receptor sites is largely insensitive to assumptions based on the mode of clearance of the stimuli. Additional access restrictions are discussed but are shown to generate qualitatively different latency functions than does diffusion, suggesting that they exert only minor influences on latency and threshold characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号