首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The epithelial Na+ channel (ENaC) absorbs Na+ across the apical membrane of epithelia. The activity of ENaC is controlled by its interaction with Nedd4; mutations that disrupt this interaction increase Na+ absorption, causing an inherited form of hypertension (Liddle's syndrome). Nedd4 contains an N-terminal C2 domain, a C-terminal ubiquitin ligase domain, and multiple WW domains. The C2 domain is thought to be involved in the Ca2+-dependent localization of Nedd4 at the cell surface. However, we found that the C2 domain was not required for human Nedd4 (hNedd4) to inhibit ENaC in both Xenopus oocytes and Fischer rat thyroid epithelia. Rather, hNedd4 lacking the C2 domain inhibited ENaC more potently than wild-type hNedd4. Earlier work indicated that the WW domains bind to PY motifs in the C terminus of ENaC. However, it is not known which WW domains mediate this interaction. Glutathione S-transferase-fusion proteins of WW domains 2-4 each bound to alpha, beta, and gammaENaC in vitro. The interactions were abolished by mutation of two residues. WW domain 3 (but not the other WW domains) was both necessary and sufficient for the binding of hNedd4 to alphaENaC. WW domain 3 was also required for the inhibition of ENaC by hNedd4; inhibition was nearly abolished when WW domain 3 was mutated. However, the interaction between ENaC and WW domain 3 alone was not sufficient for inhibition. Moreover, inhibition was decreased by mutation of WW domain 2 or WW domain 4. Thus, WW domains 2-4 each participate in the functional interaction between hNedd4 and ENaC in intact cells.  相似文献   

3.
Although recent studies show that the 14-3-3 protein is a negative regulator of ubiquitin E3 protein ligases, the molecular mechanism remains largely unknown. We previously demonstrated that 14-3-3 specifically binds one of the E3 enzymes, Nedd4-2 (a human gene product of KIAA0439, termed hNedd4-2), which can be phosphorylated by serum glucocorticoid-inducible protein kinase 1 (SGK1); this binding protects the phosphorylated/inactive hNedd4-2 from phosphatase-catalyzed dephosphorylation [Ichimura, T., et al. (2005) J. Biol. Chem. 280, 13187-13194]. Here we report an additional mechanism of 14-3-3-mediated regulation of hNedd4-2. Using surface plasmon resonance spectrometry, we show that 14-3-3 inhibits the interaction between the WW domains of hNedd4-2 and the PY motif of the epithelial Na(+) channel, ENaC. The inhibition was dose-dependent and was dependent on SGK1-catalyzed phosphorylation of Ser468 located between the WW domains. Importantly, a mutant of hNedd4-2, which can be phosphorylated by SGK1 but cannot bind 14-3-3, reduced SGK1-mediated stimulation of the ENaC-induced current in Xenopus laevis oocytes. In addition, 14-3-3 had similar effects on hNedd4-2 that had been phosphorylated by cAMP-dependent protein kinase (PKA). Our results, together with the recent finding on 14-3-3/parkin interactions [Sato, S., et al. (2006) EMBO J. 25, 211-221], suggest that 14-3-3 suppresses ubiquitin E3 ligase activities by inhibiting the formation of the enzyme/substrate complex.  相似文献   

4.
The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy.  相似文献   

5.
Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein-protein interaction domains containing two conserved tryptophan residues) that bind PY motifs (L/PPXY) and a ubiquitin ligase HECT (homologous with E6-associated protein C-terminus) domain. In the present paper we show that the WW domains of Nedd4-2 bind (weakly) to a PY motif (LPXY) located within its own HECT domain and inhibit auto-ubiquitination. Pulse-chase experiments demonstrated that mutation of the HECT PY-motif decreases the stability of Nedd4-2, suggesting that it is involved in stabilization of this E3 ligase. Interestingly, the HECT PY-motif mutation does not affect ubiquitination or down-regulation of a known Nedd4-2 substrate, ENaC (epithelial sodium channel). ENaC ubiquitination, in turn, appears to promote Nedd4-2 self-ubiquitination. These results support a model in which the inter- or intra-molecular WW-domain-HECT PY-motif interaction stabilizes Nedd4-2 by preventing self-ubiquitination. Substrate binding disrupts this interaction, allowing self-ubiquitination of Nedd4-2 and subsequent degradation, resulting in down-regulation of Nedd4-2 once it has ubiquitinated its target. These findings also point to a novel mechanism employed by a ubiquitin ligase to regulate itself differentially compared with substrate ubiquitination and stability.  相似文献   

6.
Nedd4-2 is an archetypal HECT ubiquitin E3 ligase that disposes target proteins for degradation. Because of the proven roles of Nedd4-2 in degradation of membrane proteins, such as epithelial Na+ channel, we examined the effect of Nedd4-2 on the apical Ca2+ channel TRPV6, which is involved in transcellular Ca2+ transport in the intestine using the Xenopus laevis oocyte system. We demonstrated that a significant amount of Nedd4-2 protein was distributed to the absorptive epithelial cells in ileum, cecum, and colon along with TRPV6. When co-expressed in oocytes, Nedd4-2 and, to a lesser extent, Nedd4 down-regulated the protein abundance and Ca2+ influx of TRPV6 and TRPV5, respectively. TRPV6 ubiquitination was increased, and its stability was decreased by Nedd4-2. The Nedd4-2 inhibitory effects on TRPV6 were partially blocked by proteasome inhibitor MG132 but not by the lysosome inhibitor chloroquine. The rate of TRPV6 internalization was not significantly altered by Nedd4-2. The HECT domain was essential to the inhibitory effect of Nedd4-2 on TRPV6 and to their association. The WW1 and WW2 domains interacted with TRPV6 terminal regions, and a disruption of the interactions by D204H and D376H mutations in the WW1 and WW2 domains increased TRPV6 ubiquitination and degradation. Thus, WW1 and WW2 may serve as a molecular switch to limit the ubiquitination of TRPV6 by the HECT domain. In conclusion, Nedd4-2 may regulate TRPV6 protein abundance in intestinal epithelia by controlling TRPV6 ubiquitination.  相似文献   

7.
Viral infectivity factor (Vif) is one of the human immunodeficiency virus (HIV) accessory proteins and is conserved in the primate lentivirus group. This protein is essential for viral replication in vivo and for productive infection of nonpermissive cells, such as peripheral blood mononuclear cells (PBMC). Vif counteracts an antiretroviral cellular factor in nonpermissive cells named CEM15/APOBEC3G. Although HIV type 1 (HIV-1) Vif protein (Vif1) can be functionally replaced by HIV-2 Vif protein (Vif2), its identity is very small. Most of the functional studies have been carried out with Vif1. Characterization of functional domains of Vif2 may elucidate its function, as well as differences between HIV-1 and HIV-2 infectivity. Our aim was to identify the permissivity of different cell lines for HIV-2 vif-minus viruses. By mutagenesis specific conserved motifs of HIV-2 Vif protein were analyzed, as well as in conserved motifs between Vif1 and Vif2 proteins. Vif2 mutants were examined for their stability, expression, and cellular localization in order to characterize essential domains of Vif2 proteins. Viral replication in various target cells (PBMC and H9, A3.01, U38, and Jurkat cells) and infectivity in single cycle assays in the presence of APOBEC3G were also analyzed. Our results of viral replication show that only PBMC have a nonpermissive phenotype in the absence of Vif2. Moreover, the HIV-1 vif-minus nonpermissive cell line H9 does not show a similar phenotype for vif-negative HIV-2. We also report a limited effect of APOBEC3G in a single-cycle infectivity assay, where only conserved domains between HIV-1 and HIV-2 Vif proteins influence viral infectivity. Taken together, these results allow us to speculate that viral inhibition by APOBEC3G is not the sole and most important determinant of antiviral activity against HIV-2.  相似文献   

8.
《Biophysical journal》2022,121(7):1299-1311
Neural precursor cells expressed developmentally downregulated protein 4-2 (Nedd4-2), a homologous to the E6-AP carboxyl terminus (HECT) ubiquitin ligase, triggers the endocytosis and degradation of its downstream target molecules by regulating signal transduction through interactions with other targets, including 14-3-3 proteins. In our previous study, we found that 14-3-3 binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Here, we used time-resolved fluorescence intensity and anisotropy decay measurements, together with fluorescence quenching and mass spectrometry, to further characterize interactions between Nedd4-2 and 14-3-3 proteins. The results showed that 14-3-3 binding affects the emission properties of AEDANS-labeled WW3, WW4, and, to a lesser extent, WW2 domains, and reduces their mobility, but not those of the WW1 domain, which remains mobile. In contrast, 14-3-3 binding has the opposite effect on the active site of the HECT domain, which is more solvent exposed and mobile in the complexed form than in the apo form of Nedd4-2. Overall, our results suggest that steric hindrance of the WW3 and WW4 domains combined with conformational changes in the catalytic domain may account for the 14-3-3 binding-mediated regulation of Nedd4-2.  相似文献   

9.
Sprouty (Spry) proteins are important regulators of receptor tyrosine kinase signaling in development and disease. Alterations in cellular Spry content have been associated with certain forms of cancers and also in cardiovascular diseases. Thus, understanding the mechanisms that regulate cellular Spry levels are important. Herein, we demonstrate that Spry1 and Spry2, but not Spry3 or Spry4, associate with the HECT domain family E3 ubiquitin ligase, Nedd4. The Spry2/Nedd4 association involves the WW domains of Nedd4 and requires phosphorylation of the Mnk2 kinase sites, Ser112 and Ser121, on Spry2. The phospho-Ser112/121 region on Spry2 that binds WW domains of Nedd4 is a novel non-canonical WW domain binding region that does not contain Pro residues after phospho-Ser. Endogenous and overexpressed Nedd4 polyubiquitinate Spry2 via Lys48 on ubiquitin and decrease its stability. Silencing of endogenous Nedd4 increased the cellular Spry2 content and attenuated fibroblast growth factor-elicited ERK1/2 activation that was reversed when elevations in Spry2 levels were prevented by Spry2-specific small interfering RNA. Mnk2 silencing decreased Spry2-Nedd4 interactions and also augmented the ability of Spry2 to inhibit fibroblast growth factor signaling. This is the first report demonstrating the regulation of cellular Spry content and its ability to modulate receptor tyrosine kinase signaling by a HECT domain-containing E3 ubiquitin ligase.  相似文献   

10.
The Nedd4 family E3 ligases are key regulators of cell growth and proliferation and are often misregulated in human cancers and other diseases. The ligase activities of Nedd4 E3s are tightly controlled via auto‐inhibition. However, the molecular mechanism underlying Nedd4 E3 auto‐inhibition and activation is poorly understood. Here, we show that the WW domains proceeding the catalytic HECT domain play an inhibitory role by binding directly to HECT in the Nedd4 E3 family member Itch. Our structural and biochemical analyses of Itch reveal that the WW2 domain and a following linker allosterically lock HECT in an inactive state inhibiting E2‐E3 transthiolation. Binding of the Ndfip1 adaptor or JNK1‐mediated phosphorylation relieves the auto‐inhibition of Itch in a WW2‐dependent manner. Aberrant activation of Itch leads to migration defects of cortical neurons during development. Our study provides a new mechanism governing the regulation of Itch.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) Vif plays a crucial role in the viral life cycle by antagonizing a host restriction factor APOBEC3G (A3G). Vif interacts with A3G and induces its polyubiquitination and subsequent degradation via the formation of active ubiquitin ligase (E3) complex with Cullin5-ElonginB/C. Although Vif itself is also ubiquitinated and degraded rapidly in infected cells, precise roles and mechanisms of Vif ubiquitination are largely unknown. Here we report that MDM2, known as an E3 ligase for p53, is a novel E3 ligase for Vif and induces polyubiquitination and degradation of Vif. We also show the mechanisms by which MDM2 only targets Vif, but not A3G that binds to Vif. MDM2 reduces cellular Vif levels and reversely increases A3G levels, because the interaction between MDM2 and Vif precludes A3G from binding to Vif. Furthermore, we demonstrate that MDM2 negatively regulates HIV-1 replication in non-permissive target cells through Vif degradation. These data suggest that MDM2 is a regulator of HIV-1 replication and might be a novel therapeutic target for anti-HIV-1 drug.  相似文献   

12.
HECT domain E3 ubiquitin ligases of the NEDD4 family control many cellular processes, but their regulation is poorly understood. They contain multiple WW domains that recognize PY elements. Here, we show that the small PY‐containing membrane proteins, NDFIP1 and NDFIP2 (NEDD4 family‐interacting proteins), activate the catalytic activity of ITCH and of several other HECT ligases by binding to them. This releases them from an autoinhibitory intramolecular interaction, which seems to be characteristic of these enzymes. Activation of ITCH requires multiple PY–WW interactions, but little else. Binding of NDFIP proteins is highly dynamic, potentially allowing activated ligases to access other PY‐containing substrates. In agreement with this, NDFIP proteins promote ubiquitination in vivo both of Jun proteins, which have a PY motif, and of endophilin, which does not.  相似文献   

13.
Retroviruses engage the ESCRT pathway through late assembly (L) domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA). The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release.  相似文献   

14.
Nedd4-1 (neuronal precursor cell expressed developmentally downregulated gene 4-1) is an E3 ubiquitin ligase that interacts with and negatively regulates the epithelial Na+ channel (ENaC). The WW domains of Nedd4-1 bind to the ENaC subunits via recognition of PY motifs. Human Nedd4-1 (hNedd4-1) contains four WW domains with the third domain (WW3*) showing the strongest affinity to the PY motif. To understand the mechanism underlying this binding affinity, we have carried out NMR structural and dynamics analyses of the hNedd4-1 WW3* domain in complex with a peptide comprising the C-terminal tail of the human ENaC α-subunit. The structure reveals that the peptide interacts in a similar manner to other WW domain–ENaC peptide structures. Crucial interactions that likely provide binding affinity are the broad XP groove facilitating additional contacts between the WW3* domain and the peptide, compared to similar complexes, and the large surface area buried (83 Å2) between R430 (WW3*) and L647′ (αENaC). This corroborates the model-free analysis of the 15N backbone relaxation data, which showed that R430 is the most rigid residue in the domain (S2 = 0.90 ± 0.01). Carr–Purcell–Meiboom–Gill relaxation dispersion analysis identified two different conformational exchange processes on the μs–ms time-scale. One of these processes involves residues located at the peptide binding interface, suggesting conformational exchange may play a role in peptide recognition. Thus, both structural and dynamic features of the complex appear to define the high binding affinity. The results should aid interpretation of biochemical data and modeling interfaces between Nedd4-1 and other interacting proteins.  相似文献   

15.
Zuo T  Liu D  Lv W  Wang X  Wang J  Lv M  Huang W  Wu J  Zhang H  Jin H  Zhang L  Kong W  Yu X 《Journal of virology》2012,86(10):5497-5507
The HIV-1 viral infectivity factor (Vif) protein is essential for viral replication. Vif recruits cellular ElonginB/C-Cullin5 E3 ubiquitin ligase to target the host antiviral protein APOBEC3G (A3G) for proteasomal degradation. In the absence of Vif, A3G is packaged into budding HIV-1 virions and introduces multiple mutations in the newly synthesized minus-strand viral DNA to restrict virus replication. Thus, the A3G-Vif-E3 complex represents an attractive target for development of novel anti-HIV drugs. In this study, we identified a potent small molecular compound (VEC-5) by virtual screening and validated its anti-Vif activity through biochemical analysis. We show that VEC-5 inhibits virus replication only in A3G-positive cells. Treatment with VEC-5 increased cellular A3G levels when Vif was coexpressed and enhanced A3G incorporation into HIV-1 virions to reduce viral infectivity. Coimmunoprecipitation and computational analysis further attributed the anti-Vif activity of VEC-5 to the inhibition of Vif from direct binding to the ElonginC protein. These findings support the notion that suppressing Vif function can liberate A3G to carry out its antiviral activity and demonstrate that regulation of the Vif-ElonginC interaction is a novel target for small-molecule inhibitors of HIV-1.  相似文献   

16.
Nedd4-family E3 ubiquitin ligases regulate an array of biologic processes. Autoinhibition maintains these catalytic ligases in an inactive state through several mechanisms. However, although some Nedd4 family members are activated by binding to Nedd4 family-interacting proteins (Ndfips), how binding activates E3 function remains unclear. Our data reveal how these two regulatory processes are linked functionally. In the absence of Ndfip1, the Nedd4 family member Itch can bind an E2 but cannot accept ubiquitin onto its catalytic cysteine. This is because Itch is autoinhibited by an intramolecular interaction between its HECT (homologous to the E6-AP carboxy terminus domain) and two central WW domains. Ndfip1 binds these WW domains to release the HECT, allowing trans-thiolation and Itch catalytic activity. This molecular switch also regulates the closely related family member WWP2. Importantly, multiple PY motifs are required for Ndfip1 to activate Itch, functionally distinguishing Ndfips from single PY-containing substrates. These data establish a novel mechanism for control of the function of a subfamily of Nedd4 E3 ligases at the level of E2-E3 trans-thiolation.  相似文献   

17.
RNA interference screen previously revealed that a HECT-domain E3 ubiquitin ligase, neuronal precursor cell expressed, developmentally down-regulated 4-2 (Nedd4-2), is necessary for ubiquitination and endocytosis of the dopamine transporter (DAT) induced by the activation of protein kinase C (PKC). To further confirm the role of Nedd4-2 in DAT ubiquitination and endocytosis, we demonstrated that the depletion of Nedd4-2 by two different small interfering RNA (siRNA) duplexes suppressed PKC-dependent ubiquitination and endocytosis of DAT in human and porcine cells, whereas knock-down of a highly homologous E3 ligase, Nedd4-1, had no effect on DAT. The abolished DAT ubiquitination in Nedd4-2-depleted cells was rescued by expression of recombinant Nedd4-2. Moreover, overexpression of Nedd4-2 resulted in increased PKC-dependent ubiquitination of DAT. Mutational inactivation of the HECT domain of Nedd4-2 inhibited DAT ubiquitination and endocytosis. Structure-function analysis of Nedd4-2-mediated DAT ubiquitination revealed that the intact WW4 domain and to a lesser extent WW3 domain are necessary for PKC-dependent DAT ubiquitination. Moreover, a fragment of the Nedd4-2 molecule containing WW3, WW4, and HECT domains was sufficient for fully potentiating PKC-dependent ubiquitination of DAT. Analysis of DAT ubiquitination using polyubiquitin chain-specific antibodies showed that DAT is mainly conjugated with Lys63-linked ubiquitin chains. siRNA analysis demonstrated that this polyubiquitination is mediated by Nedd4-2 cooperation with UBE2D and UBE2L3 E2 ubiquitin-conjugating enzymes. The model is proposed whereby each ubiquitinated DAT molecule is modified by a single four-ubiquitin Lys63-linked chain that can be conjugated to various lysine residues of DAT.  相似文献   

18.
Cbl proteins have RING finger-dependent ubiquitin ligase (E3) activity that is essential for down-regulation of tyrosine kinases. Here we establish that two WW domain HECT E3s, Nedd4 and Itch, bind Cbl proteins and target them for proteasomal degradation. This is dependent on the E3 activity of the HECT E3s but not on that of Cbl. Consistent with these observations, in cells expressing the epidermal growth factor receptor, Nedd4 reverses Cbl-b effects on receptor down-regulation, ubiquitylation, and proximal events in signaling. Cbl-b also targets active Src for degradation in cells, and Nedd4 similarly reverses Cbl-mediated Src degradation. These findings establish that RING finger E3s can be substrates, not only for autoubiquitylation but also for ubiquitylation by HECT E3s and suggest an additional level of regulation for Cbl substrates including protein-tyrosine kinases.  相似文献   

19.
HIV-1 Vif assembles the Cul5-EloB/C E3 ubiquitin ligase to induce proteasomal degradation of the cellular antiviral APOBEC3 proteins. Detailed structural studies have confirmed critical functional domains in Vif that we have previously identified as important for the interaction of EloB/C, Cul5, and CBFβ. However, the mechanism by which Vif recognizes substrates remains poorly understood. Specific regions of Vif have been identified as being responsible for binding and depleting APOBEC3G and APOBEC3F. Interestingly, we have now identified distinct yet overlapping domains that are required for HIV-1 Vif-mediated G2/M-phase cell cycle arrest and APOBEC3H degradation, but not for the inactivation of APOBEC3G or APOBEC3F. Surprisingly, Vif molecules from primary HIV-1 variants that caused G2/M arrest were unable to inactivate APOBEC3H; on the other hand, HIV-1 Vif variants that could inactivate APOBEC3H were unable to induce G2/M arrest. All of these Vif variants still maintained the ability to inactivate APOBEC3G/F. Thus, primary HIV-1 variants have evolved to possess distinct functional activities that allow them to suppress APOBEC3H or cause G2 cell cycle arrest, using mutually exclusive interface domains. APOBEC3H depletion and G2 arrest are apparently evolutionary selected features that cannot co-exist on a single Vif molecule. The existence and persistence of both types of HIV-1 Vif variant suggests the importance of APOBEC3H suppression and cell cycle regulation for HIV-1''s survival in vivo.  相似文献   

20.
Vana ML  Tang Y  Chen A  Medina G  Carter C  Leis J 《Journal of virology》2004,78(24):13943-13953
Rous sarcoma virus (RSV) budding requires an interaction of the L domain within the p2b region of Gag with cellular Nedd4-family E3 ubiquitin protein ligases. Members of our laboratories previously demonstrated that overexpression of a fragment of the chicken Nedd4-like protein (LDI-1 WW) inhibits Gag release in a dominant-negative manner (A. Kikonyogo, F. Bouamr, M. L. Vana, Y. Xiang, A. Aiyar, C. Carter, and J. Leis, Proc. Natl. Acad. Sci. USA 98:11199-11204, 2001). We have now identified the complete 3' end of LDI-1 and determined that it has a C-terminal ubiquitin ligase HECT domain, similar to other Nedd4 family members. While overexpression of the full-length LDI-1 clone (LDI-1 FL) had little effect on Gag budding, an LDI-1 FL mutant with a substitution in the HECT domain catalytic site blocked Gag release, similar to LDI-1 WW. The coexpression of Gag and hemagglutinin-tagged ubiquitin (HA-Ub) resulted in the detection of mono- and polyubiquitinated forms of Gag in cells and mostly monoubiquitinated Gag in virus-like particles (VLPs). When the Nedd4-binding site (L domain) was deleted, ubiquitinated Gag was not detected. Interestingly, the release of Gag with ubiquitin covalently linked to the C terminus (Gag-Ub) was still blocked by LDI-1 WW. To understand the mechanism of this inhibition, we examined cells expressing Gag and LDI-1 WW by electron microscopy. In the presence of LDI-1 WW, VLPs were found in electron-dense inclusion bodies in the cytoplasm of transfected cells. In contrast, when cells that coexpressed Gag-Ub and LDI-1 WW were examined, inclusion bodies were detected but did not contain VLPs. These results indicate that the ubiquitination of Gag is dependent upon Nedd4 binding to the L domain and suggest that Nedd4 has additional functions during RSV release besides the ubiquitination of Gag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号