首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The timing of ovulation relative to the onset of oestrus and the preovulatory surge in luteinizing hormone (LH) was studied in red deer following treatments to synchronize oestrus and induce either a monovulatory or superovulatory response. Mature hinds (n = 36) were allocated randomly to two mating groups (n = 16 + 20), with respective treatments staggered by 4 weeks during the 1990 rut (March-April). Each hind was treated with an intravaginal controlled internal drug releasing (CIDR)-type S device for 14 days. Treatments to induce a monovulatory response included CIDR device alone (treatment A; n = 4 + 8) and additional injection of 200 iu pregnant mares' serum gonadotrophin (PMSG) at device removal (treatment B; n = 4 + 4). Treatments to induce a superovulatory response included injections of 200 iu PMSG and 0.5 units ovine follicle-stimulating hormone (FSH) at about time of removal of CIDR devices (treatment C; n = 4 + 4) and further treatment with gonadotrophin-releasing hormone (GnRH) analogue 18 h after removal of CIDR devices (treatment D; n = 4 + 4). The hinds were run with crayon-harnessed stags from insertion of CIDR devices (12 March or 9 April) and blood samples were taken every second day to determine plasma progesterone. Further blood samples were collected for determination of plasma LH and progesterone via indwelling jugular cannulae every 2 h for 72 h from removal of CIDR devices. Hinds were allocated randomly to an initial ovarian examination by laparoscopy at either 16 or 20 h (A and B), or 12 or 16 h (C and D) after the onset of oestrus, with laparoscopy repeated at intervals of 8 h until either ovulation was recorded (A and B), or for four successive occasions (C and D). All hinds received cloprostenol injections 15 days after device removal. A total of 28 hinds (78%) exhibited oestrus and a preovulatory LH surge, with mean (+/- SEM) times to onset of oestrus of 44.6 +/- 1.0 h (A; n = 7), 37.4 +/- 2.0 h (B; n = 7), 16.3 +/- 1.7 h (C; n = 6) or 14.0 +/- 1.7 h (D; n = 8). Failure to exhibit oestrus or LH surge was most prevalent among hinds in treatment A early in the rut.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The impact of male presence or absence on the timing of the preovulatory LH surge and estrus was studied in 3 experimental groups (n = 6/group) of Eld's deer hinds pretreated with intravaginal progesterone-releasing devices (CIDR-type G) as follows: Group 1 = indirect male contact barn; Group 2 = direct male contact barn; and Group 3 = male isolation barn. For all hinds, the duration of the preovulatory LH surge averaged 2.5+/-0.5 h, whereas mean peak preovulatory and basal LH concentrations were 2.9+/-0.2 ng mL(-1) and 0.27+/-0.03 ng mL(-1), respectively. Nine of 12 male-exposed hinds exhibited a preovulatory LH surge within 24 to 32 h postCIDR device withdrawal, whereas 0 of 6 male-isolated hinds exhibited a preovulatory LH surge during the same time period. Onset of behavioral estrus (45.2+/-2.3, 52.7+/-5.7 and 66.3+/-1.8 h, respectively) was significantly advanced (P<0.05) after CIDR device withdrawal in male exposed hinds (Groups 1 and 2) compared with male isolated hinds (Group 3). These data suggest that stag exposure is important for modulating the timing of the preovulatory LH surge and behavioral estrus after synchronization of estrus with exogenous progestagens.  相似文献   

3.
A study was conducted to determine the timing of ovulation relative to the onset of oestrus and the preovulatory LH surge in fallow deer. Mature fallow does were randomly allocated to two treatments (N = 10 per treatment) designed to synchronize oestrus on or about 17 May. Does assigned to Group 1 (prostaglandin-induced oestrus) each initially received single intravaginal CIDR [Controlled Internal Drug Release] devices for 13 days followed by an i.m. injection of 750 mg cloprostenol on Day 12 (15 May) of the subsequent luteal cycle. Does assigned to Group 2 (progesterone-induced oestrus) each received CIDR devices for 13 days, with withdrawal occurring on 15 May. All does were run with crayon-harnessed bucks (10:1 ratio) from the start of synchronization (18:00 h 15 May). Ten does (5 per group) were blood sampled via indwelling jugular cannulae every 2 h for 72 h from cloprostenol injection or CIDR device withdrawal and the plasma was analysed for concentrations of progesterone and LH by radioimmunoassay. Does within each treatment were randomly allocated to an ovarian examination time of 12, 16, 20 or 24 h after the onset of oestrus. Laparoscopy was repeated at 12-h intervals until ovulation was recorded. The ovaries of does failing to exhibit oestrus were examined 72 and 86 h after cloprostenol injection or CIDR device withdrawal. A total of 17 does were observed to exhibit oestrus at a mean (+/- s.e.m.) interval from treatment of 44.6 +/- 3.6 h for Group 1 (N = 9) and 34.1 +/- 2.5 h for Group 2 (N = 8).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n=12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38h after the first PGF2alpha injection, blood sampling and ovarian ultrasonography took place every 4h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7+/-4.9 and 72.3+/-3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin), total dose=200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2alpha, to minimize stress, only seven blood samples were collected at 4h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6+/-1.6 and 59.5+/-1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0+/-2.6 ng/ml (mean+/-S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation.  相似文献   

5.
Père David's deer hinds were treated with GnRH, administered as intermittent i.v. injections (2.0 micrograms/injection at 2-h intervals) for 4 days, or as a continuous s.c. infusion (1.0 micrograms/h) for 14 days. These treatments were given early (February-March) and late (May-June) in the period of seasonal anoestrus. The administration of repeated injections of GnRH increased mean LH concentrations from pretreatment values of 0.54 +/- 0.09 to 2.10 +/- 0.25 ng/ml over the first 8 h of treatment in early anoestrus, and from 0.62 +/- 0.11 to 2.73 +/- 0.49 ng/ml in late anoestrus. The mean amplitude of GnRH-induced LH episodes was greater (P less than 0.01) in late (4.03 +/- 0.28 ng/ml) than in early (3.12 +/- 0.26 ng/ml) anoestrus, but within each replicate (early or late anoestrus), neither mean LH episode amplitude nor mean plasma LH concentrations differed significantly between the four periods of intensive blood sampling. On the basis of their progesterone profiles, 6/12 hinds had ovulated in response to treatment with injections of GnRH (1/6 in early anoestrus and 5/6 in late anoestrus), and oestrus and a preovulatory LH surge were recorded in all of these animals. Oestrus and a preovulatory LH surge were also recorded in one other animal treated in early anoestrus in which progesterone concentrations remained low. The mean times of onset of oestrus (91.0 +/- 1.00 and 62.4 +/- 0.98 h) and of the preovulatory LH surge (85.8 +/- 3.76 and 59.4 +/- 0.25 h) both occurred significantly earlier (P less than 0.001) in animals treated in late anoestrus. Continuous infusion of GnRH to seasonally anoestrous hinds resulted in an increase in mean plasma LH concentrations, but this response did not differ significantly between early (2.15 +/- 0.28 ng/ml) and late (2.48 +/- 0.26 ng/ml) anoestrus. Ovulation, based on progesterone profiles, occurred in 2/7 hinds in early anoestrus and in 4/6 hinds in late anoestrus. Oestrus was detected in all except one of these hinds. The mean time of onset of oestrus occurred earlier in animals treated in late anoestrus (66.2 +/- 0.32 h and 46.7 +/- 0.67 h, P less than 0.01). The administration of GnRH, given either intermittently or continuously, will induce ovulation in a proportion of seasonally anoestrous Père David's deer. However, more animals ovulate in response to this treatment in late than in early anoestrus (75% compared with 23%).  相似文献   

6.
The objective of the current study was to develop an ovine animal model for consistent study of uterine blood flow (UBF) changes during synchronized ovarian cycles regardless of season. Sheep were surgically bilaterally instrumented with uterine artery blood flow transducers and 5-7 days later implanted with a vaginal progesterone (P(4))-controlled internal drug-releasing device (CIDR; 0.3 g) for 7 days. On Day 6 of P(4), sheep were given two prostaglandin F(2 alpha) injections (7.5 mg i.m. 4 h apart). At CIDR removal, Experimental Day 0, zero (n = 9), 500 IU (n = 8), or 1000 IU (n = 7) eCG was injected i.m.; UBF was monitored continuously for 55-75 h. Jugular blood was sampled every 8 h to evaluate levels of P(4), estradiol-17 beta (E(2)beta) and luteinizing hormone (LH). The inhibitor of nitric oxide synthase, L-nitro-arginine methyl ester (L-NAME) was infused in a stepwise fashion unilaterally into one uterine artery at 48-50 h after 500 IU eCG and the effects on UBF were examined (n = 7). The zero-eCG group gradually increased UBF from a baseline of 17.4 +/- 3.9 to 80.5 +/- 1.1 ml/min. The 500-IU-eCG group increased UBF between 10 and 15 h from a baseline of 11 +/- 3.3 to 83.3 +/- 1.0 ml/min, whereas UBF for the 1000-IU-eCG group was higher (100.1 +/- 1.7 ml/min) than that seen in either of the other groups. Plasma P(4) fell to baseline within 8 h of CIDR removal, while E(2)beta rose gradually in association with elevations in UBF. LH surges occurred between 32 and 56 h after CIDR removal and the LH surge occurred earlier in the 1000-IU-eCG group than the other two groups (P < 0.01). L-NAME infusion dose dependently reduced maximum levels of UBF ipsilaterally by 54.6% +/- 6.2%, but contralaterally only by 27.4% +/- 8.5%. Regardless of season, either dose of eCG will result in analogous UBF responses. During the follicular phase, elevations in UBF are in part locally controlled by the de novo production of nitric oxide.  相似文献   

7.
Changes in the secretion of LH during the oestrous cycle were studied in 5 tame Père David's deer in which ovulation was synchronized with progesterone implants and prostaglandin injections. Plasma LH concentrations were measured in samples collected at 15-min intervals for a 36-h period, starting 16 h after the removal of the progesterone implants (follicular phase), and for a further 10-h period 10 days after the removal of the progesterone implants (luteal phase). In all animals, there was a preovulatory surge of LH and behavioural oestrus which occurred at a mean time of 59.6 h (+/- 3.25) and 69 h respectively following implant removal. LH pulse frequency was significantly higher during the follicular phase (0.59 +/- 0.03 pulses/h) than the luteal phase (0.24 +/- 0.2 pulses/h), thus confirming in deer findings from research on domesticated ruminants. There were no significant differences between the follicular and luteal phases in mean plasma LH concentrations (0.57 +/- 0.09 and 0.74 +/- 0.13 ng/ml) or mean pulse amplitude (0.99 +/- 0.14 and 1.05 +/- 0.21 ng/ml) for the follicular and luteal phase respectively. The long interval from the removal of progesterone to the onset of the LH surge and the absence of a significant difference in mean LH concentration or pulse amplitude in the follicular and luteal phases resemble published data for cattle but differ from sheep in which there is a short interval from luteal regression to the onset of the surge and a marked increase in LH pulse amplitude during the luteal phase.  相似文献   

8.
Hair sheep ewes (St. Croix White and Barbados Blackbelly) were used to evaluate 3 methods of estrus synchronization for use with transcervical artificial insemination (TAI). To synchronize estrus, ewes (n = 18) were treated with PGF2alpha (15 mg, im) 10 d apart, with controlled internal drug release (CIDR) devices containing 300 mg progesterone for 12 d (n = 18), or with intravaginal sponges containing 500 mg progesterone for 12 d (n = 18). On the day of the second PGF2alpha injection or at CIDR or sponge removal, sterile rams were placed with the ewes. Jugular blood samples were collected from the ewes at 6-h intervals until the time of ovulation, and daily for 16 d after estrus (Day 0). Plasma was harvested and stored at -20 degrees C until LH, and progesterone concentrations were determined by RIA. There was no difference (P>0.10) in time to estrus among the CIDR-, PGF2alpha- or sponge-treated ewes. All of the ewes in the CIDR group and 94.4% of the sponge treated ewes exhibited estrus by 36 h after ram introduction, while only 72.2% of PGF2alpha-treated ewes showed signs of estrus by this time (P<0.06). The time from ram introduction to ovulation was not different (P>0.10) among the CIDR-, PGF2alpha- or sponge-treated ewes. The time to the preovulatory LH surge was similar (P>0.10) among CIDR, PGF2alpha and sponge treated ewes. Progesterone levels through Day 16 after the synchronized estrus were not different (P>0.10) among treatment groups. Hair sheep ewes (n = 23) were synchronized using PGF2alpha and bred by TAI using frozen-thawed semen 48 h after the second injection. The conception rate to TAI was 2/23 (8.7%) and produced 3 ram lambs. In a subsequent trial, 17 ewes were synchronized with CIDR devices and bred by TAI using frozen-thawed semen 48 h after CIDR removal, resulting in a conception rate of 52.9% (9/17). It is possible to synchronize estrus in hair sheep using either CIDRs, sponges or PGF2alpha. Even though there were no significant differences in the timing of ovulation or the LH surge among the treatment groups, a higher conception rate was achieved in ewes synchronized with CIDR devices during the second trial. This may reflect an increase in the skill level of the TAI technician.  相似文献   

9.
The pattern of change in plasma progesterone and LH concentrations was monitored in Clun Forest ewes at a natural oestrus and compared to that observed after removal of progesterone implants. The rate of decline in plasma progesterone concentrations after implant withdrawal (1.8 +/- 0.2 ng/ml h-1) was significantly greater (P less than 0.001) than that observed at natural luteolysis (0.2 +/- 0.1 ng/ml h-1), and this resulted in an abnormal pattern of change in tonic LH secretion up to the time of the preovulatory LH surge. This more rapid rate of progesterone removal was also associated with a shortening of the intervals from the time that progesterone concentrations attained basal values to the onset of oestrus (P less than 0.05) and the onset of the preovulatory LH surge (P less than 0.01). However, there were no significant differences in the duration of the LH peak, preovulatory peak LH concentration, ovulation rate or the pattern of progesterone concentrations in the subsequent cycle. It is suggested that the abnormal patterns of change in progesterone and tonic LH concentrations may be one factor involved in the impairment of sperm transport and abnormal patterns of oestradiol secretion known to occur at a synchronized oestrus.  相似文献   

10.
Mortality of newborn red deer (Cervus elaphus) calves is a major concern on New Zealand farms, as perinatal losses average approximately 10% of calves born. Primiparous red deer (calving as yearlings) lose more calves than multiparous hinds (adults). We performed a study on yearling and adult red deer hinds in order to improve knowledge of their calving behaviour and determine any apparent reasons for calf mortality. Pacing along fence lines was observed frequently during the 24 h period before birth (individuals were pacing in 43% of observations during this period). Adult hinds had a significantly earlier onset and longer duration of pacing (P<0.05). Hinds were often observed isolated (>20 m) from the rest of the herd during the 2 days prior to parturition, and this behaviour was also observed earlier in the adults than in the yearlings (P<0.05). Forty-four percent of adult hinds and 60% of yearlings experienced some form of interference from other hinds during parturition. Among hinds that were interfered with, yearlings had a higher average number of interferences from other hinds during parturition than adults (P<0.05). Calves born to yearling hinds took significantly longer to suckle for the first time (mean=44 min) from their dams than calves born to adult hinds (33 min; P<0.05). We concluded that an inability of hinds to express natural isolation behaviour was likely to contribute to calf mortality due to increased anxiety (indicated by fence line pacing) and encroachment on the birth areas of others, and that calves of yearlings were at an increased risk of mortality due to the higher number of interferences taking place during parturition and the longer time interval between birth and suckling.  相似文献   

11.
The effects of chronic treatment with norgestomet on follicular dynamics, corpus luteum growth and function as well as the temporal relationships among body temperature, oestrous behaviour, the luteinizing hormone (LH) surge and ovulation following implant removal were studied in 16 Holstein heifers. Oestrous cycles of the heifers were initially synchronized using 2 injections of prostaglandin F-2 alpha (PGF-2 alpha) 12 days apart. The heifers were then implanted with a norgestomet ear implant for 9 days, beginning either at the middle of the synchronized cycle (dioestrus) or at the end of the synchronized cycle (pro-oestrus). Follicular dynamics, corpus luteum growth and regression, and plasma progesterone were not affected by norgestomet treatment at dioestrus. The dominant follicle present at the time of norgestomet implantation in the pro-oestrus group was maintained during the 9-day implant period of 6 of 8 heifers and ovulated after implant removal. Time from implant removal to onset of standing oestrus and time to LH peak following implant removal were highly correlated with the time of ovulation (r = 0.92 and 0.96, respectively). Onset of standing oestrus and the LH peak and the onset of standing oestrus and peak vaginal and rectal temperatures were also highly correlated (r = 0.96, 0.82 and 0.81, respectively). It is concluded that any decrease in pregnancy rates following treatment with norgestomet is not due to asynchrony among oestrus, the LH surge and ovulation.  相似文献   

12.
The temporal relationships among oocyte maturation, gamete transport and fertilisation following the pre-ovulatory luteinsing hormone surge in red deer were established; and secondly, early preimplantation development to the blastocyst stage in relation to the onset of oestrus was determined for red deer. In the first series of observations, oestrus was synchronised in April (N=22), for the fixed time recovery of gametes from 0 to 36 h after the estimated pre-ovulatory LH peak. Matings were observed and the time of the LH peak was determined from the retrospective analysis of blood plasma collected at 3h intervals. Gametes were recovered surgically and the meiotic status of follicular and ovulated oocytes assessed. Spermatozoa were recovered from the oviduct and their motility analysed by videomicroscopy. Nineteen of 22 hinds exhibited a pre-ovulatory LH surge and were observed to mate. Oocyte metaphase I occurred between 11 and 18 h, and metaphase II was completed within the follicle between 20 and 25 h following the pre-ovulatory LH peak. Fertilised ova were recovered from 30 to 36 h in both the ampulla and isthmic portions of the oviduct. Motile spermatozoa were first recovered from the isthmus and the ampulla at 13 and 21 h, respectively, after the LH peak. Hyperactive spermatozoa were observed in both the isthmus and the ampulla flushings but only from the eight hinds that had ovulated. In the second series of observations, 16 mature hinds were synchronised and allocated to groups for embryo collection on days 3, 5 and 7 after oestrus. Eight embryos were recovered; an 8-cell at 90 h, 3 morulae at 137, 138 and 186 h, and 4 blastocysts at 180, 182 and 190 h post-mating. Blastocysts were only recovered from the uterine horns and the mean+/-S.E.M. number of nuclei per blastocyst was 93.5+/-10.0 with a range of 66-114 cells. The results of this study will improve the application of assisted reproductive technologies to red deer as they indicate that oocyte maturation, fertilisation and early embryonic development of the red deer is similar to other domestic ruminants with the exception that the red deer embryo enters the uterus at the blastocyst stage.  相似文献   

13.
The ovarian response to an empirically derived treatment protocol used commercially for fixed-time insemination in wapiti (Cervus elaphus) was evaluated by transrectal ultrasonography in hinds during transition into the ovulatory season. On September 29, hinds (n=7) were given an intravaginal progesterone-releasing device (CIDR-B, 1.9 g of progesterone) or left untreated (controls, n=9). Fourteen days later, hinds in the treated group were given 200 IU eCG and the CIDR was removed. Hinds in the control group ovulated randomly over a 15 day period. In the treated group, five hinds ovulated 3 days after eCG treatment, one ovulated 7 days after treatment, and one failed to ovulate by November 1. All extant dominant follicles ceased growth and/or began to regress within 2 days of CIDR placement. Two waves of follicular development were detected between CIDR insertion and removal; the first emerged 5.1+/-0.5 days after CIDR insertion and the second at 11.0+/-0.7 days. Serum progesterone concentration was 0.6+/-0.5 ng/mL (range 1.0-0.3 ng/mL) before CIDR placement, remained above 6 ng/mL during CIDR placement, and fell to 0.8+/-0.9 ng/mL after CIDR removal. In the control group, maximal luteal-phase progesterone concentration was lower (1.1+/-0.1 ng/mL; P<0.05) and emergence of the first follicular wave was more variable (P=0.05) than in the treated group. The protocol to synchronize ovulation was effective in 5/7 (71%) hinds, and 4/7 (57%) became pregnant and calved. The pregnancy rate (6/9) and calving rate (5/9) was similar in the control group. In conclusion, synchronization with CIDR-B was effective; however, the protocol may be improved by shortening the interval of CIDR placement to < or = 7 days and by reducing the circulating concentrations of progesterone to physiologic concentrations (< 4 ng/mL).  相似文献   

14.
Eighteen ovariectomized fallow deer does and two adult bucks were used to investigate the effect of exogenous progesterone and oestradiol benzoate on oestrous behaviour and secretion of luteinizing hormone (LH). In Expts 1 and 2, conducted during the breeding season (April-September), does were treated with intravaginal Controlled Internal Drug Release (CIDR) devices (0.3 g progesterone per device) for 12 days and differing doses of oestradiol benzoate administered 24 h after removal of the CIDR device. The dose had a significant effect on the proportion of does that exhibited oestrus within the breeding season (P less than 0.001), the incidence of oestrus being 100% with 1.0, 0.1 and 0.05 mg, 42% for 0.01 mg and 0% for 0.002 mg oestradiol benzoate. There was a significant log-linear effect of dose on the log duration of oestrus, which was 6-20, 2-14, 2-12 and 2 h after treatment with 1, 0.1, 0.05 and 0.01 mg of oestradiol benzoate, respectively. Dose had a significant effect on the peak plasma LH concentration (P less than 0.01), mean (+/- s.e.m.) surge peaks of 27.7 +/- 2.3, 25.9 +/- 1.8 and 18.6 +/- 3.4 ng/ml being observed following treatment with 1, 0.1 and 0.01 mg oestradiol benzoate respectively. In Expt 3, also conducted during the breeding season, progesterone treatment (0 vs. 6-12 days) before the administration of 0.05 mg oestradiol benzoate had a significant effect on the incidence of oestrus (0/6 vs. 10/12, P less than 0.05), but not on LH secretion. The duration of progesterone treatment (6 vs. 12 days) had no effect on oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The objective of this work was to study the effect of the endogenous opiate peptide (EOP) antagonist, naloxone, on the preovulatory LH surge and on the time of onset and duration of oestrus in the ewe with induced oestrus during the non-breeding season. Forty Suffolk X Hampshire ewes 2-3-years-old and 50+/- 4kg were studied, ewes were divided at random in two groups of 20, housed in open paddocks under natural photoperiod (19 degrees latitude N); were fed with hay and commercial pellets, and provided water ad libitum. Group one received an intravaginal sponge with 45mg of medroxiprogesterone acetate for 14 days, and upon sponge withdrawal 250IU of eCG was administered i.m. Group two received the same treatment as group 1 but in addition they received two i.m. injections of 0.5mg of naloxone, one given on sponge withdrawal and the second 24h later (total dose 1.0mg). Oestrus in naloxone-treated ewes was present 32+/- 2h and in control ewes in 35+/- 3h after sponge withdrawal. Duration of oestrus in control ewes was shorter (27+/- 2.5h), than naloxone-treated ewes (39+/- 6h); (P<0.0001). The LH surge in naloxone-treated ewes was initiated 5h after onset of oestrus, and 8h after onset of oestrus in control ewes, and the difference was significative (P<0.0006). It was concluded that EOP are important modulators of reproductive function in the ewe.  相似文献   

16.
This experiment was conducted to define the temporal relationships among estrus, the LH surge and ovulation after estrus synchronization in dwarf goats and to assess the effect of season on these parameters. In November (breeding season), March (transition period) and July (non-breeding season), estrus was synchronized in 12 dwarf goats by means of intravaginal sponges containing 60 mg medroxyprogesterone acetate (MAP) for 10 d, coupled with 125 microg cloprostenol i.m. 48 h before sponge removal and 300 IU eCG i.m. at sponge removal. A different group of animals was used during each time period. Onset of estrus was monitored using two males, and blood samples for the measurement of plasma LH were collected at 2-h intervals from 24 to 60 h after sponge removal. Ovulation was confirmed by laparoscopy at 54 and 72 h after sponge removal. A seasonal shift was detected in the intervals to onset of estrus, LH surge, and ovulation after sponge removal (P<0.05), with sponge removal to onset of estrus being shorter (P<0.05) in November (25.0 +/- 1.56 h) and July (28.9 +/- 2.43 h) than in March (40.9 +/- 3.27 h). The intervals between onset of estrus and the LH surge and between the LH surge and ovulation were found to be constant throughout the different seasons. An optimal time for breeding, artificial insemination, oocyte and embryo recovery, and embryo transfer may be predicted using information gained from these studies.  相似文献   

17.
The ability of ram introduction (RI) and progesterone pre-treatment to induce increases in LH secretion and ovulation, and the ability of progesterone pre-treatment with or without estrogen to induce estrus and ovulation in fall-born ewe lambs during seasonal anestrus was investigated. In early July, lambs of mixed breeds (41.8+/-0.6 kg and 250.7+/-1.3 days of age) were assigned to receive no treatment (C, n=7), to be introduced to rams (7:1 ewe:ram ratio; R, n=7), to be treated with progesterone (a used CIDR device) for 5 days (P, n=5), to be treated with progesterone and introduced to rams at CIDR removal (PR, n=11), or to receive the latter treatment plus an injection of estradiol benzoate (25 microg, E2beta i.m.) 24 h after CIDR withdrawal/RI (PER, n=11). Blood samples were collected from all lambs every 4h for 60 h beginning at RI/CIDR withdrawal (0 h), to characterize the LH surge profile and in groups R and C every 15 min for 8 h between 12 and 20 h for determination of LH pulse frequencies. Ultrasonographic examinations of the ovaries were conducted at 0, 36 and 60 h. In ram-exposed groups lambs were also observed for raddle marks every 4h from 0 to 60 h. The LH pulse frequency (pulses/8 h) was higher in group R (P<0.01; 7.7+/- 0.5) than group C lambs (2.7+/- 0.8). More lambs in groups exposed to rams than in the C or P groups showed an LH surge (P<0.05; 0, 100, 0, 72.7 and 100%, for C, R, P, PR and PER groups, respectively). Time from RI/CIDR removal to initiation of the LH surge was greater in lambs in the PR (43.5+/- 3.8h) than in the R (32.6+/- 4.6h; P=0.08) or PER (33+/- 1.2h; P<0.01). Diameter of the largest follicle at 0 h (3.2+/- 0.2mm) was not different among groups. Growth rate of the largest follicle between 0 and 36 h was greater (P<0.05) in RI than in C or P groups. Diameter of the largest follicle at 36 h was larger (P<0.05) in lambs in R (5.6+/- 0.2mm) and PR (5.1+/- 0.5mm) than C (4.0+/- 0.6mm) or P (3.8+/- 0.4mm) groups, and in R than PER (4.3+/- 0.4mm) treatment groups. Only lambs in the RI groups ovulated. Among RI groups the percentage of lambs ovulating was greater in the R (P<0.05; 85.7%) than PR (33.3%) groups with an intermediate response observed in lambs in treatment group PER (71.4%). The estrous response in progesterone pre-treated groups was greater (P<0.05) in lambs also treated with estrogen (PER; 81.8%), than in lambs introduced to rams alone (PR; 45.5%). In conclusion, ram introduction by itself, but not progesterone treatment alone, induces increases in LH pulse frequency, follicular development, and ovulation in fall-born ewe lambs during seasonal anestrus, further, P4 pre-treatment and RI when combined with E2 results in a high estrous response.  相似文献   

18.
One of the major sources of success in embryo transfer is timing of AI relative to the LH surge and ovulation. The aim of this study was to compare the embryo production following superovulation during a PGF2alpha (control cycle) or a CIDR-B synchronized cycle (CIDR-B cycle). CIDR-B (CIDR-B ND, Virbac, Carros, France) was inserted on Day 11 of a previously synchronized cycle and left for 5 days. A total dose of 350 microg FSH was administered (eight injections i.m. for 4 days; first on Day 13, decreasing doses) and PGFalpha analog (750 microg i.m.: Uniandine ND, Schering-Plough, Levallois-Perret, France) injected at the time of third FSH injection. Artificial inseminations were performed 12 and 24 h after standing estrus (Day 0). Embryos were collected on Day 7. Luteinizing hormone was measured by EIA (Reprokit Sanofi, Libourne, France) from blood samples collected every 3 h for 36 h, starting 24 h after PGF2alpha (control cycle) or 12 h after CIDR-B removal (CIDR-B cycle). The effects of treatment group and interval between the LH peak and AI (two classes, < 10 and > or = 10 h) on embryo production and quality were analyzed by ANOVA. No effect of treatment was observed on embryo production variables. The intervals between the end of treatment and onset of estrus and between end of treatment and LH surge were greater in heifers treated during a control than a CIDR-B cycle, respectively (45.5 +/- 1.4 versus 31.9 +/- 0.7; 42.0 +/- 1.6 versus 31.0 +/- 1.5; P < 0.05), but maximal LH and estradiol concentrations, at the preovulatory surge were similar in control and CIDR-B synchronized heifers. The numbers of viable and Grade I embryos were significantly increased (P < 0.01) when animals had an interval from LH peak to first AI > or = 10 h (7.2 +/- 0.9 and 3.5 +/- 0.6) when compared to shorter intervals (4.2 +/- 1.1 and 2.0 +/- 0.7) whereas total number of embryos was unchanged (11.8 +/- 1.4 versus 10.3 +/- 1.8). It is concluded that late occurrence of LH peaks in relation to estrous behavior is associated with a lower embryo quality when first AIs are performed systematically 12 h after standing estrus. Further studies are needed to know if results may be improved when making AI at a later time after standing estrus or if LH assays are useful to better monitor AI time.  相似文献   

19.
The gestation length of wapiti (Cervus elaphus) revisited   总被引:1,自引:0,他引:1  
As an ancillary activity to an artificial insemination program in farmed wapiti, the length of gestation of 28 wapiti hinds that delivered single calves of established parentage was calculated. Estrus was synchronized in 47 wapiti using progesterone impregnated devices (controlled internal drug release, CIDR) and an injection of PMSG. All hinds were artificially inseminated between 60 and 63h after CIDR removal. Pregnancy was determined between 45 and 65 days by ultrasound. A verifiable figure for gestation length was obtained based both upon timed-artificial insemination, date of parturition, and confirmation of sire identity through microsatellite DNA technology. The calculated gestational length of 247 +/- 5 days was significantly (P < 0.0001) shorter than the generally quoted figure of 255 +/- 7 days.  相似文献   

20.
Oestrus synchronization following prostaglandin-induced luteolysis is variable and dependent on follicle wave status in cattle. Oestradiol benzoate (ODB) has been used following prostaglandin to reduce the interval to oestrus and ovulation, but the effect of follicle wave status at the time of ODB administration is not clear. The aim of this study was to characterize the endocrine and follicular responses following ODB after luteolysis at different stages of the follicle wave. Prostaglandin was administered at either emergence or dominance of the second follicle wave. Twenty-four hours later animals received either 0.5mg ODB in oil or a control oil injection. Follicular development was monitored daily by ultrasonography, oestrous behavior was determined and blood samples were collected. In animals treated with ODB at emergence, there was a reduction (P<0.05) in the maximum diameter of the ovulatory follicle (11.7+/-1.2 mm versus 13.1+/-0.1 mm) and in the interval from prostaglandin to oestrus (52.0+/-2.3 h versus 88.0+/-9.6h), to the LH surge (53.3+/-3.5 h versus 89.1+/-6.5 h) and to ovulation (96+/-0.0 h versus 129.6+/-9.6h), compared with controls. In animals treated with ODB at dominance, there was a reduction (P<0.05) in the interval from prostaglandin to the LH surge (54.0+/-3.1 h versus 70.9+/-4.8 h), but not in the interval from prostaglandin to oestrus (53.3+/-2.7 h versus 65.7+/-4.5 h; P=0.11), to ovulation (96.0+/-0.0 h versus 110.4+/-4.8 h; P=0.12) or the maximum diameter of the ovulatory follicle (12.7+/-0.3 mm versus 13.6+/-0.4 mm; P=0.12), compared with controls. Treatment did not affect (P>0.05) the length of the subsequent oestrous cycle or corpus luteum size. In conclusion, the use of ODB advanced, but did not alter the temporal relationships among oestrus, the LH surge and ovulation, regardless of stage of follicle development at treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号