首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chen C  Chou C  Sun Y  Huang W 《Cellular signalling》2001,13(8):543-553
TNF-alpha induced an increase in intercellular adhesion molecule-1 (ICAM-1) expression in human A549 epithelial cells and immunofluorescence staining confirmed this result. The enhanced ICAM-1 expression was shown to increase the adhesion of U937 cells to A549 cells. Tyrosine kinase inhibitors (genistein or tyrphostin 23) or phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor (D 609) attenuated TNF-alpha-induced ICAM-1 expression. TNF-alpha produced an increase in protein kinase C (PKC) activity and this effect was inhibited by D 609. PKC inhibitors (staurosporine, Ro 31-8220, calphostin C, or Go 6976) also inhibited TNF-alpha-induced response. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a PKC activator, stimulated ICAM-1 expression, this effect was inhibited by genistein or tyrphostin 23. Treatment of cells with TNF-alpha resulted in stimulation of p44/42 MAPK, p38, and JNK. However, TNF-alpha-induced ICAM-1 expression was not affected by either MEK inhibitor, PD 98059, or p38 inhibitor, SB 203580. A cell-permeable ceramide analog, C(2) ceramide, also stimulated the activation of these three MAPKs, but had no effect on ICAM-1 expression. NF-kappaB DNA-protein binding and ICAM-1 promoter activity were enhanced by TNF-alpha and these effects were inhibited by D 609, calphostin C, or tyrphostin 23, but not by PD 98059 or SB 203580. TPA also stimulated NF-kappaB DNA-protein binding and ICAM-1 promoter activity, these effects being inhibited by genistein or tyrphostin 23. TNF-alpha- or TPA-induced ICAM-1 promoter activity was inhibited by dominant negative PKCalpha or IKK2, but not IKK1 mutant. IKK activity was stimulated by both TNF-alpha and TPA, and these effects were inhibited by Ro 31-8220 or tyrphostin 23. These data suggest that, in A549 cells, TNF-alpha activates PC-PLC to induce activation of PKCalpha and protein tyrosine kinase, resulting in the stimulation of IKK2, and NF-kappaB in the ICAM-1 promoter, then initiation of ICAM-1 expression and neutrophil adhesion. However, activation of p44/42 MAPK, p38, and JNK is not involved in this event.  相似文献   

3.
4.
HL60 and EL4 cells incubated with tumor necrosis factor-alpha (TNF-alpha) plus staurosporin, a potent inhibitor of protein kinases, showed at least 2-fold increased levels of nuclear factor-kappa B (NF-kappa B) activity compared with TNF-alpha alone both during rapid NF-kappa B activation from the cytosolic pool and protein synthesis-dependent NF-kappa B activation. NF-kappa B activation by phorbol 12-myristate 13-acetate (PMA) and interleukin-1 was inhibited by staurosporin. Staurosporin treatment hardly affected the TNF-alpha-induced increase in mRNA for the p51 subunit of NF-kappa B but interfered with any phorbol ester (PMA)-induced increase in p51 mRNA. Thus, induction of NF-kappa B and p51 mRNA by TNF-alpha was not mediated by a staurosporin-sensitive factor, but NF-kappa B activation by TNF-alpha was even reduced by action of a staurosporin-sensitive factor. Decreased levels of phosphorylation of TNF-R alpha (TNF receptor type alpha) after staurosporin-treatment correlated with increased induction of NF-kappa B by TNF-alpha. Staurosporin-treatment did not affect TNF-R levels. Although protein kinase C stimulation by PMA inhibited NF-kappa B activation by TNF-alpha, its action mechanism may be different from that of the staurosporin-sensitive factor. PMA induced disappearance of TNF-R alpha by shedding into the surrounding medium, with kinetics similar to those of its inhibition of NF-kappa B activation by TNF-alpha. Phosphorylation may not mediate receptor shedding, since PMA treatment did not detectably affect TNF-R alpha phosphorylation.  相似文献   

5.
Regulation of the plasma membrane Ca2+ pump in the cell is of critical importance in maintaining calcium homeostasis. Since protein kinase C is known to regulate functions of cellular proteins by direct phosphorylation or by inducing their gene expression, we investigated the possible involvement of protein kinase C in the regulation of the plasma membrane Ca2+ pump. The Ca2+ pump was isolated by immunoprecipitation from [32P]orthophosphate-labeled cultured rat aortic endothelial cells grown in the absence or presence of phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C. PMA treatment of cells led to a rapid increase in the phosphorylation level (1.3-fold) within 5 min and a further increase to 2.9-fold after 3 h. Prolonged PMA treatment also induced the accumulation of the Ca2+ pump mRNA, followed by increased levels of the pump protein. The peak level of the pump mRNA induction occurred at 4 h and was 8-20-fold higher than the control culture without PMA. The rate of the Ca2+ pump protein accumulation was slower, reaching a maximum of 3.5-fold after 6 h. Induction of the pump mRNA was suppressed by the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and by down-regulation of protein kinase C. Inactive phorbol ester 4 alpha-phorbol didecanoate also failed to mimic the PMA effect. These results suggest that the induction of Ca2+ pump expression is mediated by a protein kinase C-dependent mechanism. Furthermore, since the induction of the Ca2+ pump mRNA was blocked when cycloheximide and PMA were added together, this suggests that newly synthesized protein factor is needed to produce the mRNA induction. Our results suggest that protein kinase C is involved in the regulation of the Ca2+ pump in endothelial cells. At the protein level, it modifies the Ca2+ pump by phosphorylation, and at the gene level, it stimulates the expression of its mRNA and thereby increases the amount of the pump protein.  相似文献   

6.
7.
It has been reported that thrombomodulin (TM) expression in endothelial cells is modulated by various agents. We investigated cellular regulatory mechanisms for TM expression in human umbilical vein endothelial cells (HUVECs), incubated with agents, by measuring the time course changes in surface TM activity, total TM antigen in cell lysates, and TM mRNA levels. While dibutyryl cAMP (3 mM) increased TM mRNA levels in HUVECs and was followed by increased TM activity, dibutyryl cGMP had no effect on TM activity. Phorbol myristate acetate (PMA) induced rapid loss of surface TM activity (approximately 8 h) and later increased TM mRNA levels between 4 h and 40 h (maximum at 24 h), resulting in biphasic effects on TM activity. Tumor necrosis factor or interleukin-1 beta suppressed surface TM activity and TM mRNA levels. Internalization/degradation of TM in HUVECs incubated with PMA or cytokines was suggested by co-culture with chloroquine. The decrease in surface TM activity observed was not caused by the release of TM molecules from the cells into the conditioned media. These results suggest that TM activity in HUVECs is modulated by independent mechanisms involving cytoplasmic TM mRNA levels and internalization/degradation of TM molecules. These regulatory mechanisms may involve protein kinase A and protein kinase C-dependent mechanisms but are independent of protein kinase G.  相似文献   

8.
9.
10.
Jain N  Sudhakar Ch  Swarup G 《The FEBS journal》2007,274(17):4396-4407
Tumour necrosis factor-alpha (TNF-alpha) is a cytokine that is involved in many functions, including the inflammatory response, immunity and apoptosis. Some of the responses of TNF-alpha are mediated by caspase-1, which is involved in the production of the pro-inflammatory cytokines interleukin-1beta, interleukin-18 and interleukin-33. The molecular mechanisms involved in TNF-alpha-induced caspase-1 gene expression remain poorly defined, despite the fact that signaling by TNF-alpha has been well studied. The present study was undertaken to investigate the mechanisms involved in the induction of caspase-1 gene expression by TNF-alpha. Treatment of A549 cells with TNF-alpha resulted in an increase in caspase-1 mRNA and protein expression, which was preceded by an increase in interferon regulatory factor-1 and p73 protein levels. Caspase-1 promoter reporter was activated by the treatment of cells with TNF-alpha. Mutation of the interferon regulatory factor-1 binding site resulted in the almost complete loss of basal as well as of TNF-alpha-induced caspase-1 promoter activity. Mutation of the p53/p73 responsive site resulted in reduced TNF-alpha-induced promoter activity. Blocking of p73 function by a dominant negative mutant or by a p73-directed small hairpin RNA reduced basal as well as TNF-alpha-induced caspase-1 promoter activity. TNF-alpha-induced caspase-1 mRNA and protein levels were reduced when p73 mRNA was down-regulated by small hairpin RNA. Caspase-5 gene expression was induced by TNF-alpha, which was inhibited by the small hairpin RNA-mediated down-regulation of p73. Our results show that TNF-alpha induces p73 gene expression, which, together with interferon regulatory factor-1, plays an important role in mediating caspase-1 promoter activation by TNF-alpha.  相似文献   

11.
We tested the hypothesis that protein kinase C-alpha (PKC-alpha) mediates tumor necrosis factor-alpha (TNF-alpha)-induced alterations in permeability of pulmonary microvessel endothelial monolayers (PEM). The permeability of PEM was assessed by the clearance rate of Evans blue-labeled albumin. PEM lysates were analyzed for PKC-alpha mRNA (Northern cDNA blot), protein (Western immunoblot), and activity (translocation and phosphorylation of myristoylated arginine-rich C kinase substrate). Incubation of PEM with TNF-alpha (1,000 U/ml) for 4 h resulted in increases in 1) PKC-alpha protein, 2) cytoskeletal-associated PKC-alpha, 3) PKC-alpha activity, and 4) permeability to albumin. The TNF-alpha-induced increase in PKC-alpha protein, PKC-alpha activity, and permeability was prevented by a 4-h pretreatment with PKC-alpha antisense oligonucleotide but not by the scrambled nonsense oligonucleotide. The TNF-alpha-induced increase in permeability to albumin was prevented by myristoylated protein kinase C inhibitor (an inhibitor of PKC-alpha/beta, 100 microM) and calphostin (an inhibitor of the classic and novel PKC isotypes, 200 nM). The treatment with calphostin from 0.5 to 3.0 h after TNF-alpha still prevented barrier dysfunction induced by 4 h of TNF-alpha treatment. The data indicate that prolonged activation of PKC-alpha, maintained by a translation-dependent pool of PKC-alpha protein, mediates TNF-alpha-induced increases in endothelial permeability in PEM.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
The effect of glutathione (GSH) depletion by L-buthionine-[S,R]-sulphoximine (BSO) on tumor necrosis factor-alpha (TNF-alpha)-induced adhesion molecule expression and mononuclear leukocyte adhesion to human umbilical vein endothelial cells (HUVECs) was investigated. Cells with marked depletion of cytoplasmic GSH, but with an intact pool of mitochondrial GSH, only slightly enhanced TNF-alpha-induced E-selectin and vascular cell adhesion molecule-1 (VCAM-1) expression, compared with the control. However, TNF-a-induced expression of both molecules was markedly enhanced when the mitochondrial GSH pool was diminished to <15% of the control. In contrast, TNF-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression was not affected by the depletion of either cytoplasmic or mitochondrial GSH. Marked enhancement of TNF-alpha-induced adhesion molecule expression by the depletion of mitochondrial GSH resulted in increased in mononuclear leukocyte adhesion to treated HUVECs, compared with the control. These effects parallel reactive oxygen species (ROS) formation by the depletion of mitochondrial but not cytoplasmic GSH. Our findings demonstrate that depletion of mitochondrial GSH renders more ROS generation in HUVECs, and mitochondrial GSH modulates TNF-alpha-induced adhesion molecule expression and mononuclear leukocyte adhesion in HUVECs.  相似文献   

20.
ICAM-1 protein in keratinocytes is thought to contribute to cutaneous inflammatory reactions. Its induction depends-among others-on cytokines such as TNF-alpha, IFN-gamma, IL-1 or on retinoic acid (RA), a key regulator of epidermal homeostasis. We investigated the effect of treatments with TNF-alpha, RA or their combination on ICAM-1 expression on proliferative or differentiating keratinocytes over an 8 day culture period. Basal ICAM-1 levels were undetectable at low (30 microM) and standard (88 microM) Ca2+ and RA alone did not induce ICAM-1. However, at high Ca2+ (1500 microM), ICAM-1 levels were augmented in response to RA-treatment. TNF-alpha induced a transient ICAM-1 increase in NHK, which reached peak-levels 2-4 days post cytokine stimulus. RA potentiated the TNF-alpha-induced ICAM-1 response in all Ca2+-concentrations. This potentiating effect of RA was confirmed at the mRNA level. In summary, our results establish retinoic acid as an enhancer of TNF-alpha-induced ICAM-1 levels in NHK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号