首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A critical event in atherogenesis is the interaction of arterial wall macrophages with subendothelial lipoproteins. Although most studies have investigated this interaction by incubating cultured macrophages with monomeric lipoproteins dissolved in media, arterial wall macrophages encounter lipoproteins that are mostly bound to subendothelial extracellular matrix, and these lipoproteins are often aggregated or fused. Herein, we utilize a specialized cell-culture system to study the initial interaction of macrophages with aggregated low density lipoprotein (LDL) bound to extracellular matrix. The aggregated LDL remains extracellular for a relatively prolonged period of time and becomes lodged in invaginations in the surface of the macrophages. As expected, the degradation of the protein moiety of the LDL was very slow. Remarkably, however, hydrolysis of the cholesteryl ester (CE) moiety of the LDL was 3-7-fold higher than that of the protein moiety, in stark contrast to the situation with receptor-mediated endocytosis of acetyl-LDL. Similar results were obtained using another experimental system in which the degradation of aggregated LDL protein was delayed by LDL methylation rather than by retention on matrix. Additional experiments indicated the following properties of this interaction: (a) LDL-CE hydrolysis is catalyzed by lysosomal acid lipase; (b) neither scavenger receptors nor the LDL receptor appear necessary for the excess LDL-CE hydrolysis; and (c) LDL-CE hydrolysis in this system is resistant to cellular potassium depletion, which further distinguishes this process from receptor-mediated endocytosis. In summary, experimental systems specifically designed to mimic the in vivo interaction of arterial wall macrophages with subendothelial lipoproteins have demonstrated an initial period of prolonged cell-surface contact in which CE hydrolysis exceeds protein degradation.  相似文献   

2.
Previous studies have examined lipoprotein metabolism by macrophages following prolonged exposure (>24 h) to macrophage colony-stimulating factor (M-CSF). Because M-CSF activates several signaling pathways that could rapidly affect lipoprotein metabolism, we examined whether acute exposure of macrophages to M-CSF alters the metabolism of either native or modified lipoproteins. Acute incubation of cultured J774 macrophages and resident mouse peritoneal macrophages with M-CSF markedly enhanced low density lipoproteins (LDL) and beta-migrating very low density lipoproteins (beta-VLDL) stimulated cholesteryl [(3)H]oleate deposition. In parallel, M-CSF treatment increased the association and degradation of (125)I-labeled LDL or beta-VLDL without altering the amount of lipoprotein bound to the cell surface. The increase in LDL and beta-VLDL metabolism did not reflect a generalized effect on lipoprotein endocytosis and metabolism because M-CSF did not alter cholesterol deposition during incubation with acetylated LDL. Moreover, M-CSF did not augment beta-VLDL cholesterol deposition in macrophages from LDL receptor (-/-) mice, indicating that the effect of M-CSF was mediated by the LDL receptor. Incubation of macrophages with pertussis toxin, a specific inhibitor of G(i/o) protein signaling, had no effect on cholesterol deposition during incubation with beta-VLDL alone, but completely blocked the augmented response promoted by M-CSF. In addition, incubation of macrophages with the direct G(i/o) protein activator, mastoparan, mimicked the effect of M-CSF by enhancing cholesterol deposition in cells incubated with beta-VLDL, but not acetylated LDL. In summary, M-CSF rapidly enhances LDL receptor-mediated metabolism of native lipoproteins by macrophages through activation of a G(i/o) protein signaling pathway. Together, these findings describe a novel pathway for regulating lipoprotein metabolism.  相似文献   

3.
Lipoprotein lipase (LPL) efficiently mediates the binding of lipoprotein particles to lipoprotein receptors and to proteoglycans at cell surfaces and in the extracellular matrix. It has been proposed that LPL increases the retention of atherogenic lipoproteins in the vessel wall and mediates the uptake of lipoproteins in cells, thereby promoting lipid accumulation and plaque formation. We investigated the interaction between LPL and low density lipoproteins (LDLs) with special reference to the protein-protein interaction between LPL and apolipoprotein B (apoB). Chemical modification of lysines and arginines in apoB or mutation of its main proteoglycan binding site did not abolish the interaction of LDL with LPL as shown by surface plasmon resonance (SPR) and by experiments with THP-I macrophages. Recombinant LDL with either apoB100 or apoB48 bound with similar affinity. In contrast, partial delipidation of LDL markedly decreased binding to LPL. In cell culture experiments, phosphatidylcholine-containing liposomes competed efficiently with LDL for binding to LPL. Each LDL particle bound several (up to 15) LPL dimers as determined by SPR and by experiments with THP-I macrophages. A recombinant NH(2)-terminal fragment of apoB (apoB17) bound with low affinity to LPL as shown by SPR, but this interaction was completely abolished by partial delipidation of apoB17. We conclude that the LPL-apoB interaction is not significant in bridging LDL to cell surfaces and matrix components; the main interaction is between LPL and the LDL lipids.  相似文献   

4.
Glycosaminoglycan-lipoprotein interaction   总被引:1,自引:0,他引:1  
Glycosaminoglycans (GAGs) bound to various proteoglycans (PGs) present in the cardiovascular system have been proposed to perform a wide range of functions. These include conferring viscoelastic properties; interacting with and modulating growth factors and enzymes; and as receptors and co-receptors in lipoprotein metabolism. Binding of apoB-100 lipoproteins, particularly low density lipoproteins (LDL), to GAGs of extracellular matrix PGs in arteries has been proposed to be an initiating event in development of atherosclerosis. This study was initiated with the aim of getting an overview of the binding patterns of different lipoprotein subclasses with individual GAG categories. We thus evaluated the interaction of lipoproteins with GAGs commonly found in the cardiovascular system using a gel mobility-shift assay developed for this purpose. The same procedure was used to measure lipoproteins binding to metabolically [(35)S]-labeled whole PGs prepared from three cell types, arterial smooth muscle cells, THP-1 macrophages and from HepG2 cells. The effect of GAG composition on PGs on lipoprotein binding was evaluated by enzymatic degradation of the carbohydrate chains. Heparan sulfate was found to bind beta very low density lipoproteins (beta-VLDL) and a chylomicron remnant model (beta-VLDL+apoE), but not LDL. Dermatan sulfate was found to bind LDL, but not beta-VLDL or the chylomicron remnant model. Chondroitin sulfate and heparin were found to bind all lipoproteins tested (LDL, beta-VLDL and beta-VLDL+apoE) although with different affinities. We can conclude that each lipoprotein subclass tested binds a specific assortment of the GAGs tested. The observations made contribute to the understanding of new and complex mechanisms by which carbohydrate and lipid metabolism may be linked.  相似文献   

5.
We sought to investigate effects of lipoprotein lipase (LpL) on cellular catabolism of lipoproteins rich in apolipoprotein B-100. LpL increased cellular degradation of lipoprotein(a) (Lp(a)) and low density lipoprotein (LDL) by 277% +/- 3.8% and 32.5% +/- 4.1%, respectively, and cell association by 509% +/- 8.7% and 83.9% +/- 4.0%. The enhanced degradation was entirely lysosomal. Enhanced degradation of Lp(a) had at least two components, one LDL receptor-dependent and unaffected by heparitinase digestion of the cells, and the other LDL receptor-independent and heparitinase-sensitive. The effect of LpL on LDL degradation was entirely LDL receptor-independent, heparitinase-sensitive, and essentially absent from mutant Chinese hamster ovary cells that lack cell surface heparan sulfate proteoglycans. Enhanced cell association of Lp(a) and LDL was largely LDL receptor-independent and heparitinase-sensitive. The ability of LpL to reduce net secretion of apolipoprotein B-100 by HepG2 cells by enhancing cellular reuptake of nascent lipoproteins was also LDL receptor-independent and heparitinase-sensitive. None of these effects on Lp(a), LDL, or nascent lipoproteins required LpL enzymatic activity. We conclude that LpL promotes binding of apolipoprotein B-100-rich lipoproteins to cell surface heparan sulfate proteoglycans. LpL also enhanced the otherwise weak binding of Lp(a) to LDL receptors. The heparan sulfate proteoglycan pathway represents a novel catabolic mechanism that may allow substantial cellular and interstitial accumulation of cholesteryl ester-rich lipoproteins, independent of feedback inhibition by cellular sterol content.  相似文献   

6.
Human adipose tissue derives its cholesterol primarily from circulating lipoproteins. To study fat cell-lipoprotein interactions, low density lipoprotein (LDL) uptake and metabolism were examined using isolated human adipocytes. The 125I-labelled LDL (d = 1.025-1.045) was bound and incorporated by human fat cells in a dose-dependent manner with an apparent Km of 6.9 + 0.9 microgram LDL protein/mL and a Vmax of 15-80 microgram LDL protein/mg lipid per 2 h. In time-course studies, LDL uptake was characterized by rapid initial binding followed by a linear accumulation for at least 4 h. The 125I-labelled LDL degradation products (trichloroacetic acid soluble iodopeptides) accumulated in the incubation medium in a progressive manner with time. Azide and F- inhibited LDL internalization and degradation, suggesting that these processes are energy dependent. Binding and cellular internalization of 125I-labelled LDL lacked lipoprotein class specificity in that excess (25-fold) unlabelled very low density lipoprotein (VLDL) (d less than 1.006) and high density lipoprotein (HDL) (d = 1.075-1.21) inhibited binding and internalization of 125I-labelled LDL. On an equivalent protein basis HDL was the most potent. The 125I-labelled LDL binding to an adipocyte plasma membrane preparation was a saturable process and almost completely abolished by a three- to four-fold greater concentration of HDL. The binding, internalization, and degradation of LDL by human adipocytes resembled that reported by other mesenchymal cells and could account for a significant proportion of in vivo LDL catabolism. It is further suggested that adipose tissue is an important site of LDL and HDL interactions.  相似文献   

7.
The uptake of modified low density lipoprotein (LDL) by arterial macrophages is a key event in the atherogenesis. We studied 1) the uptake and degradation of modified LDL, 2) LDL recognition by specific receptors, and 3) the foam cell formation with murine macrophage-like RAW 264 cells in vitro. The cells took up and degraded effectively 125I-labeled acetylated LDL (Ac-LDL) and aggregated LDL (Aggr-LDL). Also oxidized LDL (Ox-LDL) was taken up but it was degraded poorly. The degradation of 125I-Ac-LDL was efficiently competed by both unlabeled Ac-LDL and Ox-LDL, whereas the degradation of 125I-Ox-LDL was partially competed by unlabeled Ox-LDL and Aggr-LDL but not at all by unlabeled Ac-LDL. The incubation with increasing concentrations of Ac-LDL, Aggr-LDL or Ox-LDL resulted in marked foam cell formation in the RAW 264 cells. Ox-LDL was cytotoxic at 500 to 1000 microg/ml concentrations. The results show that RAW 264 cells have at least two classes of receptors for modified lipoproteins: one that recognizes both Ox-LDL and Ac-LDL, and is similar to the scavenger receptors, and another that recognizes Ox-LDL but not Ac-LDL. RAW 264 cells are a convenient model cell line for examining the metabolism of modified lipoproteins, not only that of Ac-LDL but also that of Ox-LDL and Aggr-LDL, and cellular accumulation of lipids derived from modified LDL.  相似文献   

8.
Oxidatively modified low density lipoproteins (Ox-LDL) may be involved in determining the formation of foam cells by inducing cellular cholesteryl ester accumulation. We studied the effect of copper oxidized LDL (Ox-LDL) on cholesterol accumulation and esterification in murine macrophages. Ox-LDL (44 micrograms/ml of lipoprotein cholesterol) increased the total cholesterol content of the cells from 29 to 69 micrograms/mg cell protein. Free cholesterol accounted for 85% of this increase. Acetyl LDL (Ac-LDL) (38 micrograms/ml of lipoprotein cholesterol), raised total cellular cholesterol content to a similar extent (76 micrograms/mg cell protein), however only 25% of the accumulated cholesterol was unesterified. When ACAT activity was determined after incubation of J774 cell with Ox- or Ac-LDL, Ox-LDL were 12 times less effective than Ac-LDL in stimulating cholesteryl ester formation. This was not due to an inhibition of ACAT by Ox-LDL since these lipoproteins failed to inhibit pre activated enzyme in cholesteryl ester-loaded macrophages. The uptake of 125I-Ox-LDL: was 175% that of 125I-Ac-LDL, while degradation was only 20%. All together these data suggest an altered intracellular processing of Ox-LDL, which may be responsible for free cholesterol accumulation.  相似文献   

9.
PURPOSE OF REVIEW: Evidence suggests that much of the LDL in atherosclerotic plaques is aggregated. Aggregation of LDL could be an important factor that determines how this lipoprotein is metabolized by plaque macrophages and the fate of aggregated LDL cholesterol within plaques. This review discusses a novel endocytic pathway by which macrophages process aggregated LDL. RECENT FINDINGS: Recently, it has been shown that aggregated LDL can be sequestered in macrophage surface-connected compartments and plasma membrane invaginations by a process termed patocytosis. In contrast to rapid degradation of LDL and aggregated LDL taken up by macrophages through pinocytosis and phagocytosis, respectively, aggregated LDL sequestered in macrophages undergoes only limited degradation. Macrophages can disaggregate and release sequestered aggregated LDL by activating plasminogen to plasmin. Plasmin degrades LDL apolipoprotein B sufficiently to disaggregate the aggregated LDL, releasing it from the macrophage surface-connected compartments. In contrast, activating macrophages with phorbol-myristate-acetate stimulates degradation of aggregated LDL and inhibits plasminogen-mediated release of the aggregated lipoprotein from macrophage surface-connected compartments. SUMMARY: Macrophage sequestration of aggregated LDL is a unique endocytic pathway relevant not only to the processing of aggregated LDL in atherosclerotic plaques but also for the processing of other materials, such as hydrophobic particles that trigger this endocytic pathway. Macrophage sequestration of aggregated LDL can result in different fates for the aggregated LDL, depending on the state of macrophage activation and the functioning of the plasminogen-based fibrinolytic system. Patocytosis of aggregated LDL should be considered in addition to phagocytosis as a possible uptake pathway in studies of macrophage processing of aggregated LDL.  相似文献   

10.
Cholesteryl ester-loaded macrophages, or foam cells, are a prominent feature of atherosclerotic lesions. Low density lipoprotein (LDL) receptor-mediated endocytosis of native LDL is a relatively poor inducer of macrophage cholesteryl ester accumulation. However, the data herein show that in the presence of a very small amount of sphingomyelinase, LDL receptor-mediated endocytosis of 125I-LDL was enhanced and led to a 2-6-fold increase in 125I-LDL degradation and up to a 10-fold increase in cholesteryl ester accumulation in macrophages. The enhanced lipoprotein uptake and cholesterol esterification was seen after only approximately 12% hydrolysis of LDL phospholipids, was specific for sphingomyelin hydrolysis, and appeared to be related to the formation of fused or aggregated spherical particles up to 100 nm in diameter. Sphingomyelinase-treated LDL was bound by the macrophage LDL receptor. However, when unlabeled acetyl-LDL, a scavenger receptor ligand, was present during or after sphingomyelinase treatment of 125I-LDL, 125I-LDL binding and degradation were enhanced further through the formation of LDL-acetyl-LDL mixed aggregates. Experiments with cytochalasin D suggested that endocytosis, not phagocytosis, was involved in internalization of sphingomyelinase-treated LDL. Nonetheless, the sphingomyelinase effect on LDL uptake was macrophage-specific. These data illustrate that LDL receptor-mediated endocytosis of fused LDL particles can lead to foam cell formation in cultured macrophages. Furthermore, since both LDL and sphingomyelinase are present in atherosclerotic lesions and since some lesion LDL probably is fused or aggregated, there is a possibility that sphingomyelinase-treated LDL is a physiologically important atherogenic lipoprotein.  相似文献   

11.
Low-density lipoproteins (LDL) were modified by incubation with very-low-density lipoproteins (VLDL) and lipid transfer protein(s) to yield LDL particles that were enriched in triacylglycerol, depleted in cholesteryl esters, and contained apolipoprotein C. The uptake and degradation of these 125I-labeled modified LDL particles by cultured skin fibroblasts was reduced by approx. 30% when compared with LDL that had not been exposed to lipid transfer protein. Incubation of fibroblasts for 24 h in the presence of modified LDL resulted in less inhibition of LDL receptor activity and sterol synthesis than did incubation with control LDL. Both the degradation of 125I-labeled modified LDL and the effect of unlabeled modified LDL on the regulation of LDL binding and sterol synthesis were progressively decreased as the extent of modification of the LDL was increased. Even when identical amounts of modified LDL or control LDL protein were degraded, less inhibition of LDL receptor activity and sterol synthesis was observed with modified LDL than with control LDL, suggesting that the effects of modified LDL on these regulatory events are related to both the reduced degradation of the modified lipoprotein particles and to the alteration in its chemical composition. Uptake and degradation of modified LDL by human monocyte-derived macrophages in culture was reduced in a manner similar to that observed in the cultured fibroblasts, and was considerably less than that observed with acetylated LDL. No differences were observed between modified LDL prepared by exposure to lipid transfer activity in the lipoprotein deficient fraction of serum or when partially purified lipid transfer was used. Modified LDL, with similar composition to that used in the experiments, has been observed in certain diabetic and non-diabetic hypertriglyceridemic states. Thus, it is possible that the cellular metabolism of LDL in vivo might be altered in the presence of hypertriglyceridemia.  相似文献   

12.
Proteoglycans (PGs) from the arterial extracellular matrix (ECM) contribute to the trapping of LDL and oxidized LDL (Ox-LDL) in the arterial wall, a phenomenon called "lipoprotein retention". Moreover, we have shown that subsequent to their binding to the matrix, LDL and Ox-LDL are taken up by macrophages. Oxidative stress significantly increases macrophage secretion of ECM-PGs, lipoprotein binding to the ECM and the uptake of ECM-retained lipoproteins by macrophages. The aim of the present study was to determine whether red wine administration to atherosclerotic mice would affect their peritoneal macrophage-derived extracellular matrix properties, such as the glycosaminoglycan content and the ability to bind LDL. In addition, we questioned the ability of LDL bound to the mice peritoneal macrophages-derived ECM to be taken up by macrophages. Red wine administration to atherosclerotic mice did not affect the mice peritoneal macrophages-derived ECM glycosaminoglycan content but it significantly reduced the mice peritoneal macrophages-derived ECM ability to bind LDL and the subsequent uptake of ECM-retained LDL by the macrophages. The present study thus clearly demonstrated the inhibitory effect of red wine consumption by E0 mice on their peritoneal macrophage-derived extracellular matrix atherogenic properties.  相似文献   

13.
Particulate matter2.5 (PM2.5) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which PM2.5 aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous PM2.5 solution on lipoprotein metabolism. Collected PM2.5 from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. PM2.5 extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. PM2.5 treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by PM2.5 solution in a dose-dependent manner. Further, PM2.5 solution caused cellular senescence in human dermal fibroblast cells. Microinjection of PM2.5 solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of PM2.5 induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins.  相似文献   

14.
Like all other peripheral cells types thus far studied in culture, endothelial cells derived from the rabbit aorta bind, internalize and degrade low density lipoprotein (LDL) at a significant rate. At any given LDL concentration, the metabolism by rabbit endothelial cells was slower than that by fibroblasts or smooth muscle cells. Thus, longer incubations were required to achieve a net increment in cell cholesterol content or to suppress endogenous sterol synthesis; after 18-24 h incubation in the presence of LDL at 100 microgram LDL protein/ml inhibition was greater than 80% relative to the rate in cells incubated in the absence of lipoproteins. High density lipoproteins (HDL) were also taken up and degraded but did not inhibit sterol synthesis. Studies of LDL binding to the cell surface suggested the presence of at least two classes of binding sites; the high-affinity binding sites were fully saturated at very low LDL concentrations (about 5 microgram LDL protein/ml). However, the degree of inhibition of endogenous sterol synthesis increased progressively with increasing LDL concentrations from 5 to 100 microgram LDL/ml, suggesting that uptake from the low affinity sites in this cell line contributes to the suppression of endogenous sterol synthesis. The internalization and degradation of LDL also increased with concentrations as high as 700 microgram/ml. Thus, in vivo, where the cells are exposed to LDL concentrations far above that needed to saturate the high affinity sites, most of the LDL degradation would be attributable to LDL taken up from low affinity sites. As noted previously in swine arterial smooth muscle cells and in human skin fibroblasts, unlabeled HDL reduced the binding, internalization and degradation of labeled LDL. Cells incubated for 24 h in the presence of high concentrations of LDL alone showed a net increment in cell cholesterol content; the simultaneous presence of HDL in the medium significantly reduced this LDL-induced increment in cell cholesterol content. The possible relationship between LDL uptake and degradation by these cells in vitro is discussed in relationship to their transport function in vivo.  相似文献   

15.
This study characterizes the interactions of various rat and human lipoproteins with the lipoprotein cell surface receptors of rat and human cells. Iodinated rat very low density lipoproteins (VLDL), rat chylomicron remnants, rat low density lipoproteins (LDL), and rat high density lipoproteins containing predominantly apoprotein E (HDL1) bound to high affinity cell surface receptors of cultured rat fibroblasts and smooth muscle cells. Rat VLDL and chylomicron remnants were most avidly bound; the B-containing LDL and the E-containing HDL1 displayed lesser but similar binding. Rat HDL (d = 1.125 to 1.21) exhibited weak receptor binding; however, after recentrifugation to remove apoprotein E, they were devoid of binding activity. Competitive binding studies at 4 degrees C confirmed these results for normal lipoproteins and indicated that VLDL (B-VLDL), LDL, and HDLc (cholesterol-rich HDL1) isolated from hypercholesterolemic rats had increased affinity for the rat receptors compared with their normal counterparts, the most pronounced change being in the LDL. The cell surface receptor pathway in rat fibroblasts and smooth muscle cells resembled the system described for human fibroblasts as follows: 1) lipoproteins containing either the B or E apoproteins interacted with the receptors; 2) receptor binding activity was abolished by acetoacetylation or reductive methylation of a limited number of lysine residues of the lipoproteins; 3) receptor binding initiated the process of internalization and degradation of the apo-B- and apo-E-containing lipoproteins; 4) the lipoprotein cholesterol was re-esterified as determined by [14C]oleate incorporation into the cellular cholesteryl esters; and 5) receptor-mediated uptake (receptor number) was lipoprotein cholesterol. An important difference between rat and human fibroblasts was the inability of human LDL to interact with the cell surface receptors of rat fibroblasts. Rat lipoproteins did, however, react with human fibroblasts. Furthermore, the rat VLDL were the most avidly bound of the rat lipoproteins to rat fibroblasts. When the direct binding of 125I-VLDL was subjected to Scatchard analysis, the very high affinity of rat VLDL was apparent (Kd = 1 X 10(-11) M). Moreover, compared with data for rat LDL, the data suggested each VLDL particle bound to four to nine lipoprotein receptors. This multiple receptor binding could explain the enhanced binding affinity of the rat VLDL. The Scatchard plot of rat 125I-VLDL revealed a biphasic binding curve in rat and human fibroblast cells and in rat smooth muscle cells, suggesting two populations of rat VLDL. These results indicate that rat cells have a receptor pathway similar to, but not identical with, the LDL pathway of human cells. Since human LDL bind poorly to rat cell receptors on cultured rat fibroblasts and smooth muscle cells, metabolic studies using human lipoproteins in rats must be interpreted cautiously.  相似文献   

16.
The mechanism of inhibition by apolipoprotein C of the uptake and degradation of triglyceride-rich lipoproteins from human plasma via the low density lipoprotein (LDL) receptor pathway was investigated in cultured human skin fibroblasts. Very low density lipoprotein (VLDL) density subfractions and intermediate density lipoprotein (IDL) with or without added exogenous recombinant apolipoprotein E-3 were used. Total and individual (C-I, C-II, C-III-1, and C-III-2) apoC molecules effectively inhibited apoE-3-mediated cell metabolism of the lipoproteins through the LDL receptor, with apoC-I being most effective. When the incubation was carried out with different amounts of exogenous apoE-3 and exogenous apoC, it was shown that the ratio of apoE-3 to apoC determined the uptake and degradation of VLDL. Excess apoE-3 overcame, at least in part, the inhibition by apoC. ApoC, in contrast, did not affect LDL metabolism. Neither apoA-I nor apoA-II, two apoproteins that do not readily associate with VLDL, had any effect on VLDL cell metabolism. The inhibition of VLDL and IDL metabolism cannot be fully explained by interference of association of exogenous apoE-3 with or displacement of endogenous apoE from the lipoproteins. IDL is a lipoprotein that contains both apoB-100 and apoE. By using monoclonal antibodies 4G3 and 1D7, which specifically block cell interaction by apoB-100 and apoE, respectively, it was possible to assess the effects of apoC on either apoprotein. ApoC dramatically depressed the interaction of IDL with the fibroblast receptor through apoE, but had only a moderate effect on apoB-100. The study thus demonstrates that apoC inhibits predominantly the apoE-3-dependent interaction of triglyceride-rich lipoproteins with the LDL receptor in cultured fibroblasts and that the mechanism of inhibition reflects association of apoC with the lipoproteins and specific concentration-dependent effects on apoE-3 at the lipoprotein surface.  相似文献   

17.
A critical event in atherogenesis is the interaction of macrophages with subendothelial lipoproteins. Although most studies model this interaction by incubating macrophages with monomeric lipoproteins, macrophages in vivo encounter lipoproteins that are aggregated. The physical features of the lipoproteins require distinctive mechanisms for their uptake. We show that macrophages create an extracellular, acidic, hydrolytic compartment to carry out digestion of aggregated low-density lipoproteins. We demonstrate delivery of lysosomal contents to these specialized compartments and their acidification by vacuolar ATPase, enabling aggregate catabolism by lysosomal acid hydrolases. We observe transient sealing of portions of the compartments, allowing formation of an “extracellular” proton gradient. An increase in free cholesterol is observed in aggregates contained in these compartments. Thus, cholesteryl ester hydrolysis can occur extracellularly in a specialized compartment, a lysosomal synapse, during the interaction of macrophages with aggregated low-density lipoprotein. A detailed understanding of these processes is essential for developing strategies to prevent atherosclerosis.  相似文献   

18.
1. Modified lipoproteins have been implicated to play a significant role in the pathogenesis of atherosclerosis. In view of this we studied the fate and mechanism of uptake in vivo of acetylated human low-density lipoprotein (acetyl-LDL). Injected intravenously into rats, acetyl-LDL is rapidly cleared from the blood. At 10min after intravenous injection, 83% of the injected dose is recovered in liver. Separation of the liver into a parenchymal and non-parenchymal cell fraction indicates that the non-parenchymal cells contain a 30-50-fold higher amount of radioactivity per mg of cell protein than the parenchymal cells. 2. When incubated in vitro, freshly isolated non-parenchymal cells show a cell-association of acetyl-LDL that is 13-fold higher per mg of cell protein than with parenchymal cells, and the degradation of acetyl-LDL is 50-fold higher. The degradation of acetyl-LDL by both cell types is blocked by chloroquine (10-50mum) and NH(4)Cl (10mm), indicating that it occurs in the lysosomes. Competition experiments indicate the presence of a specific acetyl-LDL receptor and degradation pathway, which is different from that for native LDL. 3. Degradation of acetyl-LDL by non-parenchymal cells is completely blocked by trifluoperazine, penfluridol and chlorpromazine with a relative effectivity that corresponds to their effectivity as calmodulin inhibitors. The high-affinity degradation of human LDL is also blocked by trifluoperazine (100mum). The inhibition of the processing of acetyl-LDL occurs at a site after the binding-internalization process and before intralysosomal degradation. It is suggested that calmodulin, or a target with a similar sensitivity to calmodulin inhibitors, is involved in the transport of the endocytosed acetyl-LDL to or into the lysosomes. 4. It is concluded that the liver, and in particular non-parenchymal liver cells, are in vivo the major site for acetyl-LDL uptake. This efficient uptake and degradation mechanism for acetyl-LDL in the liver might form in vivo the major protection system against the potential pathogenic action of modified lipoproteins.  相似文献   

19.
Cholesterol-loaded macrophages are present at all stages of atherogenesis, and recent in vivo data indicate that these cells play important roles in both early lesion development and late lesion complications. To understand how these cells promote atherogenesis, it is critical that we understand how lesional macrophages interact with subendothelial lipoproteins, the consequences of this interaction, and the impact of subsequent intracellular metabolic events. In the arterial wall, macrophages likely interact with both soluble and matrix-retained lipoproteins, and a new challenge is to understand how certain consequences of these two processes might differ. Initially, the major intracellular metabolic route of the lipoprotein-derived cholesterol is esterification to fatty acids, but macrophages in advanced atherosclerotic lesions progressively accumulate large amounts of unesterified, or free, cholesterol (FC). In cultured macrophages, excess FC accumulation stimulates phospholipid biosynthesis, which is an adaptive response to protect the macrophage from FC-induced cytotoxicity. This phospholipid response eventually decreases with continued FC loading, leading to a series of cellular death reactions involving both death receptor-induced signaling and mitochondrial dysfunction. Because macrophage death in advanced lesions is thought to promote plaque instability, these intracellular processes involving cholesterol, phospholipid, and death pathways may play a critical role in the acute clinical manifestations of advanced atherosclerotic lesions.  相似文献   

20.
Human blood monocyte-derived macrophages that had been cultured for 7 days in the presence of 20% whole human serum exhibited saturable degradation of low-density lipoprotein (LDL). This degradation could be abolished by pre-incubating the cells with a high concentration of LDL in the medium and increased by pre-incubating the cells in medium containing lipoprotein-deficient serum. Cells obtained from the blood of homozygous familial-hypercholesterolaemic (FH) patients only exhibited a low rate of non-saturable degradation of LDL, even when pre-incubated without lipoproteins. Thus the saturable degradation of LDL by normal cells was mediated by the LDL receptors that are defective in FH patients and little LDL was taken up and degraded through any of the other endocytotic processes present in macrophages. Degradation by normal cells pre-incubated with lipoprotein-deficient serum had a higher apparent affinity for LDL than that of cells maintained in whole serum, which suggests that incubation with lipoprotein-deficient serum may not only induce the formation of LDL receptors but may also have a direct effect on the receptors themselves. Monocyte-derived macrophages from normal and FH subjects showed similar saturable degradation of acetylated LDL and also of LDL complexed with dextran sulphate. Maximal degradation of each was in the same range as the degradation of unmodified LDL by normal cells, and was not increased if the cells were pre-incubated with lipoprotein-deficient serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号