首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
Social isolation during postnatal development leads to behavioral and neurochemical changes, and a particular susceptibility of the prefrontal cortex to interventions during this period has been suggested. In addition, some studies showed that consumption of a palatable diet reduces some of the stress effects. Therefore, our aim is to investigate the effect of isolation stress in early life on some parameters of oxidative stress and energy metabolism (Na(+),K(+)-ATPase activity, respiratory chain enzymes activities and mitochondrial mass and potential) in prefrontal cortex of juvenile and adult male rats. We also verified if the consumption of a palatable diet during the prepubertal period would reduce stress effects. The results showed that, in juvenile animals, isolation stress increased superoxide dismutase and Complex IV activities and these effects were still observed in the adulthood. An interaction between stress and diet was observed in catalase activity in juveniles, while only the stress effect was detected in adults, reducing catalase activity. Access to a palatable diet increased Na(+),K(+)-ATPase activity in juveniles, an effect that was reversed after removing this diet. On the other hand, isolation stress induced a decreased activity of this enzyme in adulthood. No effects were observed on glutathione peroxidase, total thiols and free radicals production, as well as on mitochondrial mass and potential. In conclusion, isolation stress in the prepubertal period leads to long-lasting changes on antioxidant enzymes and energetic metabolism in the prefrontal cortex of male rats, and a palatable diet was not able to reverse these stress-induced effects.  相似文献   

2.
Social isolation during early development is one of the most potent stressors that can cause alterations in the processes of brain maturation, leading to behavioral and neurochemical changes that may persist to adulthood. Exposure to palatable diets during development can also affect neural circuits with long-term consequences. The aims of the present study were to investigate the long-term effects of isolation stress during the pre-pubertal period on the exploratory and anxiety-like behavior, the oxidative stress parameters and the respiratory chain enzymes activities in the hippocampus of adult male rats under chronic palatable diets. The results showed that isolated rats receiving either normal or high-fat diet during the pre-pubertal period presented an anxiolytic-like behavior. The animals exposed to stress and treated with high-carbohydrate diet, rich in disaccharides, on the other hand, presented the opposite pattern of behavior. Stress in the pre-pubertal period also leads to decreased activity of the antioxidant enzymes and the mitochondrial respiratory chain complexes II and IV and decreased total thiol content. These effects were reversed by high-fat diet when it was associated with stress. The effects of a sub-acute pre-pubertal isolation stress on anxiety-like behavior and on hippocampal oxidative imbalance during adulthood appear to be modulated by different types of diets, and probably different mechanisms are involved.  相似文献   

3.
Stressor experiences during the juvenile period may increase vulnerability to anxiety and depressive-like symptoms in adulthood. Stressors may also promote palatable feeding, possibly reflecting a form of self-medication. The current study investigated the short- and long-term consequences of a stressor applied during the juvenile period on anxiety- and depressive-like behavior measured by the elevated plus maze (EPM), social interaction and forced swim test (FST). Furthermore, the effects of stress on caloric intake, preference for a palatable food and indices of metabolic syndrome and obesity were assessed. Male Wistar rats exposed to 3 consecutive days of variable stressors on postnatal days (PD) 27–29, displayed elevated anxiety-like behaviors as adults, which could be attenuated by consumption of a palatable high-fat diet. However, consumption of a palatable food in response to a stressor appeared to contribute to increased adiposity.  相似文献   

4.
The aim of this study was to investigate whether RIPK1 mediated mitochondrial dysfunction and oxidative stress contributed to compression-induced nucleus pulposus (NP) cells necroptosis and apoptosis, together with the interplay relationship between necroptosis and apoptosis in vitro. Rat NP cells underwent various periods of 1.0 MPa compression. To determine whether compression affected mitochondrial function, we evaluated the mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP), mitochondrial ultrastructure and ATP content. Oxidative stress-related indicators reactive oxygen species, superoxide dismutase and malondialdehyde were also assessed. To verify the relevance between oxidative stress and necroptosis together with apoptosis, RIPK1 inhibitor necrostatin-1(Nec-1), mPTP inhibitor cyclosporine A (CsA), antioxidants and small interfering RNA technology were utilized. The results established that compression elicited a time-dependent mitochondrial dysfunction and elevated oxidative stress. Nec-1 and CsA restored mitochondrial function and reduced oxidative stress, which corresponded to decreased necroptosis and apoptosis. CsA down-regulated mitochondrial cyclophilin D expression, but had little effects on RIPK1 expression and pRIPK1 activation. Additionally, we found that Nec-1 largely blocked apoptosis; whereas, the apoptosis inhibitor Z-VAD-FMK increased RIPK1 expression and pRIPK1 activation, and coordinated regulation of necroptosis and apoptosis enabled NP cells survival more efficiently. In contrast to Nec-1, SiRIPK1 exacerbated mitochondrial dysfunction and oxidative stress. In summary, RIPK1-mediated mitochondrial dysfunction and oxidative stress play a crucial role in NP cells necroptosis and apoptosis during compression injury. The synergistic regulation of necroptosis and apoptosis may exert more beneficial effects on NP cells survival, and ultimately delaying or even retarding intervertebral disc degeneration.  相似文献   

5.
Neurodegeneration can occur as a result of endogenous oxidative stress. Primary cerebellar granule cells were used in this study to determine if mitochondrial DNA (mtDNA) repair deficiencies correlate with oxidative stress-induced apoptosis in neuronal cells. Granule cells exhibited a significantly higher intracellular oxidative state compared with primary astrocytes as well as increases in reductants, such as glutathione, and redox sensitive signaling molecules, such as AP endonuclease/redox effector factor-1. Cerebellar granule cultures also exhibited an increased susceptibility to exogenous oxidative stress. Menadione (50 μM) produced twice as many lesions in granule cell mtDNA compared with astrocytes, and granule cell mtDNA repair was significantly less efficient. A decreased capacity to repair oxidative mtDNA damage correlates strongly with mitochondrial initiated apoptosis in these neuronal cultures. Interestingly, the mitochondrial activities of initiators for base excision repair (BER), the bifunctional glycosylase/AP lyases as well as AP endonuclease, were significantly higher in cerebellar granule cells compared with astrocytes. The increased mitochondrial AP endonuclease activity in combination with decreased polymerase γ activity may cause an imbalance in oxidative BER leading to an increased production and persistence of mtDNA damage in neurons when treated with menadione. This study provides evidence linking neuronal mtDNA repair capacity with oxidative stress-related neurodegeneration.  相似文献   

6.
The effect of endotoxin (lipopolysacharide, LPS) exposure on luteal cells was studied using an in vitro cell culture system. Buffalo luteal cells were isolated from corpora lutea of the late luteal phase (days 14-16 post estrus) and exposed to various LPS doses (5, 10 and 100 microg/ml) for different time periods (6, 12, 18 or 24 h). The cultured cells were subsequently evaluated for oxidative stress (super oxide, nitric oxide, inducible nitric oxide synthase activity, reduced glutathione depletion and lipid peroxidation) and apoptotic markers (mitochondrial membrane potential, DNA fragmentation, apoptotic cells and cell viability). LPS exposure significantly increased the production of super oxide (P<0.05) and nitric oxide (P<0.01) and increased inducible nitric oxide synthase activity (P<0.01). LPS exposure further depleted reduced glutathione (P<0.05) levels and induced lipid peroxidation (P<0.05). LPS exposure also induced the loss of mitochondrial membrane potential (P<0.05), increased DNA fragmentation (P<0.01) and apoptosis (P<0.01) and decreased cell viability (P<0.01). LPS mediated apoptotic pathway in luteal cells was further characterized using a selected LPS dose (10 microg/ml). It was observed that LPS exposure induced mitochondrial translocation of proapoptotic protein Bax, increased the total Bad expression and down regulated the expression of antiapoptotic proteins Bcl2 and BclXL. LPS exposure further induced cytochrome c release and increased Caspase-9 (P<0.01) and Caspase-3 (P<0.01) activities. LPS exposure also inhibited luteal progesterone secretion (P<0.01). It was evident that the LPS mediated apoptotic effects could be prevented by the coincubation of luteal cells with mitochondrial permeability transition pore blocker Cyclosporine A, inducible nitric oxide synthase inhibitor N-[3-(aminomethyl)benzyl]acetamidine and oxidative stress scavenger N-acetyl cysteine. Our study clearly indicates that LPS induces oxidative stress mediated apoptosis in luteal cells through the mitochondrial pathway.  相似文献   

7.
Ma  Yan  Zhu  Mingkun  Miao  Liping  Zhang  Xiaoyun  Dong  Xinyang  Zou  Xiaoting 《Biological trace element research》2018,186(1):185-198
Over the last decade, there has been an increased concern about the health risks from exposure to arsenic at low doses, because of their neurotoxic effects on the developing brain. The exact mechanism underlying arsenic-induced neurotoxicity during sensitive periods of brain development remains unclear, although enhanced oxidative stresses, leading to mitochondrial dysfunctions might be involved. Here, we highlight the generation of reactive oxygen species (ROS) and oxidative stress which leads to mitochondrial dysfunctions and apoptosis in arsenic-induced developmental neurotoxicity. Here, the administration of sodium arsenite at doses of 2 or 4 mg/kg body weight in female rats from gestational to lactational (GD6-PD21) resulted to increased ROS, led to oxidative stress, and increased the apoptosis in the frontal cortex, hippocampus, and corpus striatum of developing rats on PD22, compared to controls. Enhanced levels of ROS were associated with decreased mitochondrial membrane potential and the activity of mitochondrial complexes, and hampered antioxidant levels. Further, neuronal apoptosis, as measured by changes in the expression of pro-apoptotic (Bax, Caspase-3), anti-apoptotic (Bcl2), and stress marker proteins (p-p38, pJNK) in arsenic-exposed rats, was discussed. The severities of changes were found to more persist in the corpus striatum than in other brain regions of arsenic-exposed rats even after the withdrawal of exposure on PD45 as compared to controls. Therefore, our results indicate that perinatal arsenic exposure leads to abrupt changes in ROS, oxidative stress, and mitochondrial functions and that apoptotic factor in different brain regions of rats might contribute to this arsenic-induced developmental neurotoxicity.  相似文献   

8.
Autophagy is an evolutionary conserved, indispensable, lysosome-mediated degradation process, which helps in maintaining homeostasis during various cellular traumas. During stress, a context-dependent role of autophagy has been observed which drives the cell towards survival or death depending upon the type, time, and extent of the damage. The process of autophagy is stimulated during various cellular insults, e.g. oxidative stress, endoplasmic reticulum stress, imbalances in calcium homeostasis, and altered mitochondrial potential. Ionizing radiation causes ROS-dependent as well as ROS-independent damage in cells that involve macromolecular (mainly DNA) damage, as well as ER stress induction, both capable of inducing autophagy. This review summarizes the current understanding on the roles of oxidative stress, ER stress, DNA damage, altered mitochondrial potential, and calcium imbalance in radiation-induced autophagy as well as the merits and limitations of targeting autophagy as an approach for radioprotection and radiosensitization.  相似文献   

9.
The existing cytometric methodologies do not allow one to directly correlate, within the same cells, functional cell attributes that are revealed supravitally with features that require cell fixation to be detected or measured. Taking advantage of the "file merge" feature of the laser-scanning cytometer, we have been able to correlate the supravital changes that occur during apoptosis, namely the drop in mitochondrial transmembrane potential (Delta Psim) and generation of the reactive oxygen intermediates (ROIs), with features revealed by analysis of fixed cells: the cell cycle position and DNA fragmentation. The cell cycle position was established based on the cell's stainability with propidium iodide while DNA fragmentation was assessed by in situ DNA strand break labeling using exogenous terminal deoxynucleotidyltransferase. During apoptosis of HL-60 cells induced by the DNA topoisomerase I inhibitor camptothecin (CPT), the dissipation of Delta Psim occurred preferentially in S-phase cells and preceded the appearance of DNA strand breaks. Essentially all cells with DNA strand breaks had dissipated Delta Psim. Compared to the decrease of Delta Psim, the CPT-induced rise in ROIs during apoptosis was less restricted to S-phase cells. Furthermore, no elevation of ROIs was detected in a significant proportion of cells with DNA strand breaks. The data suggest that DNA fragmentation may occur in some cells prior to the increase in ROIs and thus, unlike the dissipation of Delta Psim, the oxidative stress may not be a prerequisite for activation of an endonuclease. Alternatively, the oxidative stress may be a transient event, occupying a narrow "time window" during the apoptotic process. The approach opens a possibility to study direct relationships, within the same cells, between cellular changes (e.g., occurring during apoptosis, mitogenesis, differentiation, etc.) detected by functional assays of live cells and changes that cannot be analyzed supravitally.  相似文献   

10.
11.
Most cancer cells express high levels of telomerase and proliferate indefinitely. In addition to its telomere maintenance function, telomerase also has a pro-survival function resulting in an increased resistance against DNA damage and decreased apoptosis induction. However, the molecular mechanisms for this protective function remain elusive and it is unclear whether it is connected to telomere maintenance or is rather a non-telomeric function of the telomerase protein, TERT. It was shown recently that the protein subunit of telomerase can shuttle from the nucleus to the mitochondria upon oxidative stress where it protects mitochondrial function and decreases intracellular oxidative stress. Here we show that endogenous telomerase (TERT protein) shuttles from the nucleus into mitochondria upon oxidative stress in cancer cells and analyzed the nuclear exclusion patterns of endogenous telomerase after treatment with hydrogen peroxide in different cell lines. Cell populations excluded TERT from the nucleus upon oxidative stress in a heterogeneous fashion. We found a significant correlation between nuclear localization of telomerase and high DNA damage, while cells which excluded telomerase from the nucleus displayed no or very low DNA damage. We modeled nuclear and mitochondrial telomerase using organelle specific localization vectors and confirmed that mitochondrial localization of telomerase protects the nucleus from inflicted DNA damage and apoptosis while, in contrast, nuclear localization of telomerase correlated with higher amounts of DNA damage and apoptosis. It is known that nuclear DNA damage can be caused by mitochondrially generated reactive oxygen species (ROS). We demonstrate here that mitochondrial localization of telomerase specifically prevents nuclear DNA damage by decreasing levels of mitochondrial ROS. We suggest that this decrease of oxidative stress might be a possible cause for high stress resistance of cancer cells and could be especially important for cancer stem cells.  相似文献   

12.
The drastic increase in the consumption of fructose encouraged the research to focus on its effects on brain physio-pathology. Although young and adults differ largely by their metabolic and physiological profiles, most of the previous studies investigated brain disturbances induced by long-term fructose feeding in adults. Therefore, we investigated whether a short-term consumption of fructose (2 weeks) produces early increase in specific markers of inflammation and oxidative stress in the hippocampus of young and adult rats. After the high-fructose diet, plasma lipopolysaccharide and tumour necrosis factor (TNF)-alpha were found significantly increased in parallel with hippocampus inflammation, evidenced by a significant rise in TNF-alpha and glial fibrillar acidic protein concentrations in both the young and adult groups. The fructose-induced inflammatory condition was associated with brain oxidative stress, as increased levels of lipid peroxidation and nitro-tyrosine were detected in the hippocampus. The degree of activation of the protein kinase B, extracellular signal-regulated kinase 1/2, and insulin receptor substrate 1 pathways found in the hippocampus after fructose feeding indicates that the detrimental effects of the fructose-rich diet might largely depend on age. Mitochondrial function in the hippocampus, together with peroxisome proliferator-activated receptor gamma coactivator 1-alpha content, was found significantly decreased in fructose-treated adult rats. In vitro studies with BV-2 microglial cells confirmed that fructose treatment induces TNF-alpha production as well as oxidative stress. In conclusion, these results suggest that unbalanced diet, rich in fructose, may be highly deleterious in young people as in adults and must be strongly discouraged for the prevention of diet-associated neuroinflammation and neurological diseases.  相似文献   

13.
《Free radical research》2013,47(9):1081-1094
Abstract

The imbalance between reactive oxygen species (ROS) production and their elimination by antioxidants leads to oxidative stress. Depending on their concentration, ROS can trigger apoptosis or stimulate cell proliferation. We hypothesized that oxidative stress and mitochondrial dysfunction may participate not only in apoptosis detected in some myelodysplastic syndrome (MDS) patients, but also in increasing proliferation in other patients. We investigated the involvement of oxidative stress and mitochondrial dysfunction in MDS pathogenesis, as well as assessed their diagnostic and prognostic values. Intracellular peroxides, superoxide, superoxide/peroxides ratio, reduced glutathione (GSH), and mitochondrial membrane potential (Δψmit) levels were analyzed in bone marrow cells from 27 MDS patients and 12 controls, by flow cytometry. We observed that all bone marrow cell types from MDS patients had increased intracellular peroxide levels and decreased GSH content, compared with control cells. Moreover, oxidative stress levels were MDS subtype— and risk group—dependent. Low-risk patients had the highest ROS levels, which can be related with their high apoptosis; and intermediate-2-risk patients had high Δψmit that may be associated with their proliferative potential. GSH levels were negatively correlated with transfusion dependency, and peroxide levels were positively correlated with serum ferritin level. GSH content proved to be an accurate parameter to discriminate patients from controls. Finally, patients with high ROS or low GSH levels, as well as high superoxide/peroxides ratio had lower overall survival. Our results suggest that oxidative stress and mitochondrial dysfunction are involved in MDS development, and that oxidative stress parameters may constitute novel diagnosis and/or prognosis biomarkers for MDS.  相似文献   

14.
Mitochondrial dysfunction and oxidative stress are known to occur following acute seizure activity but their contribution during epileptogenesis is largely unknown. The goal of this study was to determine the extent of mitochondrial oxidative stress, changes to redox status, and mitochondrial DNA (mtDNA) damage during epileptogenesis in the lithium-pilocarpine model of temporal lobe epilepsy. Mitochondrial oxidative stress, changes in tissue and mitochondrial redox status, and mtDNA damage were assessed in the hippocampus and neocortex of Sprague-Dawley rats at time points (24h to 3months) following lithium-pilocarpine administration. A time-dependent increase in mitochondrial hydrogen peroxide (H(2)O(2)) production coincident with increased mtDNA lesion frequency in the hippocampus was observed during epileptogenesis. Acute increases (24-48h) in H(2)O(2) production and mtDNA lesion frequency were dependent on the severity of convulsive seizure activity during initial status epilepticus. Tissue levels of GSH, GSH/GSSG, coenzyme A (CoASH), and CoASH/CoASSG were persistently impaired at all measured time points throughout epileptogenesis, that is, acutely (24-48h), during the 'latent period' (48h to 7days), and chronic epilepsy (21days to 3months). Together with our previous work, these results demonstrate the model independence of mitochondrial oxidative stress, genomic instability, and persistent impairment of mitochondrial specific redox status during epileptogenesis. Lasting impairment of mitochondrial and tissue redox status during the latent period, in addition to the acute and chronic phases of epileptogenesis, suggests that redox-dependent processes may contribute to the progression of epileptogenesis in experimental temporal lobe epilepsy.  相似文献   

15.
Obesity is frequently associated with consumption of high amounts of sugar and/or fat. Studies have demonstrated a high prevalence of overweight and obesity associated or not with increase rates of psychiatry disorders, in particular mood and anxiety disorders. Recent works have demonstrated an association between specific genes involved in oxidative stress metabolism and anxiety-like behavior. The aim of this study was to investigate the effect of a highly palatable diet enriched with sucrose in body fat mass composition, anxiety behavior and brain oxidative status. Twenty male Wistar rats received two different diets during four months: standard chow (SC) and highly palatable (HP). Metabolic parameters, behavioral tests and oxidative stress status were evaluated. Body fat mass, insulin sensitivity and glucose tolerance were altered in the HP group (p<0.01). The same group spends less time in light compartment and had a lower risk assessment behavior (p<0.05) but no differences were observed in the open field test habituation (p>0.05). Protein degradation, DCF and TBARS levels were not different in the hippocampus between groups; however, there were higher levels of protein degration in frontal cortex of HP groups (p<0.05), although DCF and TBARS levels don't differ from the SC group (p>0.05). In conclusion, our data suggest that the consumption of HP diet leads to an obese phenotype, increases protein oxidation in frontal cortex and appears to induce anxiety-like behavior in rats.  相似文献   

16.
Raza H  John A 《PloS one》2012,7(4):e36325
We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC), cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.  相似文献   

17.
Role of mitochondria in toxic oxidative stress   总被引:17,自引:0,他引:17  
Oxidative stress and mitochondrial oxidative damage have been implicated in the etiology of numerous common diseases. The critical mitochondrial events responsible for oxidative stress-mediated cell death (toxic oxidative stress), however, have yet to be defined. Several oxidative events implicated in toxic oxidative stress include alterations in mitochondrial lipids (e.g., cardiolipin), mitochondrial DNA, and mitochondrial proteins (eg. aconitase and uncoupling protein 2). Furthermore, recent findings indicate the enrichment of mitochondrial membranes with vitamin E protects cells against the toxic effects of oxidative stress. This review briefly summarizes the role of these mitochondrial events in toxic oxidative stress, including: 1) the protective role of mitochondrial vitamin E in toxic oxidative stress, 2) the role of mitochondrial DNA in toxic oxidative stress, 3) the interaction between cardiolipin and cytochrome c in mitochondrial regulation of apoptosis, 4) the role of mitochondrial aconitase in oxidative neurodegeneration, and 5) the role of mitochondrial uncoupling protein 2 in the pathogenesis of type 2 diabetes.  相似文献   

18.
We investigated the role of the mitochondrial inner membrane permeability transition and subsequent release of cytochrome c into the cytosol during oxidative stress-evoked apoptosis. Sublethal oxidative stress was applied by treating L929 cells with 0.5 mM H2O2 for 90 min. Then the cellular localization of cytochrome c was examined by immunofluorescent staining and Western blotting. H2O2 treatment caused the permeability transition and pore formation, resulting in membrane depolarization and translocation of cytochrome c from the mitochondria into the cytosol. Pretreatment with cyclosporin A and aristolochic acid (to inhibit pore formation) significantly attenuated a reduction of the mitochondrial membrane potential, as well as signs of apoptosis such as DNA fragmentation, increased plasma membrane permeability, and chromatin condensation. Therefore, exposure to H2O2 caused the opening of permeability transition pores in the inner mitochondrial membrane. An essential role of cytosolic cytochrome c in the execution of apoptosis was demonstrated by its direct microinjection into the cytosol, thus bypassing the need for cytochrome c release from the mitochondrial intermembrane space. Microinjection of cytochrome c caused caspase-dependent apoptosis.  相似文献   

19.
With age, mitochondrial DNA mutations and oxidative stress increase, leading to the hypothesis that the production of reactive oxygen species causes the pathogenic effects of mitochondrial DNA mutations. We tested this hypothesis using transgenic mice that develop cardiomyopathy due to the accumulation of mitochondrial DNA mutations specifically in the heart. Surprisingly, the mechanism of pathogenesis does not involve increased oxidative stress. The amounts of DNA and protein oxidative adducts are not elevated in the transgenic heart. Neither are signs of increased oxidative stress detected by measurements of enzyme function or oxidative defense systems. Rather, we find that the mitochondrial DNA mutations induce a cytoprotective response including increases in the levels of Bcl-2 and Bfl-1, pro-survival proteins that inhibit apoptosis, and atrial natriuretic factor. Bcl-2 is elevated in nearly all cardiomyocytes before the onset of dilated cardiomyopathy. These results raise the possibility that a signaling pathway between the mitochondrion and the nucleus mediates the pathogenic effect of mitochondrial DNA mutations.  相似文献   

20.
Hyperlipidemia is a major cause of atherosclerosis and atherosclerosis-associated conditions in cardiovascular diseases. Oxidative stress, as a main risk factor causes vascular endothelial cell apoptosis, which is implicated in the pathogenesis of cardiovascular disorders. Diosgenin, an aglycone of steroidal saponins, has been reported to exert anti-proliferative and proapoptotic actions on cancer cells widely. In this study, we propose that diosgenin can protect the hyperlipidemic rats and prevent endothelial apoptosis under oxidative stress. We investigated the hypolipidemic and antioxidative effects of diosgenin on rats fed with high cholesterol and high fat diet for 6 weeks. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), glutathione peroxidase (GSH-PX), nitric oxide synthase (NOS), hepatic malondialdehyde (MDA), lipoprotein lipase (LPL), hepaticlipase (HL) and superoxide dismutase (SOD) activities were evaluated. Then we explored the effects and mechanism of diosgenin against hydrogen peroxide-induced apoptosis of human vein endothelium cells (HUVECs). Intracellular reactive oxygen species (ROS), glutathione (GSH), nitric oxide (NO), DNA fragment formation and mitochondrial membrane potentials (ΔΨm) were determined. Diosgenin treatment increased LPL, HL, SOD, GSH-PX and NOS activities, thus attenuated oxygen free radicals, decreased MDA, TC, TG and LDL-C levels in hyperlipidemic rats. Diosgenin pretreatment significantly attenuated H2O2-induced apoptosis in HUVECs, intracellular ROS, GSH depletion, DNA fragment formation, and restored NO, ΔΨm. These results suggested that diosgenin is a very useful compound to control hyperlipidemia by both improving the lipid profile and modulating oxidative stress and prevent H2O2-induced apoptosis of HUVECs, in partly through regulating mitochondrial dysfunction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号