首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Roots form highly complex systems varying in growth direction and branching pattern to forage for nutrients efficiently. Here mutations in the KAI2 (KARRIKIN INSENSITIVE) α/β‐fold hydrolase and the MAX2 (MORE AXILLARY GROWTH 2) F‐box leucine‐rich protein, which together perceive karrikins (smoke‐derived butenolides), caused alteration in root skewing in Arabidopsis thaliana. This phenotype was independent of endogenous strigolactones perception by the D14 α/β‐fold hydrolase and MAX2. Thus, KAI2/MAX2 effect on root growth may be through the perception of endogenous KAI2‐ligands (KLs), which have yet to be identified. Upon perception of a ligand, a KAI2/MAX2 complex is formed together with additional target proteins before ubiquitination and degradation through the 26S proteasome. Using a genetic approach, we show that SMAX1 (SUPPRESSOR OF MAX2‐1)/SMXL2 and SMXL6,7,8 (SUPPRESSOR OF MAX2‐1‐LIKE) are also likely degradation targets for the KAI2/MAX2 complex in the context of root skewing. In A. thaliana therefore, KAI2 and MAX2 act to limit root skewing, while kai2's gravitropic and mechano‐sensing responses remained largely unaffected. Many proteins are involved in root skewing, and we investigated the link between MAX2 and two members of the SKS/SKU family. Though KLs are yet to be identified in plants, our data support the hypothesis that they are present and can affect root skewing.  相似文献   

6.
姚瑞枫  谢道昕 《植物学报》2020,55(4):397-402
植物激素信号传导途径中的抑制子(repressor) DELLA、AUX/IAA、JAZ和D53/SMXL均结合下游转录因子并抑制其转录活性, 从而阻遏激素响应基因的表达; 激素分子则激活信号传导链降解抑制子、释放转录因子, 从而诱导响应基因表达并介导相应的生物学功能。中国科学院遗传与发育生物学研究所李家洋研究团队最新的研究发现, 独脚金内酯(SL)信号途径中的SMXL6、SMXL7和SMXL8是具有抑制子和转录因子双重功能的新型抑制子, 他们还通过研究SL转录调控网络发现了大量新的SL响应基因, 揭示了SL调控植物分枝、叶片伸长和花色素苷积累的分子机制。这些重要发现为探索植物激素作用机理提供了新思路, 具有重要科学意义和应用前景。  相似文献   

7.
Strigolactones (SLs) are a recently discovered type of plant hormone that controls various developmental processes. The DWARF53 (D53) protein in rice and the SMAX1-LIKE (SMXL) family in Arabidopsis repress SL signaling. In this study, bioinformatics analyses were performed, and 236 SMXL proteins were identified in 28 sequenced plants. A phylogenetic analysis indicated that all potential SMXL proteins could be divided into three groups and that the SMXL proteins may have originated in Bryophytes. An analysis of the SMXL chromosomal locations suggested that gene duplication events at different times led to expansion of the SMXL family members in Angiospermae. Subsequently, the gene structure and protein modeling of MdSMXLs showed that they are highly conserved. The expression patterns of MdSMXLs indicated that they were expressed in different organs of apple (stems, roots, leaves, flowers, and fruits) at varying levels and that MdSMXLs may participate in the SL signaling pathway and the response to abiotic stress. This study provides a valuable foundation for additional investigations into the function of the SMXL gene family in plants.  相似文献   

8.

Background

Strigolactones are a new class of plant hormones that play a key role in regulating shoot branching. Studies of branching mutants in Arabidopsis, pea, rice and petunia have identified several key genes involved in strigolactone biosynthesis or signaling pathway. In the model plant Arabidopsis, MORE AXILLARY GROWTH1 (MAX1), MAX2, MAX3 and MAX4 are four founding members of strigolactone pathway genes. However, little is known about the strigolactone pathway genes in the woody perennial plants.

Methodology/Principal Finding

Here we report the identification of MAX homologues in the woody model plant Populus trichocarpa. We identified the sequence homologues for each MAX protein in P. trichocarpa. Gene expression analysis revealed that Populus MAX paralogous genes are differentially expressed across various tissues and organs. Furthermore, we showed that Populus MAX genes could complement or partially complement the shoot branching phenotypes of the corresponding Arabidopsis max mutants.

Conclusion/Significance

This study provides genetic evidence that strigolactone pathway genes are likely conserved in the woody perennial plants and lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.  相似文献   

9.
KARRIKIN INSENSITIVE2 (KAI2) was first identified as a receptor of karrikins, smoke-derived germination stimulants. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2 ligand. Upon KAI2 activation, signals are transmitted through the degradation of D53/SMXL proteins via MAX2-dependent ubiquitination. Although components in the KAI2-dependent signaling pathway, namely MpKAI2A and MpKAI2B, MpMAX2, and MpSMXL, exist in the genome of the liverwort Marchantia polymorpha, their functions remain unknown. Here, we show that early thallus growth is retarded and gemma dormancy in the dark is suppressed in Mpkai2a and Mpmax2 loss-of-function mutants. These defects are counteracted in Mpkai2a Mpsmxl and Mpmax2 Mpsmxl double mutants indicating that MpKAI2A, MpMAX2, and MpSMXL act in the same genetic pathway. Introduction of MpSMXLd53, in which a domain required for degradation is mutated, into wild-type plants mimicks Mpkai2a and Mpmax2 plants. In addition, the detection of citrine fluorescence in Nicotiana benthamiana cells transiently expressing a SMXL-Citrine fusion protein requires treatment with MG132, a proteasome inhibitor. These findings imply that MpSMXL is subjected to degradation, and that the degradation of MpSMXL is crucial for MpKAI2A-dependent signaling in M. polymorpha. Therefore, we claim that the basic mechanisms in the KAI2-dependent signaling pathway are conserved in M. polymorpha.

Functions of genes in the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort Marchantia polymorpha and control early development of the thallus.  相似文献   

10.
Strigolactones play crucial roles in regulating plant architecture and development, as endogenous hormones, and orchestrating symbiotic interactions with fungi and parasitic plants, as components of root exudates. rac-GR24 is currently the most widely used strigolactone analog and serves as a reference compound in investigating the action of strigolactones. In this study, we evaluated a suite of debranones and found that 2-nitrodebranone (2NOD) exhibited higher biological activity than rac-GR24 in various aspects of plant growth and development in Arabidopsis, including hypocotyl elongation inhibition, root hair promotion and senescence acceleration. The enhanced activity of 2NOD in promoting AtD14–SMXL7 and AtD14–MAX2 interactions indicates that the molecular structure of 2NOD is a better match for the ligand perception site pocket of D14. Moreover, 2NOD showed lower activity than rac-GR24 in promoting Orobanche cumana seed germination, suggesting its higher ability to control plant architecture than parasitic interactions. In combination with the improved stability of 2NOD, these results demonstrate that 2NOD is a strigolactone analog that can specifically mimic the activity of strigolactones and that 2NOD exhibits strong potential as a tool for studying the strigolactone signaling pathway in plants.  相似文献   

11.
Tillering in rice (Oryza sativa) is one of the most important agronomic traits that determine grain yields. Previous studies on rice tillering mutants have shown that the outgrowth of tiller buds in rice is regulated by a carotenoid-derived MAX/RMS/D (more axillary branching) pathway, which may be conserved in higher plants. Strigolactones, a group of terpenoid lactones, have been recently identified as products of the MAX/RMS/D pathway that inhibits axillary bud outgrowth. We report here the molecular genetic characterization of d27, a classic rice mutant exhibiting increased tillers and reduced plant height. D27 encodes a novel iron-containing protein that localizes in chloroplasts and is expressed mainly in vascular cells of shoots and roots. The phenotype of d27 is correlated with enhanced polar auxin transport. The phenotypes of the d27 d10 double mutant are similar to those of d10, a mutant defective in the ortholog of MAX4/RMS1 in rice. In addition, 2′-epi-5-deoxystrigol, an identified strigolactone in root exudates of rice seedlings, was undetectable in d27, and the phenotypes of d27 could be rescued by supplementation with GR24, a synthetic strigolactone analog. Our results demonstrate that D27 is involved in the MAX/RMS/D pathway, in which D27 acts as a new member participating in the biosynthesis of strigolactones.  相似文献   

12.
《Trends in plant science》2023,28(8):902-912
Karrikins (KARs) are small butenolide compounds identified in the smoke of burning vegetation. Along with the stimulating effects on seed germination, KARs also regulate seedling vigor and adaptive behaviors, such as seedling morphogenesis, root hair development, and stress acclimation. The pivotal KAR signaling repressor, SUPPRESSOR OF MAX2 1 (SMAX1), plays central roles in these developmental and morphogenic processes through an extensive signaling network that governs seedling responses to endogenous and environmental cues. Here, we summarize the versatile roles of SMAX1 reported in recent years and discuss how SMAX1 integrates multiple growth hormone signals into optimizing seedling establishment. We also discuss the evolutionary relevance of the SMAX1-mediated signaling pathways during the colonization of aqueous plants to terrestrial environments.  相似文献   

13.
Strigolactones (SLs) are important intrinsic growth regulators that control plant architecture by coordinating shoot and root development. Recent studies demonstrate that SL signals act via targeting the degradation protein DWARF53 (D53) family of chaperonin-like proteins. This process requires DWARF14 (D14) as strigolactones signal receptor and DWARF3 (D3) forming Skp-Cullin-F-box (SCF) complex as ubiquitin E3 ligase. Although the interactions of these signal components can be expected, where and how the SLs signalling occur within cells in a tissue-specific manner is still uncertain. In this study, we characterize a rice high-tillering dwarf mutant, ext.-M1B, displaying resistance to synthetic strigolactone mixture rac-GR24. Through genetic analysis, we find that ext.-M1B is a new allelic mutant of D3 with a nucleotide mutation resulting in a truncated protein of wide-type D3. We demonstrate that the mutation affects neither gene expression level nor the protein sub-cellular localization, whereas it disrupts the perception of SLs signal in ext.-M1B mutant. Moreover, we find that overexpression of D3 in wild type background causes no significant phenotype, but suppression of D3 by RNA interfering results in a clear phenocopy of SL mutants. By expressing fluorescent D3 fusion protein in rice, we first show that D3 is stable consistently in the nucleus with or without strigolactone treatment. Taken together, our data indicates that D3 encoding an F-box protein in nucleus, as a stable signal component response to strigolactone regulating rice shoot architecture.  相似文献   

14.
15.
Karrikins are butenolide compounds present in post‐fire environments that can stimulate seed germination in many species, including Arabidopsis thaliana. Plants also produce endogenous butenolide compounds that serve as hormones, namely strigolactones (SLs). The receptor for karrikins (KARRIKIN INSENSITIVE 2; KAI2) and the receptor for SLs (DWARF14; D14) are homologous proteins that share many similarities. The mode of action of D14 as a dual enzyme receptor protein is well established, but the nature of KAI2‐dependent signalling and its function as a receptor are not fully understood. To expand our knowledge of how KAI2 operates, we screened ethyl methanesulphonate (EMS)‐mutagenized populations of A. thaliana for mutants with kai2‐like phenotypes and isolated 13 new kai2 alleles. Among these alleles, kai2‐10 encoded a D184N protein variant that was stable in planta. Differential scanning fluorimetry assays indicated that the KAI2 D184N protein could interact normally with bioactive ligands. We developed a KAI2‐active version of the fluorescent strigolactone analogue Yoshimulactone Green to show that KAI2 D184N exhibits normal rates of ligand hydrolysis. KAI2 D184N degraded in response to treatment with exogenous ligands, suggesting that receptor degradation is a consequence of ligand binding and hydrolysis, but is insufficient for signalling activity. Remarkably, KAI2 D184N degradation was hypersensitive to karrikins, but showed a normal response to strigolactone analogues, implying that these butenolides may interact differently with KAI2. These results demonstrate that the enzymatic and signalling functions of KAI2 can be decoupled, and provide important insights into the mechanistic events that underpin butenolide signalling in plants.  相似文献   

16.
17.
Karrikins are butenolides derived from burnt vegetation that stimulate seed germination and enhance seedling responses to light. Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi. Thus, karrikins and strigolactones are structurally similar but physiologically distinct plant growth regulators. In Arabidopsis thaliana, responses to both classes of butenolides require the F-box protein MAX2, but it remains unclear how discrete responses to karrikins and strigolactones are achieved. In rice, the DWARF14 protein is required for strigolactone-dependent inhibition of shoot branching. Here, we show that the Arabidopsis DWARF14 orthologue, AtD14, is also necessary for normal strigolactone responses in seedlings and adult plants. However, the AtD14 paralogue KARRIKIN INSENSITIVE 2 (KAI2) is specifically required for responses to karrikins, and not to strigolactones. Phylogenetic analysis indicates that KAI2 is ancestral and that AtD14 functional specialisation has evolved subsequently. Atd14 and kai2 mutants exhibit distinct subsets of max2 phenotypes, and expression patterns of AtD14 and KAI2 are consistent with the capacity to respond to either strigolactones or karrikins at different stages of plant development. We propose that AtD14 and KAI2 define a class of proteins that permit the separate regulation of karrikin and strigolactone signalling by MAX2. Our results support the existence of an endogenous, butenolide-based signalling mechanism that is distinct from the strigolactone pathway, providing a molecular basis for the adaptive response of plants to smoke.  相似文献   

18.
19.
20.
In Arabidopsis thaliana, the α/β-fold hydrolase KARRIKIN INSENSITIVE2 (KAI2) is essential for normal seed germination, seedling development, and leaf morphogenesis, as well as for responses to karrikins. KAI2 is a paralog of DWARF14 (D14), the proposed strigolactone receptor, but the evolutionary timing of functional divergence between the KAI2 and D14 clades has not been established. By swapping gene promoters, we show that Arabidopsis KAI2 and D14 proteins are functionally distinct. We show that the catalytic serine of KAI2 is essential for function in plants and for biochemical activity in vitro. We identified two KAI2 homologs from Selaginella moellendorffii and two from Marchantia polymorpha. One from each species could hydrolyze the strigolactone analog GR24 in vitro, but when tested for their ability to complement Arabidopsis d14 and kai2 mutants, neither of these homologs was effective. However, the second KAI2 homolog from S. moellendorffii was able to complement the seedling and leaf development phenotypes of Arabidopsis kai2. This homolog could not transduce signals from exogenous karrikins, strigolactone analogs, or carlactone, but its activity did depend on the conserved catalytic serine. We conclude that KAI2, and most likely the endogenous signal to which it responds, has been conserved since the divergence of lycophytes and angiosperm lineages, despite their major developmental and morphogenic differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号