首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial translation initiation factor 2 (IF2) is a GTPase that promotes the binding of the initiator fMet‐tRNAfMet to the 30S ribosomal subunit. It is often assumed that IF2 delivers fMet‐tRNAfMet to the ribosome in a ternary complex, IF2·GTP·fMet‐tRNAfMet. By using rapid kinetic techniques, we show here that binding of IF2·GTP to the 30S ribosomal subunit precedes and is independent of fMet‐tRNAfMet binding. The ternary complex formed in solution by IF2·GTP and fMet‐tRNA is unstable and dissociates before IF2·GTP and, subsequently, fMet‐tRNAfMet bind to the 30S subunit. Ribosome‐bound IF2 might accelerate the recruitment of fMet‐tRNAfMet to the 30S initiation complex by providing anchoring interactions or inducing a favourable ribosome conformation. The mechanism of action of IF2 seems to be different from that of tRNA carriers such as EF‐Tu, SelB and eukaryotic initiation factor 2 (eIF2), instead resembling that of eIF5B, the eukaryotic subunit association factor.  相似文献   

2.
In addition to their natural substrates GDP and GTP, the bacterial translational GTPases initiation factor (IF) 2 and elongation factor G (EF-G) interact with the alarmone molecule guanosine tetraphosphate (ppGpp), which leads to GTPase inhibition. We have used isothermal titration calorimetry to determine the affinities of ppGpp for IF2 and EF-G at a temperature interval of 5-25 °C. We find that ppGpp has a higher affinity for IF2 than for EF-G (1.7-2.8 μM Kdversus 9.1-13.9 μM Kd at 10-25 °C), suggesting that during stringent response in vivo, IF2 is more responsive to ppGpp than to EF-G. We investigated the effects of ppGpp, GDP, and GTP on IF2 interactions with fMet-tRNAfMet demonstrating that IF2 binds to initiator tRNA with submicromolar Kd and that affinity is altered by the G nucleotides only slightly. This—in conjunction with earlier reports on IF2 interactions with fMet-tRNAfMet in the context of the 30S initiation complex, where ppGpp was suggested to strongly inhibit fMet-tRNAfMet binding and GTP was suggested to strongly promote fMet-tRNAfMet binding—sheds new light on the mechanisms of the G-nucleotide-regulated fMet-tRNAfMet selection.  相似文献   

3.
Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNA(fMet) requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNA(fMet). Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNA(fMet), IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNA(fMet), which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNA(fMet) induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation.  相似文献   

4.
IF3 has a fidelity function in the initiation of translation, inducing the dissociation of fMet-tRNA(fMet) from the 30 S initiation complexes (30SIC) containing a non-canonical initiation triplet (e.g. AUU) in place of a canonical initiation triplet (e.g., AUG). IF2 has a complementary role, selectively promoting initiator tRNA binding to the ribosome. Here, we used parallel rapid kinetics measurements of GTP hydrolysis, Pi release, light-scattering, and changes in intensities of fluorophore-labeled IF2 and fMet-tRNA(fMet) to determine the effects on both 30SIC formation and 30SIC conversion to 70 S initiation complexes (70SIC) of (a) substituting AUG with AUU, and/or (b) omitting IF3, and/or (c) replacing GTP with the non-hydrolyzable analog GDPCP. We demonstrate that the presence or absence of IF3 has, at most, minor effects on the rate of 30SIC formation using either AUG or AUU as the initiation codon, and conclude that the high affinity of IF2 for both 30 S subunit and initiator tRNA overrides any perturbation of the codon-anticodon interaction resulting from AUU for AUG substitution. In contrast, replacement of AUG by AUU leads to a dramatic reduction in the rate of 70SIC formation from 30SIC upon addition of 50 S subunits. Interpreting our results in the framework of a quantitative kinetic scheme leads to the conclusion that, within the overall process of 70SIC formation, the step most affected by substituting AUU for AUG involves the conversion of an initially labile 70 S ribosome into a more stable complex. In the absence of IF3, the difference between AUG and AUU largely disappears, with each initiation codon affording rapid 70SIC formation, leading to the hypothesis that it is the rate of IF3 dissociation from the 70 S ribosome during IC70S formation that is critical to its fidelity function.  相似文献   

5.
Allen GS  Zavialov A  Gursky R  Ehrenberg M  Frank J 《Cell》2005,121(5):703-712
The 70S ribosome and its complement of factors required for initiation of translation in E. coli were purified separately and reassembled in vitro with GDPNP, producing a stable initiation complex (IC) stalled after 70S assembly. We have obtained a cryo-EM reconstruction of the IC showing IF2*GDPNP at the intersubunit cleft of the 70S ribosome. IF2*GDPNP contacts the 30S and 50S subunits as well as fMet-tRNA(fMet). IF2 here adopts a conformation radically different from that seen in the recent crystal structure of IF2. The C-terminal domain of IF2 binds to the single-stranded portion of fMet-tRNA(fMet), thereby forcing the tRNA into a novel orientation at the P site. The GTP binding domain of IF2 binds to the GTPase-associated center of the 50S subunit in a manner similar to EF-G and EF-Tu. Additionally, we present evidence for the localization of IF1, IF3, one C-terminal domain of L7/L12, and the N-terminal domain of IF2 in the initiation complex.  相似文献   

6.
The translation initiation efficiency of a given mRNA is determined by its translation initiation region (TIR). mRNAs are selected into 30S initiation complexes according to the strengths of the secondary structure of the TIR, the pairing of the Shine-Dalgarno sequence with 16S rRNA, and the interaction between initiator tRNA and the start codon. Here, we show that the conversion of the 30S initiation complex into the translating 70S ribosome constitutes another important mRNA control checkpoint. Kinetic analysis reveals that 50S subunit joining and dissociation of IF3 are strongly influenced by the nature of the codon used for initiation and the structural elements of the TIR. Coupling between the TIR and the rate of 70S initiation complex formation involves IF3- and IF1-induced rearrangements of the 30S subunit, providing a mechanism by which the ribosome senses the TIR and determines the efficiency of translational initiation of a particular mRNA.  相似文献   

7.
48S initiation complex (48S IC) formation is the first stage in the eukaryotic translation process. According to the canonical mechanism, 40S ribosomal subunit binds to the 5′-end of messenger RNA (mRNA) and scans its 5′-untranslated region (5′-UTR) to the initiation codon where it forms the 48S IC. Entire process is mediated by initiation factors. Here we show that eIF5 and eIF5B together stimulate 48S IC formation influencing initiation codon selection during ribosomal scanning. Initiation on non-optimal start codons—following structured 5′-UTRs, in bad AUG context, within few nucleotides from 5′-end of mRNA and CUG start codon—is the most affected. eIF5-induced hydrolysis of eIF2-bound GTP is essential for stimulation. GTP hydrolysis increases the probability that scanning ribosomal complexes will recognize and arrest scanning at a non-optimal initiation codon. Such 48S ICs are less stable owing to dissociation of eIF2*GDP from initiator tRNA, and eIF5B is then required to stabilize the initiator tRNA in the P site of 40S subunit. Alternative model that eIF5 and eIF5B cause 43S pre-initiation complex rearrangement favoring more efficient initiation codon recognition during ribosomal scanning is equally possible. Mutational analysis of eIF1A and eIF5B revealed distinct functions of eIF5B in 48S IC formation and subunit joining.  相似文献   

8.
The pathway of bacterial ribosome recycling following translation termination has remained obscure. Here, we elucidate two essential steps and describe the roles played by the three translation factors EF-G, RRF, and IF3. Release factor RF3 is known to catalyze the dissociation of RF1 or RF2 from ribosomes after polypeptide release. We show that the next step is dissociation of 50S subunits from the 70S posttermination complex and that it is catalyzed by RRF and EF-G and requires GTP hydrolysis. Removal of deacylated tRNA from the resulting 30S:mRNA:tRNA posttermination complex is then necessary to permit rapid 30S subunit recycling. We show that this step requires initiation factor IF3, whose role was previously thought to be restricted to promoting specific 30S initiation complex formation from free 30S subunits.  相似文献   

9.
Association of the 30 S initiation complex (30SIC) and the 50 S ribosomal subunit, leading to formation of the 70 S initiation complex (70SIC), is a critical step of the translation initiation pathway. The 70SIC contains initiator tRNA, fMet-tRNA(fMet), bound in the P (peptidyl)-site in response to the AUG start codon. We have formulated a quantitative kinetic scheme for the formation of an active 70SIC from 30SIC and 50 S subunits on the basis of parallel rapid kinetics measurements of GTP hydrolysis, Pi release, light-scattering, and changes in fluorescence intensities of fluorophore-labeled IF2 and fMet-tRNA(f)(Met). According to this scheme, an initially formed labile 70 S complex, which promotes rapid IF2-dependent GTP hydrolysis, either dissociates reversibly into 30 S and 50 S subunits or is converted to a more stable form, leading to 70SIC formation. The latter process takes place with intervening conformational changes of ribosome-bound IF2 and fMet-tRNA(fMet), which are monitored by spectral changes of fluorescent derivatives of IF2 and fMet-tRNA(fMet). The availability of such a scheme provides a useful framework for precisely elucidating the mechanisms by which substituting the non-hydrolyzable analog GDPCP for GTP or adding thiostrepton inhibit formation of a productive 70SIC. GDPCP does not affect stable 70 S formation, but perturbs fMet-tRNA(fMet) positioning in the P-site. In contrast, thiostrepton severely retards stable 70 S formation, but allows normal binding of fMet-tRNA(fMet)(prf20) to the P-site.  相似文献   

10.
Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet‐tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2‐30S interaction, is positioned between the GTP‐binding G2 and the fMet‐tRNA binding C‐terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two β‐sheets with each four anti‐parallel strands, followed by a C‐terminal α‐helix. In line with its role as linker between G3 and subdomain C1, this helix has no well‐defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB‐fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA‐binding modules such as IF2‐C2, IF1 and subdomains II of elongation factors EF‐Tu and EF‐G. Structural comparisons have resulted in a model that describes the interaction between IF2‐G3 and the 30S ribosomal subunit.  相似文献   

11.
Protein synthesis is initiated on ribosomal subunits. However, it is not known how 70S ribosomes are dissociated into small and large subunits. Here we show that 70S ribosomes, as well as the model post-termination complexes, are dissociated into stable subunits by cooperative action of three translation factors: ribosome recycling factor (RRF), elongation factor G (EF-G), and initiation factor 3 (IF3). The subunit dissociation is stable enough to be detected by conventional sucrose density gradient centrifugation (SDGC). GTP, but not nonhydrolyzable GTP analog, is essential in this process. We found that RRF and EF-G alone transiently dissociate 70S ribosomes. However, the transient dissociation cannot be detected by SDGC. IF3 stabilizes the dissociation by binding to the transiently formed 30S subunits, preventing re-association back to 70S ribosomes. The three-factor-dependent stable dissociation of ribosomes into subunits completes the ribosome cycle and the resulting subunits are ready for the next round of translation.  相似文献   

12.
Shin BS  Maag D  Roll-Mecak A  Arefin MS  Burley SK  Lorsch JR  Dever TE 《Cell》2002,111(7):1015-1025
Translation initiation factor eIF5B/IF2 is a GTPase that promotes ribosomal subunit joining. We show that eIF5B mutations in Switch I, an element conserved in all GTP binding domains, impair GTP hydrolysis and general translation but not eIF5B subunit joining function. Intragenic suppressors of the Switch I mutation restore general translation, but not eIF5B GTPase activity. These suppressor mutations reduce the ribosome affinity of eIF5B and increase AUG skipping/leaky scanning. The uncoupling of translation and eIF5B GTPase activity suggests a regulatory rather than mechanical function for eIF5B GTP hydrolysis in translation initiation. The translational defect suggests eIF5B stabilizes Met-tRNA(i)(Met) binding and that GTP hydrolysis by eIF5B is a checkpoint monitoring 80S ribosome assembly in the final step of translation initiation.  相似文献   

13.
Eukaryotic initiation factor 5B (eIF5B) is a GTPase that facilitates joining of the 60 S ribosomal subunit to the 40 S ribosomal subunit during translation initiation. Formation of the resulting 80 S initiation complex triggers eIF5B to hydrolyze its bound GTP, reducing the affinity of the factor for the complex and allowing it to dissociate. Here we present a kinetic analysis of GTP hydrolysis by eIF5B in the context of the translation initiation pathway. Our data indicate that stimulation of GTP hydrolysis by eIF5B requires the completion of early steps in translation initiation, including the eIF1- and eIF1A-dependent delivery of initiator methionyl-tRNA to the 40 S ribosomal subunit and subsequent GTP hydrolysis by eIF2. Full activation of GTP hydrolysis by eIF5B requires the extreme C terminus of eIF1A, which has previously been shown to interact with the C terminus of eIF5B. Disruption of either isoleucine residue in the eIF1A C-terminal sequence DIDDI reduces the rate constant for GTP hydrolysis by approximately 20-fold, whereas changing the aspartic acid residues has no effect. Changing the isoleucines in the C terminus of eIF1A also disrupts the ability of eIF5B to facilitate subunit joining. These data indicate that the interaction of the C terminus of eIF1A with eIF5B promotes ribosomal subunit joining and possibly provides a checkpoint for correct complex formation, allowing full activation of GTP hydrolysis only upon formation of a properly organized 80 S initiation complex.  相似文献   

14.
Initiation of protein synthesis is a universally conserved event that requires initiation factors IF1, IF2 and IF3 in prokaryotes. IF2 is a GTPase essential for binding initiator transfer RNA to the 30S ribosomal subunit and recruiting the 50S subunit into the 70S initiation complex. We present two cryo-EM structures of the assembled 70S initiation complex comprising mRNA, fMet-tRNA(fMet) and IF2 with either a non-hydrolyzable GTP analog or GDP. Transition from the GTP-bound to the GDP-bound state involves substantial conformational changes of IF2 and of the entire ribosome. In the GTP analog-bound state, IF2 interacts mostly with the 30S subunit and extends to the initiator tRNA in the peptidyl (P) site, whereas in the GDP-bound state IF2 steps back and adopts a 'ready-to-leave' conformation. Our data also provide insights into the molecular mechanism guiding release of IF1 and IF3.  相似文献   

15.
Initiation of translation in prokaryotes requires the participation of at least three soluble proteins: the initiation factors IF1, IF2 and IF3. Initiation factor 2, which is one of the largest proteins involved in translation (97.3 kDa) has been shown to stimulate in vitro the binding of fMet-tRNA(fMet) to the 30S ribosomal subunit. After formation of 70S translation initiation complex, IF2 is believed to participate in GTP hydrolysis, thereby promoting its own release. Here we review evidence which indicates the functional importance of the different structural domains of IF2, emphasizing new information obtained by in vivo experiments.  相似文献   

16.
During initiation of messenger RNA translation in bacteria, the GTPase initiation factor (IF) 2 plays major roles in the assembly of the preinitiation 30S complex and its docking to the 50S ribosomal subunit leading to the 70S initiation complex, ready to form the first peptide bond in a nascent protein. Rapid and accurate initiation of bacterial protein synthesis is driven by conformational changes in IF2, induced by GDP-GTP exchange and GTP hydrolysis. We have used isothermal titration calorimetry and linear extrapolation to characterize the thermodynamics of the binding of GDP and GTP to free IF2 in the temperature interval 4-37 °C. IF2 binds with about 20-fold and 2-fold higher affinity for GDP than for GTP at 4 and 37 °C, respectively. The binding of IF2 to both GTP and GDP is characterized by a large heat capacity change (− 868 ± 25 and − 577 ± 23 cal mol− 1 K− 1, respectively), associated with compensatory changes in binding entropy and enthalpy. From our data, we propose that GTP binding to IF2 leads to protection of hydrophobic amino acid residues from solvent by the locking of switch I and switch II loops to the γ-phosphate of GTP, as in the case of elongation factor G. From the large heat capacity change (also upon GDP binding) not seen in the case of elongation factor G, we propose the existence of yet another type of conformational change in IF2, which is induced by GDP and GTP alike. Also, this transition is likely to protect hydrophobic groups from solvent, and its functional relevance is discussed.  相似文献   

17.
Starting from a synthetic modular gene (infA) encoding Escherichia coli translation initiation factor IF1, we have constructed mutants in which amino acids are deleted from the carboxyl terminus or in which His29 or His34 are replaced by Tyr or Asp residues. The mutant proteins were overproduced, purified and tested in vitro for their properties in several partial reactions of the translation initiation pathway and for their capacity to stimulate MS2 RNA-dependent protein synthesis. The results allow for the conclusion that: (i) Arg69 is part of the 30S ribosomal subunit binding site of IF1 and its deletion results in the substantial loss of all IF1 function; (ii) neither one of its two histidines is essential for the binding of IF1 to the 30S ribosomal subunit, for the stimulation of fMet-tRNA binding to 30S or 70S ribosomal particles or for MS2 RNA-dependent protein synthesis; but (iii) His29 is involved in the 50S subunit-induced ejection of IF1 from the 30S ribosomal subunit.  相似文献   

18.
The functional significance of ribosomal proteins is still relatively unclear. Here, we examined the role of small subunit protein S20 in translation using both in vivo and in vitro techniques. By means of lambda red recombineering, the rpsT gene, encoding S20, was removed from the chromosome of Salmonella enterica var. Typhimurium LT2 to produce a ΔS20 strain that grew markedly slower than the wild type while maintaining a wild-type rate of peptide elongation. Removal of S20 conferred a significant reduction in growth rate that was eliminated upon expression of the rpsT gene on a high-copy-number plasmid. The in vitro phenotype of mutant ribosomes was investigated using a translation system composed of highly active, purified components from Escherichia coli. Deletion of S20 conferred two types of initiation defects to the 30S subunit: (i) a significant reduction in the rate of mRNA binding and (ii) a drastic decrease in the yield of 70S complexes caused by an impairment in association with the 50S subunit. Both of these impairments were partially relieved by an extended incubation time with mRNA, fMet-tRNAfMet, and initiation factors, indicating that absence of S20 disturbs the structural integrity of 30S subunits. Considering the topographical location of S20 in complete 30S subunits, the molecular mechanism by which it affects mRNA binding and subunit docking is not entirely obvious. We speculate that its interaction with helix 44 of the 16S ribosomal RNA is crucial for optimal ribosome function.  相似文献   

19.
Binding of the 50S ribosomal subunit to the 30S initiation complex and the subsequent transition from the initiation to the elongation phase up to the synthesis of the first peptide bond represent crucial steps in the translation pathway. The reactions that characterize these transitions were analyzed by quench-flow and fluorescence stopped-flow kinetic techniques. IF2-dependent GTP hydrolysis was fast (30/s) followed by slow P(i) release from the complex (1.5/s). The latter step was rate limiting for subsequent A-site binding of EF-Tu small middle dotGTP small middle dotPhe-tRNA(Phe) ternary complex. Most of the elemental rate constants of A-site binding were similar to those measured on poly(U), with the notable exception of the formation of the first peptide bond which occurred at a rate of 0.2/s. Omission of GTP or its replacement with GDP had no effect, indicating that neither the adjustment of fMet-tRNA(fMet) in the P site nor the release of IF2 from the ribosome required GTP hydrolysis.  相似文献   

20.
In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. In eukaryotes, the role of eIF5B in ribosomal subunit joining is established and structural data showing eIF5B bound to the full ribosome were obtained. To achieve its function, eIF5B collaborates with eIF1A. However, structural data illustrating how these two factors interact on the small ribosomal subunit have long been awaited. The role of the archaeal counterparts, aIF5B and aIF1A, remains to be extensively addressed. Here, we study the late steps of Pyrococcus abyssi translation initiation. Using in vitro reconstituted initiation complexes and light scattering, we show that aIF5B bound to GTP accelerates subunit joining without the need for GTP hydrolysis. We report the crystallographic structures of aIF5B bound to GDP and GTP and analyze domain movements associated to these two nucleotide states. Finally, we present the cryo-EM structure of an initiation complex containing 30S bound to mRNA, Met-tRNAiMet, aIF5B and aIF1A at 2.7 Å resolution. Structural data shows how archaeal 5B and 1A factors cooperate to induce a conformation of the initiator tRNA favorable to subunit joining. Archaeal and eukaryotic features of late steps of translation initiation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号