首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Aurora B kinase coordinates kinetochore–microtubule attachments with spindle checkpoint signaling on each mitotic chromosome. We find that EB1, a microtubule plus end–tracking protein, is required to enrich Aurora B at inner centromeres in a microtubule-dependent manner. This regulates phosphorylation of both kinetochore and chromatin substrates. EB1 regulates the histone phosphorylation marks (histone H2A phospho-Thr120 and histone H3 phospho-Thr3) that localize Aurora B. The chromosomal passenger complex containing Aurora B can be found on a subset of spindle microtubules that exist near prometaphase kinetochores, known as preformed K-fibers (kinetochore fibers). Our data suggest that EB1 enables the spindle microtubules to regulate the phosphorylation of kinetochores through recruitment of the Aurora B kinase.  相似文献   

2.
Type 1 phosphatase (PP1) antagonizes Aurora B kinase to stabilize kinetochore-microtubule attachments and to silence the spindle checkpoint. We screened for factors that exacerbate the growth defect of Δdis2 cells, which lack one of two catalytic subunits of PP1 in fission yeast, and identified Nsk1, a novel protein required for accurate chromosome segregation. During interphase, Nsk1 resides in the nucleolus but spreads throughout the nucleoplasm as cells enter mitosis. Following dephosphorylation by Clp1 (Cdc14-like) phosphatase and at least one other phosphatase, Nsk1 localizes to the interface between kinetochores and the inner face of the spindle pole body during anaphase. In the absence of Nsk1, some kinetochores become detached from spindle poles during anaphase B. If this occurs late in anaphase B, then the sister chromatids of unclustered kinetochores segregate to the correct daughter cell. These unclustered kinetochores are efficiently captured, retrieved, bioriented, and segregated during the following mitosis, as long as Dis2 is present. However, if kinetochores are detached from a spindle pole early in anaphase B, then these sister chromatids become missegregated. These data suggest Nsk1 ensures accurate chromosome segregation by promoting the tethering of kinetochores to spindle poles during anaphase B.  相似文献   

3.
4.
Recently, we have shown that a cancer causing truncation in adenomatous polyposis coli (APC) (APC(1-1450)) dominantly interferes with mitotic spindle function, suggesting APC regulates microtubule dynamics during mitosis. Here, we examine the possibility that APC mutants interfere with the function of EB1, a plus-end microtubule-binding protein that interacts with APC and is required for normal microtubule dynamics. We show that siRNA-mediated inhibition of APC, EB1, or APC and EB1 together give rise to similar defects in mitotic spindles and chromosome alignment without arresting cells in mitosis; in contrast inhibition of CLIP170 or LIS1 cause distinct spindle defects and mitotic arrest. We show that APC(1-1450) acts as a dominant negative by forming a hetero-oligomer with the full-length APC and preventing it from interacting with EB1, which is consistent with a functional relationship between APC and EB1. Live-imaging of mitotic cells expressing EB1-GFP demonstrates that APC(1-1450) compromises the dynamics of EB1-comets, increasing the frequency of EB1-GFP pausing. Together these data provide novel insight into how APC may regulate mitotic spindle function and how errors in chromosome segregation are tolerated in tumor cells.  相似文献   

5.
The spindle checkpoint plays a central role in the fidelity of chromosome transmission by ensuring that anaphase is initiated only after kinetochore-microtubule associations of all sister chromatid pairs are complete. In this study, we find that known spindle checkpoint proteins do not contribute equally to chromosome segregation fidelity in Saccharomyces cerevisiae. Loss of Bub1 or Bub3 protein elicits the largest effect. Analysis of Bub1p reveals the presence of two molecular functions. An N-terminal 608-amino acid (nonkinase) portion of the protein supports robust checkpoint activity, and, as expected, contributes to chromosome segregation. A C-terminal kinase-encoding segment independently contributes to chromosome segregation through an unknown mechanism. Both molecular functions depend on association with Bub3p. A 156-amino acid fragment of Bub1p functions in Bub3p binding and in kinetochore localization by one-hybrid assay. An adjacent segment is required for Mad1p binding, detected by deletion analysis and coimmunoprecipitation. Finally, overexpression of wild-type BUB1 or MAD3 genes leads to chromosome instability. Analysis of this activity indicates that the Bub3p-binding domain of Bub1p contributes to this phenotype through disruption of checkpoint activity as well as through introduction of kinetochore or spindle damage.  相似文献   

6.
Merotelic kinetochore orientation is a misattachment in which a single kinetochore binds microtubules from both spindle poles rather than just one and can produce anaphase lagging chromosomes, a major source of aneuploidy. Merotelic kinetochore orientation occurs frequently in early mitosis, does not block chromosome alignment at the metaphase plate, and is not detected by the spindle checkpoint. However, microtubules to the incorrect pole are usually significantly reduced or eliminated before anaphase. We discovered that the frequency of lagging chromosomes in anaphase is very sensitive to partial inhibition of Aurora kinase activity by ZM447439 at a dose, 3 microM, that has little effect on histone phosphorylation, metaphase chromosome alignment, and cytokinesis in PtK1 cells. Partial Aurora kinase inhibition increased the frequency of merotelic kinetochores in late metaphase, and the fraction of microtubules to the incorrect pole. Measurements of fluorescence dissipation after photoactivation showed that kinetochore-microtubule turnover in prometaphase is substantially suppressed by partial Aurora kinase inhibition. Our results support a preanaphase correction mechanism for merotelic attachments in which correct plus-end attachments are pulled away from high concentrations of Aurora B at the inner centromere, and incorrect merotelic attachments are destabilized by being pulled toward the inner centromere.  相似文献   

7.
EB1 targets to kinetochores with attached,polymerizing microtubules   总被引:6,自引:0,他引:6       下载免费PDF全文
Microtubule polymerization dynamics at kinetochores is coupled to chromosome movements, but its regulation there is poorly understood. The plus end tracking protein EB1 is required both for regulating microtubule dynamics and for maintaining a euploid genome. To address the role of EB1 in aneuploidy, we visualized its targeting in mitotic PtK1 cells. Fluorescent EB1, which localized to polymerizing ends of astral and spindle microtubules, was used to track their polymerization. EB1 also associated with a subset of attached kinetochores in late prometaphase and metaphase, and rarely in anaphase. Localization occurred in a narrow crescent, concave toward the centromere, consistent with targeting to the microtubule plus end-kinetochore interface. EB1 did not localize to kinetochores lacking attached kinetochore microtubules in prophase or early prometaphase, or upon nocodazole treatment. By time lapse, EB1 specifically targeted to kinetochores moving antipoleward, coupled to microtubule plus end polymerization, and not during plus end depolymerization. It localized independently of spindle bipolarity, the spindle checkpoint, and dynein/dynactin function. EB1 is the first protein whose targeting reflects kinetochore directionality, unlike other plus end tracking proteins that show enhanced kinetochore binding in the absence of microtubules. Our results suggest EB1 may modulate kinetochore microtubule polymerization and/or attachment.  相似文献   

8.
9.
Mutations in the WDR62 gene cause primary microcephaly, a pathological condition often associated with defective cell division that results in severe brain developmental defects. The precise function and localization of WDR62 within the mitotic spindle is, however, still under debate, as it has been proposed to act either at centrosomes or on the mitotic spindle. Here we explored the cellular functions of WDR62 in human epithelial cell lines using both short-term siRNA protein depletions and long-term CRISPR/Cas9 gene knockouts. We demonstrate that WDR62 localizes at spindle poles, promoting the recruitment of the microtubule-severing enzyme katanin. Depletion or loss of WDR62 stabilizes spindle microtubules due to insufficient microtubule minus-end depolymerization but does not affect plus-end microtubule dynamics. During chromosome segregation, WDR62 and katanin promote efficient poleward microtubule flux and favor the synchronicity of poleward movements in anaphase to prevent lagging chromosomes. We speculate that these lagging chromosomes might be linked to developmental defects in primary microcephaly.  相似文献   

10.
Shortened kinetochore microtubules take separated chromatids to the opposing spindle poles in anaphase. Fission yeast Dis1 belongs to the Dis1/XMAP215/TOG family that is required for proper microtubule dynamics. Here, we report that Dis1is regulated by Cdc2 phosphorylation and that this mitotic phosphorylation ensures the fidelity of chromosome segregation. Whereas mutants Dis1(6A) and Dis1(6E) that substitute all of the six Cdc2 sites for Ala or Glu, respectively, produce colonies at 22 degrees C-36 degrees C, Dis1(6A) but not Dis1(6E) loses a minichromosome and reveals aberrant chromosome segregation at significant frequencies. Dis1(WT) is recruited to two regions of the mitotic spindle: kinetochores (possibly also kinetochore microtubules) in metaphase and the pole-to-pole microtubule lattice in anaphase. Mutant Dis1(6E) preferentially binds to metaphase kinetochores, whereas Dis1(6A), which is located along microtubules, fails in its accumulation at kinetochores. Dis1(6A) displays synthetic lethality with the mis12-537, which is a mutant that compromises kinetochore function. Dis1(6E) mimics the Cdc2-phosphorylated form of Dis1(WT), whereas Dis1(6A) can partially rescue the phenotype resulting form deletion of Mtc1/Alp14, another XMAP215-like protein. In anaphase, dephosphorylated Dis1 and Dis1(6A), but not Dis1(6E), move to the spindle microtubule lattice near the SPBs. Cdc2 thus directly phosphorylates Dis1, and this phosphorylation regulates Dis1 localization in both metaphase and anaphase and ensures high-fidelity segregation.  相似文献   

11.
ABSTRACT: Assembly of a bipolar mitotic spindle is essential to ensure accurate chromosome segregation and prevent aneuploidy, and severe mitotic spindle defects are typically associated with cell death. Recent studies have shown that mitotic spindles with initial geometric defects can undergo specific rearrangements so the cell can complete mitosis with a bipolar spindle and undergo bipolar chromosome segregation, thus preventing the risk of cell death associated with abnormal spindle structure. Although this may appear as an advantageous strategy, transient defects in spindle geometry may be even more threatening to a cell population or organism than permanent spindle defects. Indeed, transient spindle geometry defects cause high rates of chromosome mis-segregation and aneuploidy. In this review, we summarize our current knowledge on two specific types of transient spindle geometry defects (transient multipolarity and incomplete spindle low separation) and describe how these mechanisms cause chromosome mis-segregation and aneuploidy. Finally, we discuss how these transient spindle defects may specifically contribute to the chromosomal instability observed in cancer cells.  相似文献   

12.
13.
《The Journal of cell biology》1996,134(5):1127-1140
Previous efforts have shown that mutations in the Drosophila ZW10 gene cause massive chromosome missegregation during mitotic divisions in several tissues. Here we demonstrate that mutations in ZW10 also disrupt chromosome behavior in male meiosis I and meiosis II, indicating that ZW10 function is common to both equational and reductional divisions. Divisions are apparently normal before anaphase onset, but ZW10 mutants exhibit lagging chromosomes and irregular chromosome segregation at anaphase. Chromosome missegregation during meiosis I of these mutants is not caused by precocious separation of sister chromatids, but rather the nondisjunction of homologs. ZW10 is first visible during prometaphase, where it localizes to the kinetochores of the bivalent chromosomes (during meiosis I) or to the sister kinetochores of dyads (during meiosis II). During metaphase of both divisions, ZW10 appears to move from the kinetochores and to spread toward the poles along what appear to be kinetochore microtubules. Redistributions of ZW10 at metaphase require bipolar attachments of individual chromosomes or paired bivalents to the spindle. At the onset of anaphase I or anaphase II, ZW10 rapidly relocalizes to the kinetochore regions of the separating chromosomes. In other mutant backgrounds in which chromosomes lag during anaphase, the presence or absence of ZW10 at a particular kinetochore predicts whether or not the chromosome moves appropriately to the spindle poles. We propose that ZW10 acts as part of, or immediately downstream of, a tension-sensing mechanism that regulates chromosome separation or movement at anaphase onset.  相似文献   

14.
CENP-A is an evolutionarily conserved, centromere-specific variant of histone H3 that is thought to play a central role in directing kinetochore assembly and in centromere function. Here, we have analyzed the consequences of disrupting the CENP-A gene in the chicken DT40 cell line. In CENP-A-depleted cells, kinetochore protein assembly is impaired, as indicated by mislocalization of the inner kinetochore proteins CENP-I, CENP-H, and CENP-C as well as the outer components Nuf2/Hec1, Mad2, and CENP-E. However, BubR1 and the inner centromere protein INCENP are efficiently recruited to kinetochores. Following CENP-A depletion, chromosomes are deficient in proper congression on the mitotic spindle and there is a transient delay in prometaphase. CENP-A-depleted cells further proceed through anaphase and cytokinesis with unequal chromosome segregation, suggesting that some kinetochore function remains following substantial depletion of CENP-A. We furthermore demonstrate that CENP-A-depleted cells exhibit a specific defect in maintaining kinetochore localization of the checkpoint protein BubR1 under conditions of checkpoint activation. Our data thus point to a specific role for CENP-A in assembly of kinetochores competent in the maintenance of mitotic checkpoint signaling.  相似文献   

15.
Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochore. Although previous studies show that the mitotic kinesin CENP-E forms a link between attachment of the spindle microtubule to the kinetochore and the mitotic checkpoint signaling cascade, the molecular mechanism underlying dynamic kinetochore-microtubule interactions in mammalian cells remains elusive. Here, we identify a novel interaction between CENP-E and SKAP that functions synergistically in governing dynamic kinetochore-microtubule interactions. SKAP binds to the C-terminal tail of CENP-E in vitro and is essential for an accurate kinetochore-microtubule attachment in vivo. Immunoelectron microscopic analysis indicates that SKAP is a constituent of the kinetochore corona fibers of mammalian centromeres. Depletion of SKAP or CENP-E by RNA interference results in a dramatic reduction of inter-kinetochore tension, which causes chromosome mis-segregation with a prolonged delay in achieving metaphase alignment. Importantly, SKAP binds to microtubules in vitro, and this interaction is synergized by CENP-E. Based on these findings, we propose that SKAP cooperates with CENP-E to orchestrate dynamic kinetochore-microtubule interaction for faithful chromosome segregation.  相似文献   

16.
Spindle assembly, establishment of kinetochore attachment, and sister chromatid separation must occur during mitosis in a highly coordinated fashion to ensure accurate chromosome segregation. In most vertebrate cells, the nuclear envelope must break down to allow interaction between microtubules of the mitotic spindle and the kinetochores. It was previously shown that nuclear envelope breakdown (NEB) is not coordinated with centrosome separation and that centrosome separation can be either complete at the time of NEB or can be completed after NEB. In this study, we investigated whether the timing of centrosome separation affects subsequent mitotic events such as establishment of kinetochore attachment or chromosome segregation. We used a combination of experimental and computational approaches to investigate kinetochore attachment and chromosome segregation in cells with complete versus incomplete spindle pole separation at NEB. We found that cells with incomplete spindle pole separation exhibit higher rates of kinetochore misattachments and chromosome missegregation than cells that complete centrosome separation before NEB. Moreover, our mathematical model showed that two spindle poles in close proximity do not "search" the entire cellular space, leading to formation of large numbers of syntelic attachments, which can be an intermediate stage in the formation of merotelic kinetochores.  相似文献   

17.
EBs and CLIPs are evolutionarily conserved proteins, which associate with the tips of growing microtubules, and regulate microtubule dynamics and their interactions with intracellular structures. In this study we investigated the functional relationship of CLIP-170 and CLIP-115 with the three EB family members, EB1, EB2(RP1), and EB3 in mammalian cells. We showed that both CLIPs bind to EB proteins directly. The C-terminal tyrosine residue of EB proteins is important for this interaction. When EB1 and EB3 or all three EBs were significantly depleted using RNA interference, CLIPs accumulated at the MT tips at a reduced level, because CLIP dissociation from the tips was accelerated. Normal CLIP localization was restored by expression of EB1 but not of EB2. An EB1 mutant lacking the C-terminal tail could also fully rescue CLIP dissociation kinetics, but could only partially restore CLIP accumulation at the tips, suggesting that the interaction of CLIPs with the EB tails contributes to CLIP localization. When EB1 was distributed evenly along the microtubules because of overexpression, it slowed down CLIP dissociation but did not abolish its preferential plus-end localization, indicating that CLIPs possess an intrinsic affinity for growing microtubule ends, which is enhanced by an interaction with the EBs.  相似文献   

18.
The DNA replication checkpoint maintains replication fork integrity and prevents chromosome segregation during replication stresses. Mec1 and Rad53 (human ATM/ATR- and Chk2-like kinases, respectively) are critical effectors of this pathway in yeast. When treated with replication inhibitors, checkpoint-deficient mec1 or rad53 mutant fails to maintain replication fork integrity and proceeds to partition unreplicated chromosomes. We show that this unnatural chromosome segregation requires neither the onset of mitosis nor APC activation, cohesin cleavage, or biorientation of kinetochores. Instead, the checkpoint deficiency leads to deregulation of microtubule-associated proteins Cin8 and Stu2, which, in the absence of both chromosome cohesion and bipolar attachment of kinetochores to microtubules, induce untimely spindle elongation, causing premature chromosome separation. The checkpoint's ability to prevent nuclear division is abolished by combined deficiency of microtubule-destabilizing motor Kip3 and Mad2 functions. Thus, the DNA replication checkpoint prevents precocious chromosome segregation, not by inhibiting entry into mitosis as widely believed, but by directly regulating spindle dynamics.  相似文献   

19.
Quantitative morphological studies of meiotic spindles in the crane fly Pales ferruginea (Fuge, 1980, 1984, 1985) were the basis for the development of a model explaining anaphase chromosome transport in higher eukaryotes. Two main features of chromosome fibres were important for the model: (1) the existence of microtubules oriented obliquely with respect to kinetochore microtubules, and (2) a higher degree of disorder in fibres exerting a pulling force. It is postulated that microtubules of the same polarity being inclined to each other at a certain angle are able to slide past each other by means of mechano-chemically active side-arms working in alternate succession. Sliding is suggested to lead to a displacement of microtubules and chromosomes in direction towards the poles. Furthermore, it is suggested that the chromosome fibre in anaphase becomes progressively disintegrated by fragmentation and disassembly of microtubules. Fragmentation may be induced by bending stress within the dynamic system.  相似文献   

20.
We have identified two novel proteins that colocalize with the subpellicular microtubules in the protozoan parasite Toxoplasma gondii and named these proteins SPM1 and SPM2. These proteins have basic isoelectric points and both have homologs in other apicomplexan parasites. SPM1 contains six tandem copies of a 32-amino-acid repeat, whereas SPM2 lacks defined protein signatures. Alignment of Toxoplasma SPM2 with apparent Plasmodium SPM2 homologs indicates that the greatest degree of conservation lies in the carboxy-terminal half of the protein. Analysis of Plasmodium homologs of SPM1 indicates that while the central 32-amino-acid repeats have expanded to different degrees (7, 8, 9, 12, or 13 repeats), the amino- and carboxy-terminal regions remain conserved. In contrast, although the Cryptosporidium SPM1 homolog has a conserved carboxy tail, the five repeats are considerably diverged, and it has a smaller amino-terminal domain. SPM1 is localized along the full length of the subpellicular microtubules but does not associate with the conoid or spindle microtubules. SPM2 has a restricted localization along the middle region of the subpellicular microtubules. Domain deletion analysis indicates that four or more copies of the SPM1 repeat are required for localization to microtubules, and the amino-terminal 63 residues of SPM2 are required for localization to the subpellicular microtubules. Gene deletion studies indicate that neither SPM1 nor SPM2 is essential for tachyzoite viability. However, loss of SPM1 decreases overall parasite fitness and eliminates the stability of subpellicular microtubules to detergent extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号