首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial dynamics are suggested to be indispensable for the maintenance of cellular quality and function in response to various stresses. While ionizing radiation (IR) stimulates mitochondrial fission, which is mediated by the mitochondrial fission protein, dynamin-related protein 1 (Drp1), it remains unclear how IR promotes Drp1 activation and subsequent mitochondrial fission. Therefore, we conducted this study to investigate these concerns. First, we found that X-irradiation triggered Drp1 phosphorylation at serine 616 (S616) but not at serine 637 (S637). Reconstitution analysis revealed that introduction of wild-type (WT) Drp1 recovered radiation-induced mitochondrial fission, which was absent in Drp1-deficient cells. Compared with cells transfected with WT or S637A Drp1, the change in mitochondrial shape following irradiation was mitigated in S616A Drp1-transfected cells. Furthermore, inhibition of CaMKII significantly suppressed Drp1 S616 phosphorylation and mitochondrial fission induced by IR. These results suggest that Drp1 phosphorylation at S616, but not at S637, is prerequisite for radiation-induced mitochondrial fission and that CaMKII regulates Drp1 phosphorylation at S616 following irradiation.  相似文献   

2.
3.
Organelles are inherited to daughter cells beyond dynamic changes of the membrane structure during mitosis. Mitochondria are dynamic entities, frequently dividing and fusing with each other, during which dynamin-related GTPase Drp1 is required for the fission reaction. In this study, we analyzed mitochondrial dynamics in mitotic mammalian cells. Although mitochondria in interphase HeLa cells are long tubular network structures, they are fragmented in early mitotic phase, and the filamentous network structures are subsequently reformed in the daughter cells. In marked contrast, tubular mitochondrial structures are maintained during mitosis in Drp1 knockdown cells, indicating that the mitochondrial fragmentation in mitosis requires mitochondrial fission by Drp1. Drp1 was specifically phosphorylated in mitosis by Cdk1/cyclin B on Ser-585. Exogenous expression of unphosphorylated mutant Drp1S585A led to reduced mitotic mitochondrial fragmentation. These results suggest that phosphorylation of Drp1 on Ser-585 promotes mitochondrial fission in mitotic cells.  相似文献   

4.
Neuronal cell death in a number of neurological disorders is associated with aberrant mitochondrial dynamics and mitochondrial degeneration. However, the triggers for this mitochondrial dysregulation are not known. Here we show excessive mitochondrial fission and mitochondrial structural disarray in brains of hypertensive rats with hypertension-induced brain injury (encephalopathy). We found that activation of protein kinase Cδ (PKCδ) induced aberrant mitochondrial fragmentation and impaired mitochondrial function in cultured SH-SY5Y neuronal cells and in this rat model of hypertension-induced encephalopathy. Immunoprecipitation studies indicate that PKCδ binds Drp1, a major mitochondrial fission protein, and phosphorylates Drp1 at Ser 579, thus increasing mitochondrial fragmentation. Further, we found that Drp1 Ser 579 phosphorylation by PKCδ is associated with Drp1 translocation to the mitochondria under oxidative stress. Importantly, inhibition of PKCδ, using a selective PKCδ peptide inhibitor (δV1-1), reduced mitochondrial fission and fragmentation and conferred neuronal protection in vivo and in culture. Our study suggests that PKCδ activation dysregulates the mitochondrial fission machinery and induces aberrant mitochondrial fission, thus contributing to neurological pathology.  相似文献   

5.
Cardiac ischemia/reperfusion, loss of blood flow and its subsequent restoration, causes damage to the heart. Oxidative stress from ischemia/reperfusion leads to dysfunction and death of cardiomyocytes, increasing the risk of progression to heart failure. Alterations in mitochondrial dynamics, in particular mitochondrial fission, have been suggested to play a role in cardioprotection from oxidative stress. We tested the hypothesis that activation of RhoA regulates mitochondrial fission in cardiomyocytes. Our studies show that expression of constitutively active RhoA in cardiomyocytes increases phosphorylation of Dynamin-related protein 1 (Drp1) at serine-616, and leads to localization of Drp1 at mitochondria. Both responses are blocked by inhibition of Rho-associated Protein Kinase (ROCK). Endogenous RhoA activation by the GPCR agonist sphingosine-1-phosphate (S1P) also increases Drp1 phosphorylation and its mitochondrial translocation in a RhoA and ROCK dependent manner. Consistent with the role of mitochondrial Drp1 in fission, RhoA activation in cardiomyocytes leads to formation of smaller mitochondria and this is attenuated by inhibition of ROCK, by siRNA knockdown of Drp1 or by expression of a phosphorylation-deficient Drp1 S616A mutant. In addition, activation of RhoA prevents cell death in cardiomyocytes challenged by oxidative stress and this protection is blocked by siRNA knockdown of Drp1 or by Drp1 S616A expression. Taken together our findings demonstrate that RhoA activation can regulate Drp1 to induce mitochondrial fission and subsequent cellular protection, implicating regulation of fission as a novel mechanism contributing to RhoA-mediated cardioprotection.  相似文献   

6.
Mitochondrial morphology, which is associated with changes in metabolism, cell cycle, cell development and cell death, is tightly regulated by the balance between fusion and fission. In this study, we found that S6 kinase 1 (S6K1) contributes to mitochondrial dynamics, homeostasis and function. Mouse embryo fibroblasts lacking S6K1 (S6K1-KO MEFs) exhibited more fragmented mitochondria and a higher level of Dynamin related protein 1 (Drp1) and active Drp1 (pS616) in both whole cell extracts and mitochondrial fraction. In addition, there was no evidence for autophagy and mitophagy induction in S6K1 depleted cells. Glycolysis and mitochondrial respiratory activity was higher in S6K1-KO MEFs, whereas OxPhos ATP production was not altered. However, inhibition of Drp1 by Mdivi1 (Drp1 inhibitor) resulted in higher OxPhos ATP production and lower mitochondrial membrane potential. Taken together the depletion of S6K1 increased Drp1-mediated fission, leading to the enhancement of glycolysis. The fission form of mitochondria resulted in lower yield for OxPhos ATP production as well as in higher mitochondrial membrane potential. Thus, these results have suggested a potential role of S6K1 in energy metabolism by modulating mitochondrial respiratory capacity and mitochondrial morphology.  相似文献   

7.
We identify a mitochondrial E3 ubiquitin ligase, MARCH5, as a critical regulator of mitochondrial fission. MARCH5 RING mutants and MARCH5 RNA interference induce an abnormal elongation and interconnection of mitochondria indicative of an inhibition of mitochondrial division. The aberrant mitochondrial phenotypes in MARCH5 RING mutant-expressing cells are reversed by ectopic expression of Drp1, but not another mitochondrial fission protein Fis1. Moreover, as indicated by abnormal clustering and mitochondrial accumulation of Drp1, as well as decreased cellular mobility of YFP-Drp1 in cells expressing MARCH5 RING mutants, MARCH5 activity regulates the subcellular trafficking of Drp1, likely by impacting the correct assembly at scission sites or the disassembly step of fission complexes. Loss of this activity may account for the observed mitochondrial division defects. Finally, MARCH5 RING mutants and endogenous Drp1, but not wild-type MARCH5 or Fis1, co-assemble into abnormally enlarged clusters in a Drp1 GTPase-dependent manner, suggesting molecular interactions among these proteins. Collectively, our data suggest a model in which mitochondrial division is regulated by a MARCH5 ubiquitin-dependent switch.  相似文献   

8.
Mitochondrial morphology is controlled by two opposing processes: fusion and fission. Drp1 (dynamin-related protein 1) and hFis1 are two key players of mitochondrial fission, but how Drp1 is recruited to mitochondria and how Drp1-mediated mitochondrial fission is regulated in mammals is poorly understood. Here, we identify the vertebrate-specific protein MIEF1 (mitochondrial elongation factor 1; independently identified as MiD51), which is anchored to the outer mitochondrial membrane. Elevated MIEF1 levels induce extensive mitochondrial fusion, whereas depletion of MIEF1 causes mitochondrial fragmentation. MIEF1 interacts with and recruits Drp1 to mitochondria in a manner independent of hFis1, Mff (mitochondrial fission factor) and Mfn2 (mitofusin 2), but inhibits Drp1 activity, thus executing a negative effect on mitochondrial fission. MIEF1 also interacts with hFis1 and elevated hFis1 levels partially reverse the MIEF1-induced fusion phenotype. In addition to inhibiting Drp1, MIEF1 also actively promotes fusion, but in a manner distinct from mitofusins. In conclusion, our findings uncover a novel mechanism which controls the mitochondrial fusion-fission machinery in vertebrates. As MIEF1 is vertebrate-specific, these data also reveal important differences between yeast and vertebrates in the regulation of mitochondrial dynamics.  相似文献   

9.
Mitochondrial dysfunction in skeletal muscle has been implicated in the development of insulin resistance and type 2 diabetes. Considering the importance of mitochondrial dynamics in mitochondrial and cellular functions, we hypothesized that obesity and excess energy intake shift the balance of mitochondrial dynamics, further contributing to mitochondrial dysfunction and metabolic deterioration in skeletal muscle. First, we revealed that excess palmitate (PA), but not hyperglycemia, hyperinsulinemia, or elevated tumor necrosis factor alpha, induced mitochondrial fragmentation and increased mitochondrion-associated Drp1 and Fis1 in differentiated C2C12 muscle cells. This fragmentation was associated with increased oxidative stress, mitochondrial depolarization, loss of ATP production, and reduced insulin-stimulated glucose uptake. Both genetic and pharmacological inhibition of Drp1 attenuated PA-induced mitochondrial fragmentation, mitochondrial depolarization, and insulin resistance in C2C12 cells. Furthermore, we found smaller and shorter mitochondria and increased mitochondrial fission machinery in the skeletal muscle of mice with genetic obesity and those with diet-induced obesity. Inhibition of mitochondrial fission improved the muscle insulin signaling and systemic insulin sensitivity of obese mice. Our findings indicated that aberrant mitochondrial fission is causally associated with mitochondrial dysfunction and insulin resistance in skeletal muscle. Thus, disruption of mitochondrial dynamics may underlie the pathogenesis of muscle insulin resistance in obesity and type 2 diabetes.  相似文献   

10.
The mechanoenzyme dynamin-related protein 1 (Drp1) hydrolyzes GTP to power mitochondrial fission, a process required for organelle biogenesis, quality control, transport, and apoptosis. The pleckstrin homology domain of dynamin is essential for targeting to and severing of lipid tubules, but the function of the corresponding variable domain (VD, or insert B) of Drp1 is unknown. We replaced the VD of Drp1 with a panel of linker sequences of varying length and secondary structure composition and found that the VD is dispensable for mitochondrial recruitment, association with the Drp1-anchoring protein Mff (mitochondrial fission factor), and basal and protonophore-induced mitochondrial fragmentation. Indeed, several ΔVD mutants constitutively localized to the outer mitochondrial membrane (OMM) and fragmented mitochondria more efficiently than wild-type Drp1. Consistent with an autoinhibitory role of the VD, we identified Arg-376 in the Drp1 stalk domain as necessary for Mff interaction, assembly into spirals, and mitochondrial fission. Switching the length of N- and C-terminal α-helical segments in the VD-replacing linker converted Drp1 from constitutively active and OMM-localized to inactive and cytosolic. Other hypoactive ΔVD mutants formed stable and characteristically shaped aggregates, including extended filaments. Phosphorylation of a PKA site bordering the VD disassembled the filamentous ΔVD mutant and accelerated cytosolic diffusion of full-length Drp1. We propose a model for regulation of Drp1-dependent mitochondrial fission, in which posttranslational modifications in or near the VD alter the conformation of a membrane-proximal oligomerization interface to influence Drp1 assembly rate and/or geometry. This in turn modulates Arg-376-dependent OMM targeting of Drp1 via multivalent interactions with Mff.  相似文献   

11.
Dynamic equilibrium between mitochondrial fission and mitochondrial fusion serves as an important quality control system within cells ensuring cellular vitality and homeostasis. Viruses often target mitochondrial dynamics as a part of their obligatory cellular reprogramming. The present study was undertaken to assess the status and regulation of mitochondrial dynamics during rotavirus infection. Distinct fragmentation of mitochondrial syncytia was observed during late hours of RV (SA11, Wa, A5‐13) infection. RV nonstructural protein 4 (NSP4) was identified as the viral trigger for disrupted mitochondrial morphology. Severance of mitochondrial interconnections was found to be a dynamin‐related protein 1 (Drp1)‐dependent process resulting synergistically from augmented mitochondrial fission and attenuated mitochondrial fusion. Cyclin‐dependent kinase 1 was subsequently identified as the cellular kinase responsible for fission‐active Ser616 phosphorylation of Drp1. In addition to its positive role in mitochondrial fission, Drp1 also resulted in mitochondrial translocation of E3‐ubiquitin ligase Parkin leading to degradation of mitochondrial fusion protein Mitofusin 1. Interestingly, RV‐NSP4 was found to interact with and be involved in recruiting fission‐active pool of Serine 616 phosphoDrp1 (Ser616 pDrp1) to mitochondria independent of accessory adaptors Mitochondrial fission factor and Fission protein 1 (Fis1). Inhibition of either Drp1 or Ser616 pDrp1 resulted in significant decrease in RV‐NSP4‐induced intrinsic apoptotic pathway. Overall, this study underscores an efficient strategy utilised by RV to couple apoptosis to mitochondrial fission facilitating dissemination of viral progeny.  相似文献   

12.
Dynamin-related protein 1 (Drp1) is the GTP-hydrolyzing mechanoenzyme that catalyzes mitochondrial fission in the cell. Residing in the cytosol as dimers and tetramers, Drp1 is recruited by receptors on the mitochondrial outer membrane, where it further assembles into a helical ring that drives division via GTP-dependent constriction. The Drp1 receptor Mff is a major regulator of mitochondrial fission, and its overexpression results in increased fission. In contrast, the alternative Drp1 receptors MiD51 and MiD49 appear to recruit inactive forms of Drp1, because their overexpression inhibits fission. Using genetic and biochemical assays, we studied the interaction of Drp1 with Mff. We show that the insert B region of Drp1 inhibits Mff–Drp1 interactions, such that recombinant Drp1 mutants lacking insert B form a stable complex with Mff. Mff cannot bind to assembly-deficient mutants of Drp1, suggesting that Mff selectively interacts with higher-order complexes of Drp1. In contrast, the alternative Drp1 receptors MiD51 and MiD49 can recruit Drp1 dimers. Therefore Drp1 recruitment by Mff versus MiD51 and MiD49 may result in different outcomes because they recruit different subpopulations of Drp1 from the cytosol.  相似文献   

13.
The yeast protein Fis1p has been shown to participate in mitochondrial fission mediated by the dynamin-related protein Dnm1p. In mammalian cells, the dynamin-like protein DLP1/Drp1 functions as a mitochondrial fission protein, but the mechanisms by which DLP1/Drp1 and the mitochondrial membrane interact during the fission process are undefined. In this study, we have tested the role of a mammalian homologue of Fis1p, hFis1, and provided new and mechanistic information about the control of mitochondrial fission in mammalian cells. Through differential tagging and deletion experiments, we demonstrate that the intact C-terminal structure of hFis1 is essential for mitochondrial localization, whereas the N-terminal region of hFis1 is necessary for mitochondrial fission. Remarkably, an increased level of cellular hFis1 strongly promotes mitochondrial fission, resulting in an accumulation of fragmented mitochondria. Conversely, cell microinjection of hFis1 antibodies or treatment with hFis1 antisense oligonucleotides induces an elongated and collapsed mitochondrial morphology. Further, fluorescence resonance energy transfer and coimmunoprecipitation studies demonstrate that hFis1 interacts with DLP1. These results suggest that hFis1 participates in mitochondrial fission through an interaction that recruits DLP1 from the cytosol. We propose that hFis1 is a limiting factor in mitochondrial fission and that the number of hFis1 molecules on the mitochondrial surface determines fission frequency.  相似文献   

14.
In healthy cells, fusion and fission events participate in regulating mitochondrial morphology. Disintegration of the mitochondrial reticulum into multiple punctiform organelles during apoptosis led us to examine the role of Drp1, a dynamin-related protein that mediates outer mitochondrial membrane fission. Upon induction of apoptosis, Drp1 translocates from the cytosol to mitochondria, where it preferentially localizes to potential sites of organelle division. Inhibition of Drp1 by overexpression of a dominant-negative mutant counteracts the conversion to a punctiform mitochondrial phenotype, prevents the loss of the mitochondrial membrane potential and the release of cytochrome c, and reveals a reproducible swelling of the organelles. Remarkably, inhibition of Drp1 blocks cell death, implicating mitochondrial fission as an important step in apoptosis.  相似文献   

15.
Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS). At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.  相似文献   

16.
Defining the mechanisms underlying the control of mitochondrial fusion and fission is critical to understanding cellular adaptation to diverse physiological conditions. Here we demonstrate that hypoxia induces fission of mitochondrial membranes, dependent on availability of the mitochondrial scaffolding protein AKAP121. AKAP121 controls mitochondria dynamics through PKA-dependent inhibitory phosphorylation of Drp1 and PKA-independent inhibition of Drp1-Fis1 interaction. Reduced availability of AKAP121 by the ubiquitin ligase Siah2 relieves Drp1 inhibition by PKA and increases its interaction with Fis1, resulting in mitochondrial fission. High AKAP121 levels, seen in cells lacking Siah2, attenuate fission and reduce apoptosis of cardiomyocytes under simulated ischemia. Infarct size and degree of cell death were reduced in Siah2(-/-) mice subjected to myocardial infarction. Inhibition of Siah2 or Drp1 in hatching C.?elegans reduces their life span. Through modulating Fis1/Drp1 complex availability, our studies identify Siah2 as a key regulator of hypoxia-induced mitochondrial fission and its physiological significance in ischemic injury and nematode life span.  相似文献   

17.
The Bcl2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) is an atypical BH3-only protein that is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of mitochondrial autophagy, and in this study we have investigated the mechanisms by which Bnip3 induces autophagy in cardiac myocytes. We found that Bnip3 induced mitochondrial translocation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission in adult myocytes. Drp1-mediated mitochondrial fission correlated with increased autophagy, and inhibition of Drp1 reduced Bnip3-mediated autophagy. Overexpression of Drp1K38E, a dominant negative of Drp1, or mitofusin 1 prevented mitochondrial fission and autophagy by Bnip3. Also, inhibition of mitochondrial fission or autophagy resulted in increased death of myocytes overexpressing Bnip3. Moreover, Bnip3 promoted translocation of the E3 ubiquitin ligase Parkin to mitochondria, which was prevented in the presence of a Drp1 inhibitor. Interestingly, induction of autophagy by Bnip3 was reduced in Parkin-deficient myocytes. Thus our data suggest that induction of autophagy in response to Bnip3 is a protective response activated by the cell that involves Drp1-mediated mitochondrial fission and recruitment of Parkin.  相似文献   

18.
Mitochondrial fission requires recruitment of dynamin‐related protein 1 (Drp1) to the mitochondrial surface, where assembly leads to activation of its GTP‐dependent scission function. MiD49 and MiD51 are two receptors on the mitochondrial outer membrane that can recruit Drp1 to facilitate mitochondrial fission. Structural studies indicated that MiD51 has a variant nucleotidyl transferase fold that binds an ADP co‐factor essential for activation of Drp1 function. MiD49 shares sequence homology with MiD51 and regulates Drp1 function. However, it is unknown if MiD49 binds an analogous co‐factor. Because MiD49 does not readily crystallize, we used structural predictions and biochemical screening to identify a surface entropy reduction mutant that facilitated crystallization. Using molecular replacement, we determined the atomic structure of MiD49 to 2.4 Å. Like MiD51, MiD49 contains a nucleotidyl transferase domain; however, the electron density provides no evidence for a small‐molecule ligand. Structural changes in the putative nucleotide‐binding pocket make MiD49 incompatible with an extended ligand like ADP, and critical nucleotide‐binding residues found in MiD51 are not conserved. MiD49 contains a surface loop that physically interacts with Drp1 and is necessary for Drp1 recruitment to the mitochondrial surface. Our results suggest a structural basis for the differential regulation of MiD51‐ versus MiD49‐mediated fission.  相似文献   

19.
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging‐related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin‐related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging‐induced tissue degeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号