首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) play critical roles in a variety of biological processes through widespread effects on protein synthesis. Upon association with the miRNA-induced silencing complex (miRISC), miRNAs repress target mRNA translation and accelerate mRNA decay. Degradation of the mRNA is initiated by shortening of the poly(A) tail by the CCR4–NOT deadenylase complex followed by the removal of the 5′ cap structure and exonucleolytic decay of the mRNA. Here, we report a direct interaction between the large scaffolding subunit of CCR4–NOT, CNOT1, with the translational repressor and decapping activator protein, DDX6. DDX6 binds to a conserved CNOT1 subdomain in a manner resembling the interaction of the translation initiation factor eIF4A with eIF4G. Importantly, mutations that disrupt the DDX6–CNOT1 interaction impair miRISC-mediated gene silencing in human cells. Thus, CNOT1 facilitates recruitment of DDX6 to miRNA-targeted mRNAs, placing DDX6 as a downstream effector in the miRNA silencing pathway.  相似文献   

2.
3.
MicroRNA (miRNA)-induced silencing complexes (miRISCs) repress translation and promote degradation of miRNA targets. Target degradation occurs through the 5′-to-3′ messenger RNA (mRNA) decay pathway, wherein, after shortening of the mRNA poly(A) tail, the removal of the 5′ cap structure by decapping triggers irreversible decay of the mRNA body. Here, we demonstrate that miRISC enhances the association of the decapping activators DCP1, Me31B and HPat with deadenylated miRNA targets that accumulate when decapping is blocked. DCP1 and Me31B recruitment by miRISC occurs before the completion of deadenylation. Remarkably, miRISC recruits DCP1, Me31B and HPat to engineered miRNA targets transcribed by RNA polymerase III, which lack a cap structure, a protein-coding region and a poly(A) tail. Furthermore, miRISC can trigger decapping and the subsequent degradation of mRNA targets independently of ongoing deadenylation. Thus, miRISC increases the local concentration of the decapping machinery on miRNA targets to facilitate decapping and irreversibly shut down their translation.  相似文献   

4.
MicroRNA-122 (miR-122), which is expressed at high levels in hepatocytes, is selectively stabilized by 3′-adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Here, we report that poly(A)-specific ribonuclease (PARN) is responsible for the deadenylation and destabilization of miR-122. The 3′-oligoadenylated variant of miR-122 was detected in Huh7 cells when PARN was down-regulated. In addition, both the steady-state level and stability of miR-122 were increased in PARN knockdown cells. We also demonstrate that CUG-binding protein 1 (CUGBP1) specifically interacts with miR-122 and other UG-rich miRNAs, and promotes their destabilization. Overexpression of CUGBP1 or PARN in Huh7 cells reduced the steady-state levels of these miRNAs. Because CUGBP1 interacts directly with PARN, we hypothesized that it specifically recruits PARN to miR-122. In fact, CUGBP1 enhanced PARN-mediated deadenylation and degradation of miR-122 in a dose-dependent manner in vitro. These results indicate that the cellular level of miR-122 is determined by the balance between the opposing effects of GLD-2 and PARN/CUGBP1 on the metabolism of its 3′-terminus.  相似文献   

5.
6.
To understand how miRNA-mediated silencing impacts on embryonic mRNAs, we conducted a functional survey of abundant maternal and zygotic miRNA families in the C. elegans embryo. We show that the miR-35-42 and the miR-51-56 miRNA families define maternal and zygotic miRNA-induced silencing complexes (miRISCs), respectively, that share a large number of components. Using a cell-free C. elegans embryonic extract, we demonstrate that the miRISC directs the rapid deadenylation of reporter mRNAs with natural 3'UTRs. The deadenylated targets are translationally suppressed and remarkably stable. Sampling of the predicted miR-35-42 targets reveals that roughly half are deadenylated in a miRNA-dependent manner, but with each target displaying a distinct efficiency and pattern of deadenylation. Finally, we demonstrate that functional cooperation between distinct miRISCs within 3'UTRs is required to potentiate deadenylation. With this report, we reveal the extensive and direct impact of miRNA-mediated deadenylation on embryonic mRNAs.  相似文献   

7.
Eukaryotic releasing factor GSPT/eRF3 mediates translation termination-coupled mRNA decay via interaction with a cytosolic poly(A)-binding protein (PABPC1). A region of eRF3 containing two overlapping PAM2 (PABPC1-interacting motif 2) motifs is assumed to bind to the PABC domain of PABPC1, on the poly(A) tail of mRNA. PAM2 motifs are also found in the major deadenylases Caf1–Ccr4 and Pan2–Pan3, whose activities are enhanced upon PABPC1 binding to these motifs. Their deadenylase activities are regulated by eRF3, in which two overlapping PAM2 motifs competitively prevent interaction with PABPC1. However, it is unclear how these overlapping motifs recognize PABC and regulate deadenylase activity in a translation termination-coupled manner. We used a dominant-negative approach to demonstrate that the N-terminal PAM2 motif is critical for eRF3 binding to PABPC1 and that both motifs are required for function. Isothermal titration calorimetry (ITC) and NMR analyses revealed that the interaction is in equilibrium between the two PAM2–PABC complexes, where only one of the two overlapping PAM2 motifs is PABC-bound and the other is PABC-unbound and partially accessible to the other PABC. Based on these results, we proposed a biological role for the overlapping PAM2 motifs in the regulation of deadenylase accessibility to PABPC1 at the 3′ end of poly(A).  相似文献   

8.
Poly(A)-specific ribonuclease (PARN) is an exoribonuclease/deadenylase that degrades 3′-end poly(A) tails in almost all eukaryotic organisms. Much of the biochemical and structural information on PARN comes from the human enzyme. However, the existence of PARN all along the eukaryotic evolutionary ladder requires further and thorough investigation. Although the complete structure of the full-length human PARN, as well as several aspects of the catalytic mechanism still remain elusive, many previous studies indicate that PARN can be used as potent and promising anti-cancer target. In the present study, we attempt to complement the existing structural information on PARN with in-depth bioinformatics analyses, in order to get a hologram of the molecular evolution of PARNs active site. In an effort to draw an outline, which allows specific drug design targeting PARN, an unequivocally specific platform was designed for the development of selective modulators focusing on the unique structural and catalytic features of the enzyme. Extensive phylogenetic analysis based on all the publicly available genomes indicated a broad distribution for PARN across eukaryotic species and revealed structurally important amino acids which could be assigned as potentially strong contributors to the regulation of the catalytic mechanism of PARN. Based on the above, we propose a comprehensive in silico model for the PARN’s catalytic mechanism and moreover, we developed a 3D pharmacophore model, which was subsequently used for the introduction of DNP-poly(A) amphipathic substrate analog as a potential inhibitor of PARN. Indeed, biochemical analysis revealed that DNP-poly(A) inhibits PARN competitively. Our approach provides an efficient integrated platform for the rational design of pharmacophore models as well as novel modulators of PARN with therapeutic potential.  相似文献   

9.
Deadenylation is often the rate-limiting event in regulating the turnover of cellular mRNAs in eukaryotes. Removal of the poly(A) tail initiates mRNA degradation by one of several decay pathways, including deadenylation-dependent decapping, followed by 5' to 3' exonuclease decay or 3' to 5' exosome-mediated decay. In trypanosomatids, mRNA degradation is important in controlling the expression of differentially expressed genes. Genomic annotation studies have revealed several potential deadenylases. Poly(A)-specific RNase (PARN) is a key deadenylase involved in regulating gene expression in mammals, Xenopus oocytes, and higher plants. Trypanosomatids possess three different PARN genes, PARN-1, -2, and -3, each of which is expressed at the mRNA level in two life-cycle stages of the human parasite Trypanosoma brucei. Here we show that T. brucei PARN-1 is an active deadenylase. To determine the role of PARN-1 on mRNA stability in vivo, we overexpressed this protein and analyzed perturbations in mRNA steady-state levels as well as mRNA half-life. Interestingly, a subset of mRNAs was affected, including a family of mRNAs that encode stage-specific coat proteins. These data suggest that PARN-1 functions in stage-specific protein production.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Poly(A)-specific ribonuclease (PARN) is a deadenylase with three RNA-binding domains (the nuclease, R3H and RRM domains) and a C-terminal domain. PARN participates in diverse physiological processes by regulating mRNA fates through deadenylation. PARN mainly exists as a dimer in dilute solutions. In this research, we found that PARN could self-associate into tetramer and high-order oligomers both in vitro and in living cells. Mutational and spectroscopic analysis indicated that PARN oligomerization was triggered by the R3H domain, which led to the solvent-exposed Trp219 fluorophore to become buried in a solvent-inaccessible microenvironment. The RRM and C-terminal domains also played a role in modulating the dissociation rate of the tetrameric PARN. Enzymatic analysis indicated that tetramerization did not affect the catalytic behavior of the full-length PARN and truncated enzymes containing the RRM domain, which might be caused by the high propensity of the dimeric proteins to self-associate into oligomers. Tetramerization significantly enhanced the catalytic activity and processivity of the truncated form with the removal of the RRM and C-terminal domains. The results herein suggested that self-association might be one of the regulation methods for PARN to achieve a highly regulated deadenylase activity. We propose that self-association may facilitate PARN to concentrate around the target mRNAs by restricted diffusion.  相似文献   

17.
Chu CY  Rana TM 《PLoS biology》2006,4(7):e210
RNA interference is triggered by double-stranded RNA that is processed into small interfering RNAs (siRNAs) by Dicer enzyme. Endogenously, RNA interference triggers are created from small noncoding RNAs called microRNAs (miRNAs). RNA-induced silencing complexes (RISC) in human cells can be programmed by exogenously introduced siRNA or endogenously expressed miRNA. siRNA-programmed RISC (siRISC) silences expression by cleaving a perfectly complementary target mRNA, whereas miRNA-induced silencing complexes (miRISC) inhibits translation by binding imperfectly matched sequences in the 3′ UTR of target mRNA. Both RISCs contain Argonaute2 (Ago2), which catalyzes target mRNA cleavage by siRISC and localizes to cytoplasmic mRNA processing bodies (P-bodies). Here, we show that RCK/p54, a DEAD box helicase, interacts with argonaute proteins, Ago1 and Ago2, in affinity-purified active siRISC or miRISC from human cells; directly interacts with Ago1 and Ago2 in vivo, facilitates formation of P-bodies, and is a general repressor of translation. Disrupting P-bodies by depleting Lsm1 did not affect RCK/p54 interactions with argonaute proteins and its function in miRNA-mediated translation repression. Depletion of RCK/p54 disrupted P-bodies and dispersed Ago2 throughout the cytoplasm but did not significantly affect siRNA-mediated RNA functions of RISC. Depleting RCK/p54 released general, miRNA-induced, and let-7-mediated translational repression. Therefore, we propose that translation repression is mediated by miRISC via RCK/p54 and its specificity is dictated by the miRNA sequence binding multiple copies of miRISC to complementary 3′ UTR sites in the target mRNA. These studies also suggest that translation suppression by miRISC does not require P-body structures, and location of miRISC to P-bodies is the consequence of translation repression.  相似文献   

18.
19.
20.

Background

During zebrafish embryogenesis, microRNA (miRNA) miR-430 contributes to restrict Nanos1 and TDRD7 to primordial germ cells (PGCs) by inducing mRNA deadenylation, mRNA degradation, and translational repression of nanos1 and tdrd7 mRNAs in somatic cells. The nanos1 and tdrd7 3′UTRs include cis-acting elements that allow activity in PGCs even in the presence of miRNA-mediated repression.

Methodology/Principal Findings

Using a GFP reporter mRNA that was fused with tdrd7 3′UTR, we show that a germline-specific RNA-binding protein DAZ-like (DAZL) can relieve the miR-430-mediated repression of tdrd7 mRNA by inducing poly(A) tail elongation (polyadenylation) in zebrafish. We also show that DAZL enhances protein synthesis via the 3′UTR of dazl mRNA, another germline mRNA targeted by miR-430.

Conclusions/Significance

Our present study indicated that DAZL acts as an “anti-miRNA factor” during vertebrate germ cell development. Our data also suggested that miRNA-mediated regulation can be modulated on specific target mRNAs through the poly(A) tail control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号