首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Summary The dioptric apparatus of the Limulus compound eye is composed of the corneal cuticle with its internally projecting cuticular cones and the specialized underlying epidermis. The latter is composed of three distinct cell types. The guanophores, located between cuticular cones, contain guanine as a reflecting pigment. The distal pigment cells, which clothe the sides of the cuticular cones and form a sheath around the underlying ommatidium, contain massive bundles of microtubules, abundant pigment droplets and a large Golgi system. The cone cells are positioned between the flattened tip of the cuticular cone and the apex of the ommatidium. They serve to anchor the retinula cells to the cuticle and, by virtue of long processes along the periphery of the rhabdome, perform a glial function with respect to the interaction of adjacent retinula cells. The geometry and fine structure of the dioptric apparatus provide supporting evidence for the wide angle of acceptance and lack of polarized light perception by the ommatidia.This study constitutes publication No. 288 from the Oregon Regional Primate Research Center, supported in part by Grants FR 00163 and NB 07717-01 from the National Institutes of Health and in part by a Bob Hope Fight For Sight Grant-in-Aid of the National Council to Combat Blindness, Inc. The author wishes to thank Mrs. Audrey Griffin for patient and excellent technical assistance.  相似文献   

2.
Gertrud Kolb 《Zoomorphology》1977,87(2):123-146
Summary The apposition eye of the large Cabbage Butterfly,Pieris brassicae L., was investigated electronmicroscopically (TEM). Diagrams based on micrographs show details of the structure of an ommatidium.The dioptric apparatus is made up of cornea, corneal process, and crystalline cone. The sensory part consists of nine visual cells. The retina is tiered. Four distal visual cells (type I) participate in forming the distal rhabdome, the proximal part being formed by four proximal visual cells (type II) with proximal main sections. There are ultrastructural differences between these two types of receptors. The basal ninth visual cell forms, if any, only stubby microvilli that have no part in the formation of the banded rhabdome. There is no gap between the distal and proximal parts of the rhabdome, but the two parts differ morphologically. In the distal part the rhabdomeres do not interlock at right angles and are, for the most part, not exactly perpendicular to the optical axis of the ommatidium; their microvilli may be bent and sometimes extend more than halfway across the rhabdome. In the proximal rhabdome the microvilli are straight and parallel, though they too vary in extent across the rhabdome. The microvilli plates of neighbouring rhabdomeres interlock here at right angles. Basally the rhabdome ends at a large tracheal fork that acts as a tapetum.There are five different types of pigment granules in the ommatidium each belonging to a particular cell type. Distal and proximal visual cells each have one type of pigment; the other three types of pigment granules belong to two principal, six secondary, and six basal pigment cells, respectively. Each distal process of the secondary pigment cells contains microtubule bundles and is joined horizontally to the processes of neighbouring secondary pigment cells. Bundles of microtubules running parallel to the optical axis are found in the primary pigment cells, too. The ultrastructure is described, and its relevance for the eyes function, especially in the ultraviolet wavelength-range, is discussed.
Zusammenfassung Das Appositionsauge des gro\en Kohlwei\lings,Pieris brassicae L. wurde elektronenmikroskopisch (TEM) untersucht. Der Bau eines Ommatidiums wird im Schema und Details anhand von Aufnahmen wiedergegeben.Der dioptrische Apparat besteht aus Cornea, Corneafortsatz und Kristallkegel.Der sensorische Teil ist aus neun Sehzellen zusammengesetzt. Die Retina ist mehrreihig. Vier distale einfache Sehzellen vom Typ I haben Anteil am distalen, vier proximale Sehzellen (Typ II) mit ihrem proximalen Hauptabschnitt am proximalen Rhabdomaufbau. Diese Rezeptortypen unterscheiden sich feinstrukturell. Die basale neunte Sehzelle besitzt keine oder stummeiförmige Microvilli, die keinen Anteil am gebÄnderten Rhabdom haben. Distales und proximales Rhabdom gehen ineinander über, unterscheiden sich aber morphologisch. Im distalen Rhabdom verlaufen die Rhabdomere in einer horizontalen Ebene nicht senkrecht zueinander und auch vielfach nicht exakt senkrecht zur optischen Achse des Ommatidiums; ihre Microvilli können gebogen sein und sich stellenweise über mehr als die HÄlfte des Rhabdoms erstrecken. Im proximalen Rhabdom sind die Microvilli gerade orientiert, überqueren aber auch verschieden weit das Rhabdom. Die Microvilliplatten benachbarter Rhabdomere sind proximal senkrecht zueinander orientiert. Das Rhabdom endigt basal an einer gro\en Tracheengabel, die als Tapetum wirkt. Fünf verschiedene Pigmentgranulatypen erscheinen in jedem Ommatidium.Jeder Pigmentgranulatyp ist einem bestimmten Zelltyp zugeordnet. Distale und proximale Sehzellen enthalten jeweils verschiedene Pigmente; die anderen drei Pigmenttypen sind auf zwei Haupt-, sechs Nebenpigmentzellen und sechs basale Pigmentzellen verteilt. Jeder distale Fortsatz der Nebenpigmentzellen enthÄlt Microtubulibündel und steht horizontal mit den FortsÄtzen benachbarter Nebenpigmentzellen in Verbindung. Au\erdem verlaufen auch in den Hauptpigmentzellen gebündelte Microtubuli parallel zur optischen Achse.Die Feinstrukturen werden beschrieben und ihre Bedeutung für die Funktion des Auges insbesondere im ultravioletten WellenlÄngenbereich wird diskutiert.


This publication is dedicated to Professor Dr. Dr. h. c. H. Autrum on the occasion of his 70th birthday

This work was supported by grants from the Deutsche Forschungsgemeinschaft and the Stiftung Volkswagenwerk. — The author thanks Dr. H. Kayser, Biology Department, Ulm University, for specimens ofPieris brassicae and for advice on rearing methods, as well as Dr. Noli (Leitz) for the SEM micrographs, Figure 3 a and b, taken with a Leitz AMR 1000. A Leitz Metallbeschichtungskammer with gold cathode in argon was used for gold vapour coating. — For Figure 3c I sincerely thank Mrs. Dr. Pietsch-Rohrschneider (REM Cambridge MK II)  相似文献   

3.
Summary The nauplius eye of the cyclopoid copepod Macrocyclops albidus has been studied by means of the electron microscope. It is composed of 1 ventral and 2 dorsal ocelli. Each dorsal ocellus consists of a large, pigmented cell, 2 tapetal cells which form a hemispherical cup and are tightly packed with crystals, 9 retinula cells and 5 conjunctival cells. The retinula cells have large masses of endoplasmic reticulum, which can be found in two distinct distributional states, also numerous bodies composed of variously coiled membranes, large amounts of glycogen, mitochondria and scattered neurotubules. The light-sensitive brush borders of these cells are closely coapted and form the irregularly shaped rhabdome. Each of the 9 retinula cells sends an axon by one of three routes to the protocerebrum. In addition, a dendrite emerges from the protocerebrum, enters the ocellus and ends blindly in immediate vicinity to the rhabdome. The observations concerning the structure of the eye made in the present study have been compared to those of light microscopical investigations. Comparison of structure and probable function of the nauplius eye and other arthropod eyes has led to consideration of the probable mode of synaptic transmission between primary and secondary sensory neurons in the ocellus, i.e. between retinula cells and eccentric cell dendrite, and various morphological features that might be of importance in this connection.Supported in part by Postdoctoral Fellowship 41044 and Research Grant G-23972 from the National Science Foundation, and Research Grant HE-005129-04 from the National Institutes of Health to the Oregon Regional Primate Research Center.  相似文献   

4.
Summary The eye of the honey bee drone is composed of approximately 8,000 photoreceptive units or ommatidia, each topped by a crystalline cone and a corneal facet. An ommatidium contains 9 visual or retinula cells whose processes or axons pierce a basement membrane and enter the optic lobe underlying the sensory retina. The visual cells of the ommatidium are of unequal size: six are large and three, small. In the center of the ommatidium, the visual cells bear a brush of microvilli called rhabdomere. The rhabdome is a closed-type one and formed mainly by the rhabdomeres of the six large retinula cells. The rhabdomeric microvilli probably contain the photopigment (rhodopsin), whose modification by light lead to the receptor potential in the retinula cells. The cytoplasm of the retinula cells contains various organelles including pigment granules (ommochromes), and peculiar structures called the subrhabdomeric cisternae. The cisternae, probably composed of agranular endoplasmic reticulum undergo swelling during dark adaptation and appear in frequent connection with Golgi cisternae. Three types of pigment cells are associated with each ommatidium. The crystalline cone is entirely surrounded by two corneal pigment cells. The ommatidium, including its dioptric apparatus and corneal pigment cells, is surrounded by a sleeve of about 30 elongated cells called the outer pigment cells. These extend from the base of the corneal facet to the basement membrane. Near the basement membrane the center of the ommatidium is occupied by a basal pigment cell. Open extracellular channels are present between pigment cells as well as between retinula cells. Tight junctions within the ommatidium are restricted to the contact points between the rhabdomeric microvilli. These results are discussed in view of their functional implications in the drone vision, as well as in view of the data of comparative morphology.This work was supported by a grant from the Fonds National Suisse de la Recherche Scientifique.  相似文献   

5.
Among ants, Cataglyphis bicolor shows the best performance in optical orientation. Its eye is of the apposition type with a fused rhabdom. Morphological studies on the general struture of the eye as well as the effect of light have been carried out with transmission and scanning electron microscopy. An ommatidium is composed of a dioptric apparatus, consisting of a cornea, corneal process and a crystalline cone, the sensory retinula, which is made up of eight retinula cells in the distal half and of an additional ninth one in the proximal half. The ommatidia are separated from each other by two primary pigment cells, which surround the crystalline cone and an average of 12 secondary pigment cells, which reach from cornea to the basement membrane. The eye of Cataglyphis bicolor possesses a light intensity dependent adaptation mechanism, which causes a radial and distal movement of the pigment granules within the retinula cells and a dilatation of cisternae of the ER along the rhabdom. Until now, no overall order in arrangement of retinula cells or direction of microvilli has been found from ommatidium to ommatidium. Such an order, however, must exist, either on the retina or the lamina level, since we have proven the ant's capacity for polarized light analysis.  相似文献   

6.
The dynamics of spike discharge in eccentric cell axons from the in situ lateral eye of Limulus, under small sinusoidal modulation of light to which the eye is adapted, are described over two decades of light intensity and nearly three decades of frequency. Steady-state lateral inhibition coefficients, derived from the very low-frequency response, average 0.04 at three interommatidial spacings. The gain vs. frequency of a singly illuminated ommatidium is described closely from 0.004 to 0.4 cps by the linear transfer function s0.25; this function also accounts approximately for the measured phase leads, the small signal adaptation following small step inputs, and for Pinter's (1966) earlier low-frequency generator potential data. We suggest that such dynamics could arise from a summation in the generator potential of distributed intensity-dependent relaxation processes along the dendrite and rhabdome. Analysis of the dynamic responses of an eccentric cell with and without simultaneously modulated illumination of particular neighbors indicates an effect equivalent to self-inhibition acting via a first-order low-pass filter with time constant 0.42 sec, and steady-state gain near 4.0. The corresponding filters for lateral inhibition required time constants from 0.35 to 1 sec and effective finite delay of 50–90 msec.  相似文献   

7.
Summary Efferent fibers to the compound eye of the horseshoe crab, Limulus polyphemus, not only innervate the various pigment cells, but also invade the eccentric cell dendrite and the retinula cells. This finding provides a structural basis for the coupling of circadian rhythm between the efferents and the receptor cells.This short communication is Publication No. 1130 of the Oregon Regional Primate Research Center. The research was supported by Grants RR-00163 and EY-00392 from the National Institutes of Health  相似文献   

8.
大草蛉成虫复眼的外部形态及其显微结构   总被引:2,自引:0,他引:2  
张海强  朱楠  范凡  魏国树 《昆虫学报》2007,50(5):454-460
用扫描电镜和光学显微镜观察了大草蛉Chrysopa pallens Ramber成虫复眼的外部形态及明、暗适应和性别对其显微结构的影响。结果发现:(1)其复眼呈半球形,位于头部两侧,略成“八”字形排列,单个复眼约由3 600个小眼组成,最前和最后小眼之间的夹角约为180°,最上和最下小眼之间的夹角约200°;(2)小眼主要由角膜、晶锥和6~8个小网膜细胞、基膜组成,外围环绕有2个初级虹膜色素细胞和6个次级虹膜色素细胞,基膜处有色素颗粒分布;(3)暗适应时,晶锥开裂程度较大,远端5~7个网膜细胞核向远端移动,与晶锥近端相接或接近,次级虹膜色素颗粒亦向远端移动包围晶锥;明适应时,晶锥开裂程度小或闭合,远端网膜细胞核向近端移动,透明带显现,大部分次级虹膜色素颗粒亦向近端移动分布在小网膜细胞柱周围,包被透明带;(4)在相同的明、暗适应下,雌、雄成虫复眼的显微结构无明显差异。结果表明大草蛉复眼为透明带明显的重叠象眼,其小眼不但具有次级虹膜色素颗粒纵向移动的常规调光机制,还存在晶锥开闭、远端网膜细胞核移动和基膜色素颗粒纵向扩散的调光新机制。  相似文献   

9.
Summary The retinal morphology of the butterfly, Pieris rapae L., was investigated using light and electron microscopy with special emphasis on the morphology and distribution of its screening pigments. Pigment migration in pigment and retinula cells was analysed after light-dark adaptation and after different selective chromatic adaptations. The primary pigment cells with white to yellow-green pigments symmetrically surround the cone process and the distal half of the crystalline cone, whilst the six secondary pigment cells, around each ommatidium, contain dark brown pigment granules. The nine retinula cells in one ommatidium can be categorised into four types. Receptor cells 1–4, which have microvilli in the distal half of the ommatidium only, contain numerous dark brown pigment granules. On the basis of the pigment content and morphology of their pigment granules, two distal groups of cells, cells 1, 2 and cells 3, 4 can be distinguished. The four diagonally arranged cells (5–8), with rhabdomeric structures and pigments in the proximal half of the cells, contain small red pigment granules of irregular shape. The ninth cell, which has only a small number of microvilli, lacks pigment. Chromatic adaptation experiments in which the location of retinula cell pigment granules was used as a criterium reveal two UV-receptors (cells 1 and 2), two green receptors (cells 3 and 4) and four cells (5–8) containing the red screening pigment, with a yellow-green sensitivity.  相似文献   

10.
11.
The lateral compound eye of Scutigera coleoptrata was examined by electron microscopy. Each ommatidium consists of a dioptric apparatus, formed by a cornea and a multipartite eucone crystalline cone, a bilayered retinula and a surrounding sheath of primary pigment and interommatidial pigment cells. With reference to the median eye region, each cone is made up of eight cone segments belonging to four cone cells. The nuclei of the cone cells are located proximally outside the cone near the transition area between distal and proximal retinula cells. The connection between nuclear region and cone segment is via a narrow cytoplasmic strand, which splits into two distal cytoplasmic processes. Additionally, from the nuclear region of each cone cell a single cytoplasmic process runs in a proximal direction to the basement membrane. The bilayered rhabdom is usually made up of the rhabdomeres of 9–12 distal retinula cells and four proximal retinula cell. The pigment shield is composed of primary pigment cells (which most likely secrete the corneal lens) and interommatidial pigment cells. The primary pigment cells underlie the cornea and surround, more or less, the upper third of the crystalline cone. By giving rise to the cornea and by functioning as part of the pigment shield these pigment cells serve a double function. Interommatidial pigment cells extend from the cornea to the basement membrane and stabilise the ommatidium. In particular, the presence of cone cells, primary pigment cells as well as interommatidial pigment cells in the compound eye of S. coleoptrata is seen as an important morphological support for the Mandibulata concept. Furthermore, the phylogenetic significance of these cell types is discussed with respect to the Tetraconata.  相似文献   

12.
Ultrastructure within the Lateral Plexus of the Limulus Eye   总被引:6,自引:5,他引:1       下载免费PDF全文
The ultrastructure of the lateral plexus in the compound eye of Limulus is investigated by serial section technique. "Cores" of tissue containing the axons, lateral plexus, and neuropile associated with one sensory ommatidium show the following features: (a) collateral branches from retinular cells do not contribute to the lateral plexus proper, but do form retinular neuropile by contacting collaterals of a self-contained cluster of retinular axons; (b) collateral branches from eccentric cell axons always branch repeatedly upon leaving the parent axon, and compose the bulk of the lateral plexus; (c) the most distal collateral branches from an eccentric cell axon appear to form neuropile and synaptic contacts with each other, whereas more proximal branches form synaptic contacts with collaterals from eccentric cell axons of neighboring ommatidia. We conclude that the ribbon synapses and associated transmitter substance in eccentric cell collaterals must be inhibitory, and that two pathways for self-inhibition may exist. We suggest, as a working hypothesis for the structure of the lateral plexus, a branching pattern with depth that mirrors the horizontal spread of lateral inhibition measured physiologically.  相似文献   

13.
Morphology and functional aspects of the scotopic compound eye of the moth Diatraea saccharalis, studied using light and electron microscopy, is presented. An ommatidium is composed of a laminate corneal lens, four Semper cells, a refractive cone, two primary pigment cells, six screening pigment cells, a crystalline tract that functions as an optical waveguide, and six to eight sensory retinular cells. Accessory light regulators consist of screening pigment cells that, in the dark-adapted position, increase receptor sensitivity by permitting light rays to cross over to adjacent ommatidia and specialized tracheal regions that enhance sensitivity by reflecting light back toward sensory receptors.  相似文献   

14.
The compound eye of Munida irrasa differs in several respects from the typical decapod eye. The proximal pigment is found only in retinula cells. The eccentric cell is extremely large and expanded to fill the interstices of the crystalline tract area; thus, a typical "clear-zone" is absent. Six retinula cells course distally to screen two sides of the crystalline cone. There are approximately 12,500 ommatidia in each compound eye. There are several similarities to the typical decapod eye. Each ommatidium is composed of a typical cornea, corneagenous cells, crystalline cone cells, crystalline cone, crystalline cone tract and eight retinula cells. Distal pigment cells are present and surround the crystalline cone. The distal processes of the retinula cells also contain pigment. The retinula cell processes penetrate the basement membrane as fascicles composed of processes from adjacent retinulae.  相似文献   

15.
The relationship between retinula and eccentric cells in the lateral eye of Limulus polyphemus was studied using a double electrode technique which permitted simultaneous recording of light-initiated responses in two sense cells and the labeling of the cells for subsequent histological examination and identification. The following results were obtained: (a) light-initiated slow responses with and without superimposed spike potentials were recorded from retinula cells and from eccentric cells (only one eccentric cell yielded responses without superimposed spike potentials); (b) spike potentials recorded in different cells within the same ommatidium were always synchronous; (c) a complete absence of spike potentials was observed in two experiments in which no eccentric cells could be found in the ommatidia containing the labeled retinula cells; (d) the greatest differences in the characteristics of responses recorded simultaneously occurred in those recorded from retinula-eccentric combinations. The results indicate that there is only one source of spike potential activity within an ommatidium (presumably the eccentric cell) and that the light-initiated response of retinula cells may be independent of the eccentric cell response. The suggestion is advanced that the response of the retinula cell may "trigger" the eccentric cell response.  相似文献   

16.
许曼飞  李孟园  姜岩  孟召娜  谭畅  王国昌  边磊 《昆虫学报》2022,65(10):1277-1286
【目的】明确灰茶尺蠖Ectropis grisescens成虫复眼的超微结构及其明暗适应中的变化,探究其调光机制。【方法】采用超景深显微镜测定了灰茶尺蠖成虫复眼的小眼数量、间角、直径和曲率半径等外部参数,并通过组织切片、光学显微镜和透射电子显微镜等技术观察了复眼的内部超微结构;通过光学显微镜观察了灰茶尺蠖成虫复眼在明暗环境中分别适应2 h后晶锥结构及色素颗粒的位置变化。【结果】灰茶尺蠖成虫复眼呈半球形,雌、雄虫单个复眼分别有2 502±105和3 123±78个小眼。小眼自远端至近端由角膜、晶锥、透明区构成的屈光层和由15个视网膜细胞构成的感光层组成。2个初级色素细胞包裹着晶锥,自角膜近端延伸至视网膜细胞核区的远端;每个小眼外围由6个次级色素细胞围绕,自角膜近端延伸至基膜;在透明区内14个视网膜细胞聚集成束(非感杆束),远端与晶锥束末端连接,在感光层内形成闭合型感杆束,延伸至第15个视网膜细胞(基部视网膜细胞)。在明暗适应时,灰茶尺蠖复眼的晶锥细胞间出现开闭,色素颗粒进行纵向位移,以适应外界的光强度的变化。【结论】灰茶尺蠖成虫复眼属于重叠像眼,感杆束为“14+1”模式;屏蔽色素颗粒的移...  相似文献   

17.
Summary The fine structure of retinular cells within lateral eyes ofLimulus polyphemus which had been dark or light adapted for 12 h in vivo was studied via electron microscopy. The ommatidium to ommatidium and retinular cell to retinular cell variability observed in light microscope studies was confirmed. The rhabdomeric microvilli were longer and narrower, the area of contiguous microvillar membranes greater, the endoplasmic reticulum less abundant and the mitochondrial granules (? calcium containing) more numerous in well dark adapted than in well light adapted retinular cells (Figs. 1, 3, 4, 7, 8) and membrane whorls or vacuoles were present in the peripheral cytoplasm of very well light adapted retinular cells (Fig. 6). Phagocytotic vesicles, multivesicular bodies and lysosomes were present in the interrhabdomeral cytoplasm of partially light adapted retinular cells (Figs. 1, 2, 3, 10). The number of retinular cell microvilli in contact with the eccentric cell dendrite was smaller in very well light adapted than in well dark adapted ommatidia (Fig. 9). The possible functional significance of these light-dependent structural changes is discussed.This investigation was supported in part by Grant 2 RO1 EY 00236 National Eye Institute, National Institutes of HealthMember of the SFB 160 of the Deutsche Forschungsgemeinschaft  相似文献   

18.
CELL JUNCTIONS IN OMMATIDIA OF LIMULUS   总被引:9,自引:5,他引:4       下载免费PDF全文
The intercellular relationships in the ommatidia of the lateral eye of Limulus have been investigated. The distal process of the eccentric cell gives origin to microvilli which interdigitate with the microvilli of the retinular cells. Therefore, both types of visual cells contribute to form the rhabdom and may have an analogous photoreceptor function. Quintuple-layered junctions are found within the rhabdom at the lines of demarcation between adjoining microvilli, whether the microvilli originate from a single retinular cell, from two adjacent retinular cells, or from a retinular cell and the eccentric cell. Furthermore, quintuple-layered junctions between the eccentric cell and the tips of the microvilli of the retinular cells occur at the boundary between the distal process and the rhabdom. These findings are interpreted to indicate that the rhabdom provides an extensive electrotonic junction relating retinular cells to one another and to the eccentric cell. Quintuple-layered junctions between glial and visual cells, as well as other structural features of the ommatidial cells, are also described.  相似文献   

19.
Summary The compound eyes of two species of damsel-flies, Ishunura senegalensis and Cersion calamorum, were examined by electron microscopy. Each ommatidium is composed of eight retinula cells which are semistratified in the receptor layer. The retinula cells are divided into four types from the difference of levels in the rhabdom formation; one distal large cell having the rhabdomere only in the distal layer, four middle cells forming the rhabdom in the middle layer, two proximal cells making up the rhabdom in the proximal layer and one distal small cell having no rhabdomere in any layers. In addition, the lamina ganglionaris was partly observed. Some retinula axons terminate at an different level from the other axons. The functional differentiation among these different types of cells is discussed with relation to the analysis of the polarized light and the discrimination of the diffraction images.This work is supported by a grant from the U.S. Army Research and Development Group (Far East), Department of the Army (DA-CRD-AG-S29-544-67-G61).The authors wish to express their gratitude to Drs. H. Morita and H. Tateda for their helpful discussions throughout this study.  相似文献   

20.
Zusammenfassung Im Ommatidium des Komplexauges von Ocypode cursor wurde entgegen einer früheren Untersuchung eine achte Retinulazelle gefunden. Sie unterscheidet sich nach Form und Lage von den sieben regulären Retinulazellen. Ihr Kontakt zum Rhabdom und der Besitz eines Axons (bisher bei Decapoden unbekannt) widerlegen die für andere Decapoden geäußerte Ansicht, daß diese Zelle rudimentär sei. Ihre besondere Ausbildung legt den Gedanken nahe, daß sie funktionell spezialisiert ist.Am distalen Ende der Retinula liegt eine im Schnitt quer zur Ommatidienachse kreuzförmige pigmentfreie Zone (Abb. 3, 4). Ein Arm, in jedem Ommatidium der gleiche, enthält einen kugeligen Kern. Es ist anzunehmen, daß diese pigmentfreie Zone den Zellkörper der achten Retinulazelle darstellt. Diese Zelle steht in räumlichem Kontakt zum Rhabdom. Der Raum zwischen den vier Armen der Zelle 8 wird von den distalen, stark pigmentierten Enden der sieben regulären Sinneszellen gefüllt. Die in der Regel größere Zelle 7 liegt hinten, Zellen 1 und 2 oben, Zellen 3 und 4 vorn, Zellen 5 und 6 unten. Die Kerne dieser Zellen sind länglich ellipsoid. Der kernhaltige Arm der Zelle 8 verjüngt sich nach proximal zu einem Axon (Abb. 6), das an der Peripherie des Rings der sieben regulären Retinulazellen an der Naht zwischen den Zellen 6 und 7 zur Basalmembran zieht (Abb. 7). Unmittelbar über der Basalmembran divergieren die Retinulazellen: Zelle 1 zieht nach hinten oben, Zellen 2 und 3 nach vorn oben, Zellen 4 und 5 nach vorn unten, Zellen 6 bis 8 nach hinten unten (Abb. 9). In dieser asymmetrischen Gruppierung durchstoßen die Axone der Retinulazellen die vier lanzettlichen Öffnungen, die zur Basis der in der darüber und darunter liegenden Reihe nächst benachbarten Ommatidien ziehen (Abb. 10). Auf diese Weise ergibt sich ein regelmäßiger Wechsel von Öffnungen in der Basalmembran mit drei und fünf Querschnitten von Axonen (Abb. 11).
Summary In the ommatidium of the apposition eye of Ocypode cursor eight retinula cells are found, where the eighth accessory cell has a characteristic shape and position distinct from the other seven retinula cells. For other decapods this cell has been assumed to be rudimentary. At least for Ocypode its contact with the rhabdome and the possession of an axon contradict this assumption. A functional specialization of this cell seems more probable.In sections perpendicular to the optical axis a cross-shaped pigmentless structure appears at the distal end of the retinula. One bar of this cross (in any particular ommatidium the same) contains a spherical nucleus (Figs. 3, 4). All four bars seem to be in contact with the central rhabdome. The similar appearance of all four bars and the presence of only one nucleus in this region favour the assumption that all four bars belong to one and the same cell. The space between the bars is filled by the densely pigmented distal ends of the seven regular retinula cells: the dorsal space by cells 1 and 2, the anterior by 3 and 4, the ventral by 5 and 6, and the posterior by cell 7. The nuclei of these cells are elongated. The nucleus-containing bar tapers proximally into an axon (Fig. 6) which extends towards the basilar membrane peripheral to the rosette of the seven regular sense cells, close to the border of cells 6 and 7 (Fig. 7). Immediately adjacent to the basement membrane the retinula cells (in this case, their axons) diverge peripherally: the direction of No. 1 becomes dorso-posterior, No. 2 and No. 3 dorso-anterior, No. 4 and 5 ventro-anterior, No. 6–8 ventro-posterior (Fig. 9). In this asymmetric distribution the axons of the retinular cells pass through the basement membrane by openings which extend between the bases of neighbouring ommatidia in the next higher or lower row of ommatidia (Fig. 10). Thus a sequence of openings follows with alternately three and five cross sections of axons (Fig. 11).


Herrn E. Freiberg danke ich für die Ausführung der Zeichnungen, Frl. I. Geiss und Drs. R. und S. Pickering für Hilfe bei der Anfertigung des Manuskriptes, Herrn Dr. K. Kirschfeld für dessen kritische Durchsicht.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号