首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of cis- and trans-[PtCl2(NH3)2] with glutathione (GSH) inside intact red blood cells have been studied by 1H spin-echo nuclear magnetic resonance (NMR). Upon addition of trans-[PtCl2(NH3)2] to a suspension of red cells, there was a gradual decrease in the intensity of the resonances for free GSH, and new peaks were observed that were assignable to coordinated GSH protons in trans-[Pt(SG)Cl(NH3)2], trans-[Pt(SG)2(NH3)2], and possibly the S-bridged complex trans-[[NH3)2PtCl)2SG]+. Formation of trans-[Pt(SG)2(NH3)2] inside the cell was confirmed from the 1H NMR spectrum of hemolyzed cells, which were ultrafiltered to remove large protein molecules; the ABM multiplet of the coordinated GSH cys-beta CH2 protons was resolved using selective-decoupling experiments. Seventy percent of the total intracellular GSH was retained by the ultrafiltration membrane, suggesting that the mixed complex trans-[Pt(SG)(S-hemoglobin)(NH3)2] also is a major metabolite of trans-[PtCl2(NH3)2] inside red cells. The reaction of cis-[PtCl2(NH3)2] with intracellular GSH was slower; only 35% of the GSH had been complexed after a 4-hr incubation compared to 70% for the trans isomer. There was a gradual decrease in the intensity of the GSH 1H spin-echo NMR resonances, but no new peaks were resolved. This was interpreted as formation of high-molecular weight Pt:GSH and mixed GS-Pt-S(hemoglobin) polymers. By using a 15N-[1H] DEPT pulse sequence, we were able to study the reaction of cis-[PtCl2(15NH3)2] with red cells at concentrations as low as 1 mM. 15NH3 ligands were released, and no resonances assignable to Pt-15NH3 species were observed after a 12-hr incubation.  相似文献   

2.
The cationic complexes (1,2-diaminoethane)(maltolato)platinum(II) ([Pt(en)(ma)]+) and (1R,2R-1,2-diaminocyclohexane)(maltolato)platinum(II) ([Pt(R,R-DACH)(ma)]+) have been prepared and the structure of [Pt(R,R-DACH)(ma)]NO3 has been determined by single crystal X-ray diffraction. The geometry of the metal in [Pt(R,R-DACH)(ma)]NO3 is essentially square planar and the maltolate ligand has a geometry similar to other chelate complexes involving this ligand. The cytotoxicities of the compounds have been assessed in the human cell lines HeLa and K562 and the IC50 values are approximately 32 microM in HeLa cells and 26 microM in K562 cells. In these cell lines the cytotoxicity of cisplatin is higher than the maltolate complexes by a factor of 2 to 3 whereas the cytotoxicity of carboplatin is lower than the maltolate complexes.  相似文献   

3.
4.
Upon weekly i.m. injections of disodium gold thiomalate (Na2AuTM) 100% of A.SW mice produced IgG autoantibodies to antinuclear Ag and nucleolar Ag, respectively; about 70% of C57BL/6 mice produced IgG antinuclear Ag, whereas DBA/2 mice were resistant. Moreover, C57BL/6 mice, but not DBA/2 mice, showed increased mesangial deposits of IgG. These alterations were due not to disodium thiomalate, but to the gold ion of Na2AuTM. An assumed T cell reactivity of susceptible mouse strains to Na2AuTM was tested by means of the direct popliteal lymph node (PLN) assay. However, no distinct PLN reaction to Na2AuTM was detectable. Likewise, AuCl did not induce a PLN reaction. Both Na2AuTM and AuCl contain gold in the Au(I) state. The poor PLN responses to Au(I) contrasted with the strong PLN responses to Au(III) compounds. PLN reactions to Au(III) were dose dependent, T cell dependent, and specific. When Au(III) was reduced to Au(I) by addition of Na2TM or methionine before testing in the PLN assay its sensitizing capacity was significantly decreased. Thus, the oxidation state of gold, i.e., Au(III) vs Au(I), plays a major role for its sensitizing capacity. Therefore, we propose that the Au(I) of Na2AuTM is oxidized to Au(III) before T cells are sensitized and adverse immunologic reactions develop. Results obtained with the adoptive transfer PLN assay indicated that, indeed, repeated i.m. injections of Na2AuTM sensitized A.SW and C57BL/6 splenic T cells to Au(III).  相似文献   

5.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

6.
The nature of the diamine plays a very critical role in stabilizing the cationic species [Pt(η2-C2H4)Cl(diamine)]+ containing a highly reactive olefin. Hence while N,N,N′,N′-tetramethyl-1,2-diaminoethane (tmen) gave a species isolatable in a pure form, N,N,N′,N′-tetramethyl-1,3-diaminopropane (tmpm) and unsubstituted 1,2-diaminoethane (en) were unable to act as bidentate and gave, as isolatable species, only complexes of the type cis-[Pt(η2-C2H4)Cl2(Hdiamine)]+ in which the diamine is protonated and acts as monodentate towards platinum. These results are explained in terms of greater conformational stability of five- versus six-membered chelate rings and of gem-dimethyl substituted towards unsubstituted ring systems (Thorpe-Ingold effect).  相似文献   

7.
Complexes [Au(2Ac4oT)Cl][AuCl2] (1), [Au(Hpy2Ac4mT)Cl2]Cl·H2O (2), [Au(Hpy2Ac4pT)Cl2]Cl (3), [Pt(H2Ac4oT)Cl]Cl (4), [Pt(2Ac4mT)Cl]·H2O (5), [Pt(2Ac4pT)Cl] (6) and [Pt(L)Cl2OH], L = 2Ac4mT (7), 2Ac4oT (8), 2Ac4pT (9) were prepared with N(4)-ortho- (H2Ac4oT), N(4)-meta- (H2Ac4mT) and N(4)-para- (H2Ac4pT) tolyl-2-acetylpyridine thiosemicarbazone. The cytotoxic activities of all compounds were assayed against U-87 and T-98 human malignant glioma cell lines. Upon coordination cytotoxicity improved in 2, 5 and 8. In general, the gold(III) complexes were more cytotoxic than those with platinum(II,IV). Several of these compounds proved to be more active than cisplatin and auranofin used as controls. The gold(III) complexes probably act by inhibiting the activity of thioredoxin reductase enzyme whereas the mode of action of the platinum(II,IV) complexes involves binding to DNA. Cells treated with the studied compounds presented morphological changes such as cell shrinkage and blebs formation, which indicate cell death by apoptosis induction.  相似文献   

8.
We have studied the effects of diethyldithiocarbamate (DDTC) on the biotransformations of toxic doses of tetrachloro (d,l-trans)1,2-diaminocyclohexaneplatinum(IV) (tetraplatin) in Fischer 344 rats. In animals not treated with DDTC, tetraplatin was rapidly converted to dichloro(d,l-trans)1,2-diaminocyclohexaneplatinum(II) [PtCl2(dach)]. Subsequent biotransformations included the transient formation of the (d,l-trans)1,2-diaminocyclohexane-aquachloroplatinum(II) [Pt(H2O)(Cl)(dach)]+ complex, followed by formation of the platinum (Pt)-methionine and either Pt-cysteine or Pt-ornithine complexes. Significant amounts of free (d,l-trans) 1,2-diaminocyclohexane (dach) were observed in plasma as a result of intracellular trans-labilization reactions. DDTC caused a marked decrease in both total and protein-bound platinum in the circulation. A significant increase in the plasma concentration of free dach was also observed as a result of formation of the Pt(DDTC)2 complex. Some of the free dach could have arisen from intracellular reactions with DDTC, but the displacement of platinum from plasma proteins was more than sufficient to account for the increase in free dach in the circulation. DDTC treatment also decreased plasma concentrations of tetraplatin, PtCl2(dach), [Pt(H2O)(Cl) (dach)]+, the Pt-methionine complex, and one unidentified biotransformation product, but had no effect on the Pt-cysteine (or Pt-ornithine) complex. These effects of DDTC on protein-bound platinum and low-molecular-weight biotransformation products in plasma may contribute to the decrease in tetraplatin toxicity seen in DDTC-treated rats.  相似文献   

9.
The synthesis of a new bis-(D-glucopyranosid-2-yl)oxamides via the key intermediate, N-acetyl N-(methyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranosid-2-yl) oxamic acid chloride (2alpha) is described. Treatment of compound 2alpha with methyl 3,4,6-tri-O-acetyl-2-amino-2-deoxy-beta-D-glucopyranoside afforded N-(methyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranosid-2-yl)-N'-(methyl 3,4,6-tri-O-acetyl-beta-D-glucopyranosid-2-yl)-oxamide. Reaction of 2alpha with 1,2-diaminoethane afforded 1,2-bis-[N,N'-(methyl 3',4',6'-tri-O-acetyl-alpha-D-glucopyranosid-2'-yl)]ethyloxamide as a main product, while 2-N-[N'-(methyl 3',4',6'-tri-O-acetyl-alpha-D-glucopyranosid-2'-yl)oxamide]-ethyl acetamide was formed as a side product. Reaction of 2alpha with 1,3-diamino-2-hydroxypropane gave only 1,3-bis-N,N-[N'-(methyl 3',4',6'-tri-O-acetyl-2'-deoxy-alpha-D-glucopyranosid-2'-yl)-oxamido]-2-propanol.  相似文献   

10.
1H-NMR Overhauser experiments at 300 and 600 MHz have been implemented on the isolated kringle 4 fragment of human plasminogen. This study shows that Leu46 and Leu77 CH3 delta,delta' groups, as well as two threonine CH3 gamma and a methionine S-CH epsilon (probably Met48) groups, are in efficient dipolar contact with histidine and aromatic side-chains. In particular, the experiments reveal that of the two Leu46 CH3 delta,delta' groups, one is in efficient contact with tryptophan (Trp25 and Trp62) indole rings while the other interacts with a tyrosine (probably Tyr41) phenol. Leu46 appears also to be close to an Ala CH3 beta group. Such a hydrophobic cluster appears to be contiguous to Trp72, hence to Arg71, residues that are through to be part of the lysine-binding site. Acid-base titration experiments show that the buried methionine S-CH3 epsilon group senses a neighboring ionizable group of pK*1 = 3.76, suggesting presence of a carboxyl anionic group (probably an aspartic acid side-chain) in the vicinity of the hydrophobic core. A preliminary model is proposed for the overall folding of the kringle polypeptide chain.  相似文献   

11.
We have studied the effects of diethyldithiocarbamate (DDTC) on the biotransformations of toxic doses of tetrachloro (d,l-trans)1,2-diaminocyclohexaneplatinum(IV) (tetraplatin) in Fischer 344 rats. In animals not treated with DDTC, tetraplatin was rapidly converted to dichloro(d,I-trans)1,2-diaminocyclohexaneplatinum(II) [PtCl2(dach]. Subsequent biotransformations included the transient formation of the (d,I-trans)1,2-diaminocyclohexane-aquachloroplatinum(II) [Pt(H2O)(Cl)(dach)]+ complex, followed by formation of the platinum (Pt)-methionine and either Pt-cysteine or Pt-ornithine complexes. Significant amounts of free (d,I-trans) 1,2-diaminocyclohexane (dach) were observed in plasma as a result of intracellular trans-labilization reactions. DDTC caused a marked decrease in both total and protein-bound platinum in the circulation. A significant increase in the plasma concentration of free dach was also observed as a result of formation of the Pt(DDTC)2 complex. Some of the free dach could have arisen from intracellular reactions with DDTC, but the displacement of platinum from plasma proteins was more than sufficient to account for the increase in free dach in the circulation. DDTC treatment also decreased plasma concentrations of tetraplatin, PtCl2(dach), [Pt(H2O)(Cl)(dach)]+, the Pt-methionine complex, and one unidentified biotransformation product, but had no effect on the Pt-cysteine (or Pt-ornithine) complex. These effects of DDTC on protein-bound platinum and low-molecular-weight biotransformation products in plasma may contribute to the decrease in tetraplatin toxicity seen in DDTC-treated rats.  相似文献   

12.
The reactions of platinum(II) complexes with thiol containing molecules are highly relevant to the mechanism of action of platinum-based drugs. This work presents the electrospray mass spectrometry (ESMS) and NMR results on the reactions of [Pt(l-MetH-S,N)Cl(2)] (l-MetH: l-methionine) with gamma-glutathione (GSH) and l-cysteine (l-Cys) at different pH and different molar ratios. Polymeric species such as [Pt(2)(micro-SG-S)(2)(Met-S,N)(2)], [Pt(3)(micro-SG-S)(4)(Met-S,N)(2)], [Pt(4)(micro-SG-S)(6)(Met-S,N)(2)] and [Pt(5)(micro-SG-S)(8)(Met-S,N)(2)] (l-Met: deprotonated l-methionine) were detected and were stable for long hours. For both reactions, the polymerization extent decreased with the increase of pH. For the reaction of l-Cys, only mononuclear complex [Pt(l-Met-S,N)(l-Cys-S,N)] was observed when pH>9. The observation and identification of polymeric (higher than binuclear) adducts of Pt(II)/GSH and Pt(II)/l-Cys appears to be unprecedented.  相似文献   

13.
Ring-substituted diaqua(1,2-diphenylethylenediamine)platinum(II) sulfate shows unusual kinetics in its reaction with salmon testis DNA. The mechanism for diaqua[meso-1,2-bis(2,6-dichloro-4- hydroxyphenyl)ethylenediamine]platinum(II) sulfate, [Pt(H2O)2(meso-6)]2+SO4(2-), a representative of this series, has been investigated and compared with that for cis-[Pt(NH3)2(H2O)2]2+. Reactions were followed by atomic absorption, analytical HPLC of Pt-DNA digests, arrest of enzymatic DNA synthesis/degradation, ultraviolet and fluorescence spectrophotometry. Except for the formation of monofunctional DNA adducts, the kinetics of the platinum(II) complexes are comparable. The pseudo-first-order rate constant for the attack of DNA by [Pt(H2O)2(meso-6)]2+ follows the concentration of DNA in a hyperbolic fashion, which is in contrast to the linear dependence for cis-[Pt(NH3)2(H2O)2]2+. The hyperbolic dependence is typical for a dissociable DNA/drug complex preceding the coordination reaction. By studying the binding of free ligand to DNA, and by correlating ligand structures and electrostatic charges with effects on adduct formation, both the phenyl residues and the positive charge of the platinum(II) complex are shown to be crucial for the stability of the dissociable complex. A non-intercalative mode of binding to the DNA backbone is suggested. At the high concentrations of DNA found in cell nuclei, the reaction of the dissociable complex can, principally, become rate-limiting in the attack of DNA and thus reduce the cytotoxic efficiency of a drug.  相似文献   

14.
 Reactions between various apo and metal-bound forms of human serum transferrin (80 kDa) and the recombinant N-lobe (40 kDa) with [Pt(en)Cl2] or cis-[PtCl2(NH3)2] have been investigated in solution via observation of [1H,15N] NMR resonances of the Pt complexes, [1H,13C] resonances of the eCH3 groups of the protein methionine residues, and by chromatographic analysis of single-site methionine mutants. For the whole protein, the preferred Pt binding site appears to be Met256. Additional binding occurs at the other surface-exposed methionine (Met499), which is platinated at a slower rate than Met256. In contrast, binding of similar Pt compounds to the N-lobe of the protein occurs at Met313, rather than Met256. Met313 is buried in the interlobe contact region of intact transferrin. After loss of one chloride ligand from Pt and binding to methionine sulfur of the N-lobe, chelate-ring closure appears to occur with binding to a deprotonated backbone amide nitrogen, and the loss of the other chloride ligand. Such chelate-ring closure was not observed during reactions of the whole protein, even after several days. Received: 5 May 1999 / Accepted: 26 July 1999  相似文献   

15.
The initial rates of reactivity of oxaliplatin, its metabolites Pt(dach)Cl2 and Pt(dach)(OH2)2(2+) with guanosine and L-met in water, NaCl and phosphate were compared. Versus guanosine, the most reactive molecule was Pt(dach)(OH2)2(2+), about 40 fold that of oxaliplatin, the least reactive was Pt(dach)Cl2, Versus L-met, Pt(dach)(OH2)2(2+), was also the most reactive species but only about 2 fold more reactive than Pt(dach)Cl2 and oxaliplatin. Pt(dach)(OH2)2(2+) was approximately 3 fold less reactive versus methionine than guanosine whereas oxaliplatin and Pt(dach)Cl2 were about seven fold more reactive versus methionine than guanosine. Thus, the three platinum compounds oxaliplatin, Pt(dach)Cl2 and Pt(dach)(OH2)2(2+) react with L-met but only the Pt(dach)(OH2)2(2+) has a high reactivity with guanosine. Oxaliplatin, which is stable in water, has to be transformed in the presence of chloride in chloro-derivatives which are aquated to become active particularly versus guanosine. These data demonstrate that oxaliplatin has similarities with cisplatin in terms of chloride versus water coordination and in terms of dependence on chloride concentration for transformations.  相似文献   

16.
Platinum(II) binding to metallothioneins   总被引:1,自引:0,他引:1  
The reaction of equine renal metallothionein (MT) with excess K2PtCl4 at pH 2 results in a polymeric adduct containing 17 +/- 2 mol Pt/mol MT. A monomeric adduct containing 7 mol Pt/mol MT is obtained at neutral pH. Rates of reaction of Pt7MT with DTNB and iodoacetic acid are consistent with Pt2+ to cysteine thiolate coordination, and the extent of reaction in both cases is 11 +/- 2 mol cys/mol MT. Adducts from the reaction of K2PtCl4 with apoMT chemically modified at the N-terminal methionine residue, Cd7MT, and native MT are also reported. A structural model of Pt7MT is proposed in which the square planar tetrathiolate Pt(II) unit is incorporated into a three-metal beta cluster. Implications for the metabolism of platinum anticancer drugs are discussed.  相似文献   

17.
The reduction of auricyanide ([Au(CN)(4)](-), a potential gold(III) metabolite of antiarthritic gold(I) compounds), by glutathione (G(-)SH, an anionic biological reductant) proceeds through two intermediates (I(230) and I(290)) which have previously been identified by their UV-vis spectra, but not isolated. Negative-ion electrospray ionization-mass spectroscopy (ESI-MS) has unambiguously identified them as [Au(CN)(3)(SG)](2-) and [Au(CN)(2)(SG)(2)](3-), respectively, and allowed their formation and decay to be monitored. The spectra also confirm that the products are aurocyanide ([Au(CN)(2)](-), a known metabolite of chrysotherapy agents) and oxidized glutathione (GSSG(2-)). The reactions are dependent on the presence or absence of buffering agents and the pH of the reaction media. The reaction can be driven to the first intermediate by using an excess of auricyanide or by running the reaction at low pH which prevents further reaction. At neutral pH and/or with excess of glutathione present, the reaction proceeds to the second intermediate, which is then reduced to aurocyanide. The monoanions, [Au(CN)(3)(SGH)](-) at m/z=581.2 and [Au(CN)(2)(SGH)(2)](-) at m/z=861.5 generate more intense signals than their respective dianions, [Au(CN)(3)(SG)](2-) at m/2=290.2 and [Au(CN)(2)(SG)(SGH)](2-)m/2=430.9, respectively, whereas the trianion [Au(CN)(2)(SG)(2)](3-) (m/3=281.2) was not observed. These studies demonstrate the value of ESI-MS methods for characterizing reactions of metallopharmaceuticals under biomimetic conditions and suggest that they will be useful for other systems which give strong ESI-MS signals.  相似文献   

18.
The adsorption of Au(III), Pt(IV) and Pd(II) onto glycine modified crosslinked chitosan resin (GMCCR) has been investigated. The parameters studied include the effects of pH, contact time, ionic strength and the initial metal ion concentrations by batch method. The optimal pH for the adsorption of Au(III), Pt(IV) and Pd(II) was found to range from 1.0 to 4.0 and the maximum uptake was obtained at pH 2.0 for Au(III), Pt(IV) and Pd(II). The results obtained from equilibrium adsorption studies are fitted in various adsorption models such as Langmuir and Freundlich and the model parameters have been evaluated. The maximum adsorption capacity of GMCCR for Au(III), Pt(IV) and Pd(II) was found to be 169.98, 122.47 and 120.39mg/g, respectively. The kinetic data was tested using pseudo-first-order and pseudo-second-order kinetic models and an intraparticle diffusion model. The correlation results suggested that the pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Au(III), Pt(IV) and Pd(II) onto GMCCR. Various concentrations of HCl, thiourea and thiourea-HCl solutions were used to desorb the adsorbed precious metal ions from GMCCR. It was found that 0.7M thiourea-2M HCl solution provided effectiveness of the desorption of Au(III), Pt(IV) and Pd(II) from GMCCR. The modification of glycine on crosslinked chitosan resin (CCR) was studied by Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM).  相似文献   

19.
A range of [PtR(2)(chxn)] (R=C(6)F(5), o-HC(6)F(4), p-HC(6)F(4), p-MeOC(6)F(4) or 3,5-H(2)C(6)F(3); chxn=cyclohexane-1,2-diamine) and cis-[PtR(2)(dmso)(2)] (R=C(6)F(5), p-HC(6)F(4) or p-MeOC(6)F(4); dmso=dimethyl sulfoxide) complexes have been prepared from the corresponding [PtR(2)(diene)] (diene=cis,cis-cycloocta-1,5-diene (cod), hexa-1,5-diene (hex), norbornadiene (nbd) or dicyclopentadiene (dcy)) derivatives and have been spectroscopically characterized. A representative crystal structure of [Pt(C(6)F(5))(2)(cis-chxn)] was determined and shows a slightly distorted square planar geometry for platinum with chxn virtually perpendicular to the coordination plane. The biological activity against L1210 and L1210/DDP cell lines of these compounds together with the behaviour of other organoplatinum complexes, [PtR(2)L(2)] (L(2)=ethane-1,2-diamine (en) or cis-(NH(3))(2)) have been determined. Despite the use of relatively inert fluorocarbon anions as leaving groups, moderate-high cell growth inhibitory activity is observed. None of the fluorocarbon complexes displayed any cross resistance with cisplatin.  相似文献   

20.
The enzyme fumarase is inhibited by [cis-Pt(NH3)2(H2O)2] (NO3)2. The Pt compound most likely binds at a S-methionine site. Sodium diethyldithiocarbamate (Naddtc) appears to be a powerful regenerator of enzymatic activity. Thiourea is less active, while sodium thiosulfate (STS) is almost inactive in restoring the activity of the enzyme. The regeneration phenomena are based on the dissociation of the Pt-S bonds of the methionine type, and formation of species like [Pt(ddtc)2]. In the model adduct [Pt(dien)GS-Me]2+ Naddtc, thiourea and STS easily break the Pt-S bond of the methionine type. It is concluded that the model system for Naddtc and thiourea does resemble fumarase quite well. S-donor ligands, which may be used as rescue agents in Pt antitumor therapy, are known to suppress nephrotoxicity caused by [cis-PtCl2(NH3)2]. A parallel is drawn between the enzyme reactivation, modeled by fumarase, and the [cis-PtCl2(NH3)2] nephrotoxicity suppression by rescue agents. It is proposed that a Pt-methionine type binding is broken by the rescue agents Naddtc and thiourea, but that the rescue agent STS only inhibits the nephrotoxicity by inactivating unbound Pt species in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号