首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli cytotoxic necrotizing factor 1 (CNF1) and the Bordetella dermonecrotic toxin (DNT) activate Rho GTPases by deamidation of Gln(63) of RhoA (Gln(61) of Cdc42 and Rac). In addition, both toxins possess in vitro transglutaminase activity in the presence of primary amines. Here we characterized the region of Rho essential for substrate recognition by the toxins using Rho/Ras chimeras as protein substrates. The chimeric protein Ras55Rho was deamidated or transglutaminated by CNF1. Rat pheochromocytoma PC12 cells microinjected with Ras55Rho developed formation of neurite-like structures after treatment with the CNF1 holotoxin indicating activation of the Ha-Ras chimera and Ras-like effects in intact cells. The Ras59Rho78Ras chimera protein contained the minimal Rho sequence allowing deamidation or transglutamination by CNF1. A peptide covering mainly the switch II region and consisting of amino acid residues Asp(59) through Asp(78) of RhoA was substrate for CNF1. Changes of amino acid residues Arg(68) or Leu(72) of RhoA into the corresponding residues of Ras (R68ARhoA and L72QRhoA) inhibited deamidation and transglutamination of the mutants by CNF1. In contrast to CNF1, DNT did not modify Rho/Ras chimeras or the switch II peptide (Asp(59) through Asp(78)). Glucosylation of RhoA at Thr(37) blocked deamidation by DNT but not by CNF. The data indicate that CNF1 recognizes Rho GTPases exclusively in the switch II region, whereas the substrate recognition by DNT is characterized by additional structural requirements.  相似文献   

2.
The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli activates members of the Rho family by deamidation of glutamine 61/63. Because this amino acid is crucial for GTP hydrolysis, deamidation of glutamine 61/63 results in constitutively active Rho proteins. Recently, it was shown that the level of CNF1-activated Rac is rapidly diminished in CNF1-treated cells by proteolytic degradation. Here, we studied the requirements for CNF1-induced Rac degradation. By overexpressing His-tagged activated Rac mutants we show that constitutive activation is necessary for degradation of Rac. However, permanent activation is not sufficient for degradation, because Rac that is constitutively activated by transamidation at glutamine 61 by the Bordetella dermonecrotic toxin is not degraded. Overexpression of His-tagged Rac mutants deficient in interaction with GTPase-activating protein (Rac(N92D) and Rac(Y64H)) and guanosine nucleotide dissociation inhibitor (Rac(H103E)) were degraded after activation by CNF1, whereas Rac(Y40C), which is not able to interact with CRIB domain effectors or plenty of SH3, was not degraded. Isoprenylation and the presence of a putative mitotic destruction box are essential for CNF-induced degradation. In contrast to Rac1, Rac2, and Rac3 were not degraded following constitutive activation by CNF1. Using site-directed mutagenesis, we defined the polybasic region and amino acids 90, 107, 147, and 151 as responsible for isotype-specific degradation.  相似文献   

3.
Maintenance of intestinal epithelial barrier functions is crucial to prevent systemic contamination by microbes that penetrate from the gut lumen. GTPases of the Rho-family such as RhoA, Rac1, and Cdc42 are known to be critically involved in the regulation of intestinal epithelial barrier functions. However, it is still unclear whether inactivation or activation of these GTPases exerts barrier protection or not. We tested the effects of Rho GTPase activities on intestinal epithelial barrier functions by using the bacterial toxins cytotoxic necrotizing factor 1 (CNF-1), toxin B, C3 transferase (C3 TF), and lethal toxin (LT) in an in vitro model of the intestinal epithelial barrier. Incubation of cell monolayers with CNF-1 for 3 h induced exclusive activation of RhoA whereas Rac1 and Cdc42 activities were unchanged. As revealed by FITC-dextran flux and measurements of transepithelial electrical resistance (TER) intestinal epithelial permeability was significantly increased under these conditions. Inhibition of Rho kinase via Y27632 blocked barrier destabilization of CNF-1 after 3 h. In contrast, after 24 h of incubation with CNF-1 only Rac1 and Cdc42 but not RhoA were activated which resulted in intestinal epithelial barrier stabilization. Toxin B to inactivate RhoA, Rac1, and Cdc42 as well as Rac1 inhibitor LT increased intestinal epithelial permeability. Similar effects were observed after inhibition of RhoA/Rho kinase signaling by C3 TF or Y27632. Taken together, these data demonstrate that both activation and inactivation of RhoA signaling increased paracellular permeability whereas activation of Rac1 and Cdc42 correlated with stabilized barrier functions.  相似文献   

4.
CNF1, a toxin produced by pathogenic Escherichia coli strains, deamidates the RhoA GTP-binding protein glutamine 63 and impairs RhoGAP-mediated GTP hydrolysis resulting in RhoA permanent activation. Using peptides derived from the RhoA sequence, we found that DTAGQEDYDRL (corresponding to RhoA 59-69 residues) was the minimum RhoA-derived peptide which could be deamidated in vitro by the CNF1 catalytic domain (CNF1-Cter). Site-directed mutagenesis outside the RhoA 59-69 sequence had no influence on glutamine 63 deamidation by CNF1-Cter. RhoA proteins with substitutions L57G, D65G, Y66G, or R70G were not affected in their ability to be deamidated by CNF1-Cter, whereas this was abolished by the R68G substitution. Arginine 68 is part of the DYDRL motif that is strictly conserved in Rho, Rac, and Cdc42 but not in other small GTP-binding proteins consistent with the observation that only Rho, Rac, and Cdc42 can be modified by CNF1.  相似文献   

5.
Ubiquitylation of RhoA has emerged as an important aspect of both the virulence of Escherichia coli producing cytotoxic necrotizing factor (CNF) 1 toxin and the establishment of the polarity of eukaryotic cells. Owing to the molecular activity of CNF1, we have investigated the relationship between permanent activation of RhoA catalyzed by CNF1 and subsequent ubiquitylation of RhoA by Smurf1. Using Smurf1-deficient cells and by RNA interference (RNAi)-mediated Smurf1 knockdown, we demonstrate that Smurf1 is a rate-limiting and specific factor of the ubiquitin-mediated proteasomal degradation of activated RhoA. We further show that the cancer cell lines HEp-2, human embryonic kidney 293 and Vero are specifically deficient in ubiquitylation of either activated Rac, Cdc42, or Rho, respectively. In contrast, CNF1 produced the cellular depletion of all three isoforms of Rho proteins in the primary human cell types we have tested. We demonstrate that ectopic expression of Smurf1 in Vero cells, deficient for RhoA ubiquitylation, restores ubiquitylation of the activated forms of RhoA. We conclude here that Smurf1 ubiquitylates activated RhoA and that, in contrast to human primary cell types, some cancer cell lines have a lower ubiquitylation capacity of specific Rho proteins. Thus, both CNF1 and transforming growth factor-beta trigger activated RhoA ubiquitylation through Smurf1 ubiquitin-ligase.  相似文献   

6.
Several bacterial toxins target Rho GTPases, which constitute molecular switches in several signaling processes and master regulators of the actin cytoskeleton. The biological activities of Rho GTPases are blocked by C3-like transferases, which ADP-ribosylate Rho at Asn41, but not Rac or Cdc42. Large clostridial cytotoxins (e. g., Clostridium difficile toxin A and B) glucosylate Rho GTPases at Thr37 (Rho) or Thr35 (Rac/Cdc42), thereby inhibiting Rho functions by preventing effector coupling. The 'injected' toxins ExoS, YopE and SptP from Pseudomonas aeruginosa, Yersinia and Salmonella ssp., respectively, which are transferred into the eukaryotic target cells by the type-III secretion system, inhibit Rho functions by acting as Rho GAP proteins. Rho GTPases are activated by the cytotoxic necrotizing factors CNF1 and CNF2 from Escherichia coli and by the dermonecrotizing toxin DNT from B. bronchiseptica. These toxins deamidate/transglutaminate Gln63 of Rho to block the intrinsic and GAP-stimulated GTP hydrolysis, thereby constitutively activating the GTPases. Rho GTPases are also activated by SopE, a type-III system injected protein from Salmonella ssp., that acts as a GEF protein.  相似文献   

7.
Cytotoxic necrotizing factors CNF1 and CNF2 are produced by pathogenic Escherichia coli strains. They constitutively activate small GTPases of the Rho family by deamidation of a glutamine, which is crucial for GTP hydrolysis. Recently, a novel CNF (CNF(Y)) encompassing 65% identity to CNF1 has been identified in Yersinia pseudotuberculosis. In contrast to the E. coli toxins, which activate several isoforms of Rho family GTPases, CNF(Y) is a strong and selective activator of RhoA in vivo. By constructing chimeras between CNF1 and CNF(Y), we show that this substrate specificity is based on differences in the catalytic domains, whereas the receptor binding and translocation domains have no influence. We further define a loop element (L8) on the surface of the catalytic domains as important for substrate recognition. A single amino acid exchange in L8 is sufficient to shift substrate specificity of CNF1. Moreover, it is shown that RhoA activation by CNF1 is transient, which may be the consequence of the broader substrate specificity of the E. coli toxin, leading to cross-talk between the activated GTPases.  相似文献   

8.
CNF1 toxin is a virulence factor produced by uropathogenic Escherichia coli. Upon cell binding and introduction into the cytosol, CNF1 deamidates glutamine 63 of RhoA (or 61 of Rac and Cdc42), rendering constitutively active these GTPases. Unexpectedly, we measured in bladder cells a transient CNF1-induced activation of Rho GTPases, maximal for Rac. Deactivation of Rac correlated with the increased susceptibility of its deamidated form to ubiquitin/proteasome-mediated degradation. Sensitivity to ubiquitylation could be generalized to other permanent-activated forms of Rac and to its sustained activation by Dbl. Degradation of the toxin-activated Rac allowed both host cell motility and efficient cell invasion by uropathogenic bacteria. CNF1 toxicity thus results from a restricted activation of Rho GTPases through hijacking the host cell proteasomal machinery.  相似文献   

9.
Cytotoxic necrotizing factor type 1 (CNF1) and dermonecrotic toxin (DNT) share homology within their catalytic domains and possess deamidase and transglutaminase activities. Although each toxin has a preferred enzymatic activity (i.e. deamidation for CNF1 and transglutamination for DNT) as well as target substrates, both modify a specific glutamine residue in RhoA, Rac1 and Cdc42, which renders these GTPases constitutively active. Here we show that despite their similar mechanisms of action CNF1 and DNT induced unique phenotypes on HEp-2 and Swiss 3T3 cells. CNF1 induced multinucleation of HEp-2 cells and was cytotoxic for Swiss 3T3 cells (with binucleation of the few surviving cells) while DNT showed no morphological effects on HEp-2 cells but did induce binucleation of Swiss 3T3 cells. To determine if the enzymatic domain of each toxin dictated the induced phenotype, we constructed enzymatically active chimeric toxins and mutant toxins that contained single amino acid substitutions within the catalytic site and tested these molecules in tissue culture and enzymatic assays. Moreover, both site-directed mutant toxins showed reduced time to maximum transglutamination of RhoA compared with the parent toxins. Nevertheless, the substitution of threonine for Lys(1310) in the DNT-based mutant, while affecting transglutamination efficiency of the toxin, did not abrogate that enzymatic activity.  相似文献   

10.
Clostridium botulinum exoenzyme C3 inactivates the small GTPase Rho by ADP-ribosylation. We used a C3 fusion toxin (C2IN-C3) with high cell accessibility to study the kinetics of Rho inactivation by ADP-ribosylation. In primary cultures of rat astroglial cells and Chinese hamster ovary cells, C2IN-C3 induced the complete ADP-ribosylation of RhoA and concomitantly the disassembly of stress fibers within 3 h. Removal of C2IN-C3 from the medium caused the recovery of stress fibers and normal cell morphology within 4 h. The regeneration was preceded by the appearance of non-ADP-ribosylated RhoA. Recovery of cell morphology was blocked by the proteasome inhibitor lactacystin and by the translation inhibitors cycloheximide and puromycin, indicating that intracellular degradation of the C3 fusion toxin and the neosynthesis of Rho were required for reversal of cell morphology. Escherichia coli cytotoxic necrotizing factor CNF1, which activates Rho by deamidation of Gln(63), caused reconstitution of stress fibers and cell morphology in C2IN-C3-treated cells within 30-60 min. The effect of CNF1 was independent of RhoA neosynthesis and occurred in the presence of completely ADP-ribosylated RhoA. The data show three novel findings; 1) the cytopathic effects of ADP-ribosylation of Rho are rapidly reversed by neosynthesis of Rho, 2) CNF1-induced deamidation activates ADP-ribosylated Rho, and 3) inhibition of Rho activation but not inhibition of Rho-effector interaction is a major mechanism underlying inhibition of cellular functions of Rho by ADP-ribosylation.  相似文献   

11.
YopE of Yersinia pseudotuberculosis inactivates three members of the small RhoGTPase family (RhoA, Rac1 and Cdc42) in vitro and mutation of a critical arginine abolishes both in vitro GTPase-activating protein (GAP) activity and cytotoxicity towards HeLa cells, and renders the pathogen avirulent in a mouse model. To understand the functional role of YopE, in vivo studies of the GAP activity in infected eukaryotic cells were conducted. Wild-type YopE inactivated Rac1 as early as 5 min after infection whereas RhoA was down regulated about 30 min after infection. No effect of YopE was found on the activation state of Cdc42 in Yersinia-infected cells. Single-amino-acid substitution mutants of YopE revealed two different phenotypes: (i) mutants with significantly lowered in vivo GAP activity towards RhoA and Rac1 displaying full virulence in mice, and (ii) avirulent mutants with wild-type in vivo GAP activity towards RhoA and Rac1. Our results show that Cdc42 is not an in vivo target for YopE and that YopE interacts preferentially with Rac1, and to a lesser extent with RhoA, during in vivo conditions. Surprisingly, we present results suggesting that these interactions are not a prerequisite to establish infection in mice. Finally, we show that avirulent yopE mutants translocate YopE in about sixfold higher amount compared with wild type. This raises the question whether YopE's primary function is to sense the level of translocation rather than being directly involved in downregulation of the host defence.  相似文献   

12.
Bordetella dermonecrotic toxin (DNT) causes the deamidation of glutamine 63 of Rho. Here we identified the region of DNT harboring the enzyme activity and compared the toxin with the cytotoxic necrotizing factor 1, which also deamidates Rho. The DNT fragment (DeltaDNT) covering amino acid residues 1136-1451 caused deamidation of RhoA at glutamine 63 as determined by mass spectrometric analysis and by the release of ammonia. In the presence of dansylcadaverine or ethylenediamine, DeltaDNT caused transglutamination of Rho. Deamidase and transglutaminase activities were blocked in the mutant proteins Cys(1292) --> Ala, His(1307) --> Ala, and Lys(1310) --> Ala of DeltaDNT. Deamidation and transglutamination induced by DeltaDNT blocked intrinsic and Rho- GTPase-activating protein-stimulated GTPase activity of RhoA. DeltaDNT deamidated and transglutaminated Rac and Cdc42 in the absence and presence of ethylenediamine, respectively. Modification of Rho proteins by DeltaDNT was nucleotide-dependent and did not occur with GTPgammaS-loaded GTPases. In contrast to cytotoxic necrotizing factor, which caused the same kinetics of ammonia release in the absence and presence of ethylenediamine, ammonia release by DeltaDNT was largely increased in the presence of ethylenediamine, indicating that DeltaDNT acts primarily as a transglutaminase.  相似文献   

13.
Yersinia pseudotuberculosis binds to beta1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity to induce cellular changes that control pore formation and effector translocation. Inhibition of actin polymerization decreased pore formation and YopE translocation in HeLa cells infected with Y. pseudotuberculosis. Inactivation of Rho, Rac, and Cdc42 by treatment with Clostridium difficile toxin B inhibited pore formation and YopE translocation in infected HeLa cells. Expression of a dominant negative form of Rac did not reduce the uptake of membrane impermeable dyes in HeLa cells infected with a pore forming strain YopEHJT(-). Similarly, the Rac inhibitor NSC23766 did not decrease pore formation or translocation, although it efficiently hindered Rac-dependent bacterial uptake. In contrast, C. botulinum C3 potently reduced pore formation and translocation, implicating Rho A, B, and/or C in the control of the Yop delivery. An invasin mutant (Y. pseudotuberculosis invD911E) that binds to beta1 integrins, but inefficiently transduces signals through the receptors, was defective for YopE translocation. Interfering with the beta1 integrin signaling pathway, by inhibiting Src kinase activity, negatively affected YopE translocation. Additionally, Y. pseudotuberculosis infection activated Rho by a mechanism that was dependent on YopB and on high affinity bacteria interaction with beta1 integrin receptors. We propose that Rho activation, mediated by signals triggered by the YopB/YopD translocon and from engagement of beta1 integrin receptors, stimulates actin polymerization and activates the translocation process, and that once the Yops are translocated, the action of YopE or YopT terminate delivery of Yops and prevents pore formation.  相似文献   

14.
Buetow L  Ghosh P 《Biochemistry》2003,42(44):12784-12791
Cytotoxic necrotizing factor 1 (CNF1), a virulence factor expressed by pathogenic Escherichia coli, acts on Rho-GTPases and specifically deamidates a single glutamine residue (Gln-63 in RhoA) required for GTP hydrolysis. This modification constitutively activates the effector binding function of Rho-GTPases and eventually leads to their proteasome-mediated degradation. Previous structural investigation revealed that the CNF1 active site is located in a deep and narrow pocket and that the entrance to this pocket is formed by nine loop segments. We have examined the functional importance of five of these loops (2, 6, 7, 8, and 9) by deleting them individually. We find that deletion of proximally located loops 8 and 9 in the 32 kDa catalytic domain of CNF1 (CNF1-C) nearly or completely abolishes deamidation of RhoA in vitro, identifying a potential Rho-GTPase recognition site. Deletion of loop 7 causes protein folding errors, and deletion of loop 6 has a small effect on deamidation. In contrast, deletion of loop 2 is found to increase deamidation 5-7-fold, implying that this loop rearranges in binding RhoA. None of the loop deletions or wild-type CNF1-C is able to deamidate RhoA containing Asn-63 instead of Gln-63, suggesting that the fit between the toxin and its target is highly precise. In addition, we show that the specificity constant (k(cat)/K(m)) of CNF1-C for RhoA is 825 +/- 3 M(-1) s(-1). This modest value is consistent with the confining size of the active site pocket acting to exclude nonspecific targets but also limiting reactivity toward intended targets.  相似文献   

15.
Pathogenic Yersinia spp. translocate the effectors YopT, YopE, and YopO/YpkA into target cells to inactivate Rho family GTP-binding proteins and block immune responses. Some Yersinia spp. also secrete the Rho protein activator cytotoxic necrotizing factor-Y (CNF-Y), but it has been unclear how the bacteria may benefit from Rho protein activation. We show here that CNF-Y increases Yop translocation in Yersinia enterocolitica-infected cells up to 5-fold. CNF-Y strongly activated RhoA and also delayed in time Rac1 and Cdc42, but when individually expressed, constitutively active mutants of Rac1, but not of RhoA, increased Yop translocation. Consistently, knock-out or knockdown of Rac1 but not of RhoA, -B, or -C inhibited Yersinia effector translocation in CNF-Y-treated and control cells. Activation or knockdown of Cdc42 also affected Yop translocation but much less efficiently than Rac. The increase in Yop translocation induced by CNF-Y was essentially independent of the presence of YopE, YopT, or YopO in the infecting Yersinia strain, indicating that none of the Yops reported to inhibit translocation could reverse the CNF-Y effect. In summary, the CNF-Y activity of Yersinia strongly enhances Yop translocation through activation of Rac.  相似文献   

16.
Although it is well accepted that the constituents of the cellular microenvironment modulate a myriad of cellular processes, including cell morphology, cytoskeletal dynamics and uptake pathways, the underlying mechanism of how these pathways influence non-viral gene transfer have not been studied. Transgene expression is increased on fibronectin (Fn) coated surfaces as a consequence of increased proliferation, cell spreading and active engagement of clathrin endocytosis pathway. RhoGTPases mediate the crosstalk between the cell and Fn, and regulate cellular processes involving filamentous actin, in-response to cellular interaction with Fn. Here the role of RhoGTPases specifically Rho, Rac and Cdc42 in modulation of non-viral gene transfer in mouse mesenchymal stem (mMSCs) plated in a fibronectin microenvironment was studied. More than 90% decrease in transgene expression was observed after inactivation of RhoGTPases using difficile toxin B (TcdB) and C3 transferase. Expression of dominant negative RhoA (RhoAT19N), Rac1(Rac1T17N) and Cdc42 (Cdc42T17N) also significantly reduced polyplex uptake and transgene expression. Interactions of cells with Fn lead to activation of RhoGTPases. However, further activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes (RhoAQ63L, Rac1Q61L and Cdc42Q61L) did not further enhance transgene expression in mMSCs, when plated on Fn. In contrast, activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes for cells plated on collagen I, which by itself did not increase RhoGTPase activation, resulted in enhanced transgene expression. Our study shows that RhoGTPases regulate internalization and effective intracellular processing of polyplexes that results in efficient gene transfer.  相似文献   

17.
Small rho GTPases regulate antigen presentation in dendritic cells   总被引:2,自引:0,他引:2  
Dendritic cells (DC) are involved in the regulation of innate and adaptive immunity. However, the molecular mechanisms maintaining DC function remain to be elucidated. In this study, we report on the role of small Rho GTPases: Cdc42, Rac1, and RhoA in the regulation of DC adherence, Ag presentation, migration, chemotaxis, and endocytosis. Murine DC were transfected with vaccinia virus-based constructs, encoding dominant-negative or constitutively active (ca) mutant forms of Rho GTPases. We demonstrate that Cdc42 plays a major role in the regulation of DC adhesion, because caCdc42-transfected DC had significant up-regulation of adhesion to extracellular matrix, which was blocked by the Rho GTPase inhibitor toxin B (ToxB). In contrast, caRho-transfected DC only modestly elevated DC adhesion, and caRac had no effect. Additionally, caCdc42 and caRho increased the ability of DC to present OVA peptide to specific T cells. This effect was abrogated by ToxB. Activation of Cdc42 in DC significantly inhibited spontaneous and chemokine-induced DC migration. Furthermore, uptake of dextran 40 by DC was significantly enhanced by Rho GTPase activators cytotoxic necrotizing factor 1 and PMA, and reduced by ToxB. caCdc42 also increased endocytotic activity of DC, whereas dominant-negative Cdc42 blocked it. Thus, Rho GTPases Cdc42, RhoA, and Rac1 regulate DC functions that are critical for DC-mediated immune responses in vivo.  相似文献   

18.
The cell cytoskeleton is widely acknowledged as a master for NK cell function. Specifically, actin filaments guide the NK cell binding to target cells, engendering the formation of the so-called immunological synapse, while microtubules direct the killer behavior. All these cytoskeleton-dependent activities are competently governed by the Rho GTPases, a family of regulatory molecules encompassing the three different subfamilies, Rho, Rac, and Cdc42. By using a Rac GTPase-activating bacterial protein toxin from Escherichia coli named cytotoxic necrotizing factor 1 (CNF1), we obtained results supporting the activation of Rac GTPase as a booster for effector cell-binding efficiency, recruitment ability, and, consequently, cytotoxicity. In particular, the augmented killer capacity of CNF1-treated NK cells was associated with the increased expression of certain cell adhesion or activation-associated molecules and the reshaping of the actin and microtubule networks. Importantly, CNF1 counteracted the activity exerted by toxins disrupting the cytoskeletal architecture. Hence, the activation of Rho GTPases, particularly Rac, induced by CNF1, appears to orchestrate a dynamic cross talk between microtubules and actin filaments, leading to a fruitful NK cell activity and polarization state. Our findings suggest that protein toxins might be viewed as modulators of NK cell cytotoxic activity and could possibly be regarded as useful pharmacological tools for certain Rho-linked immune diseases in the near future.  相似文献   

19.
The rapid migration of intestinal epithelial cells is important to the healing of mucosal ulcers and wounds. This cell migration requires the presence of polyamines and the activation of RhoA. RhoA activity, however, is not sufficient for migration because polyamine depletion inhibited the migration of IEC-6 cells expressing constitutively active RhoA. The current study examines the role of Rac1 and Cdc42 in cell migration and whether their activities are polyamine-dependent. Polyamine depletion with alpha-difluoromethylornithine inhibited the activities of RhoA, Rac1, and Cdc42. This inhibition was prevented by supplying exogenous putrescine in the presence of alpha-difluoromethylornithine. IEC-6 cells transfected with constitutively active Rac1 and Cdc42 migrated more rapidly than vector-transfected cells, whereas cells expressing dominant negative Rac1 and Cdc42 migrated more slowly. Polyamine depletion had no effect on the migration of cells expressing Rac1 and only partially inhibited the migration of those expressing Cdc42. Although polyamine depletion caused the disappearance of actin stress fibers in cells transfected with empty vector, it had no effect on cells expressing Rac1. Constitutively active Rac1 increased RhoA and Cdc42 activity in both normal and polyamine-depleted cells. These results demonstrate that Rac1, RhoA, and Cdc42 are required for optimal epithelial cell migration and that Rac1 activity is sufficient for cell migration in the absence of polyamines due to its ability to activate RhoA and Cdc42 as well as its own effects on the process of cell migration. These data imply that the involvement of polyamines in cell migration occurs either at Rac1 itself or upstream from Rac1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号