共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Yuze Shang Hansen Wang Valentina Mercaldo Xiangyao Li Tao Chen Min Zhuo 《Journal of neurochemistry》2009,111(3):635-646
Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS. 相似文献
4.
Neil R Smalheiser 《Biology direct》2008,3(1):44
Within mouse forebrain, a subset of microRNAs are significantly enriched in synaptoneurosomes (a synaptic fraction containing pinched-off dendritic spines) and a subset are significantly depleted relative to total forebrain homogenate. Here I show that, as a group, the pre-miR hairpin precursors of synaptically enriched microRNAs exhibit significantly different structural features than those that are non-enriched or depleted. Precursors of synaptically enriched microRNAs tend to have a) shorter uninterrupted double-stranded stem segments, and b) more symmetrical bulges containing a single nucleotide on each side. These structural differences may provide a basis for the differential binding of proteins that mediate dendritic transport of pre-miRs, or that prevent pre-miRs from being prematurely processed into mature miRNAs during the transport process. 相似文献
5.
The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE) complex has been proposed to link Rho GTPase activity with actin polymerization but its role in neuronal plasticity has never been documented. We now examined the presence, distribution and dynamics of WAVE3 in cultured hippocampal neurons. WAVE3 was localized to dendritic spines via its N-terminal domain. Green fluorescent protein (GFP)-tagged WAVE3 clusters demonstrate an F-actin-dependent high rate of local motility. Constitutive Rac activation translocates WAVE3 (via the N-terminus), to the leading edge of lamellipodia. Also, spinogenesis is associated with actin-based motility of the WAVE3 protein. Brain specific WAVE1 showed similar localization and effects on spine density. Cytoplasmic fragile X mental retardation protein interacting protein (CYFIP) and non-catalytic region of tyrosine kinase adaptor protein 1 (NCK-1), proteins that are assumed to complex with WAVE, have a somewhat similar cellular distribution and motility. We propose that the WAVE complex is a downstream effector of the Rac signaling cascade, localized to sites of novel synaptic contacts by means of its N-terminal domain, to guide local actin polymerization needed for morphological plasticity of neurons. 相似文献
6.
Mental retardation (MR) is a developmental brain disorder characterized by impaired cognitive performance and adaptive skills that affects 1–2% of the population. During the last decade, a large number of genes have been cloned that cause MR upon mutation in humans. The causal role of these genes provides an excellent starting point to investigate the cellular, neurobiological and behavioral alterations and mechanisms responsible for the cognitive impairment in mentally retarded persons. However, studies on Down syndrome (DS) reveal that overexpression of a cluster of genes and various forms of MR that are caused by single-gene mutations, such as fragile X (FraX), Rett, Coffin-Lowry, Rubinstein–Taybi syndrome and non-syndromic forms of MR, causes similar phenotypes. In spite of the many differences in the manifestation of these forms of MR, evidence converges on the proposal that MR is primarily due to deficiencies in neuronal network connectivity in the major cognitive centers in the brain, which secondarily results in impaired information processing. Although MR has been largely regarded as a brain disorder that cannot be cured, our increased understanding of the abnormalities and mechanisms underlying MR may provide an avenue for the development of therapies for MR. In this review, we discuss the neurobiology underlying MR, with a focus on FraX and DS 相似文献
7.
8.
We previously proposed that endogenous siRNAs may regulate synaptic plasticity and long-term gene expression in the mammalian brain. Here, a hippocampal-dependent task was employed in which adult mice were trained to execute a nose-poke in a port containing one of two simultaneously present odors in order to obtain a reward. Mice demonstrating olfactory discrimination training were compared to pseudo-training and nose-poke control groups; size-selected hippocampal RNA was subjected to Illumina deep sequencing. Sequences that aligned uniquely and exactly to the genome without uncertain nucleotide assignments, within exons or introns of MGI annotated genes, were examined further. The data confirm that small RNAs having features of endogenous siRNAs are expressed in brain; that many of them derive from genes that regulate synaptic plasticity (and have been implicated in neuropsychiatric diseases); and that hairpin-derived endo-siRNAs and the 20- to 23-nt size class of small RNAs show a significant increase during an early stage of training. The most abundant putative siRNAs arose from an intronic inverted repeat within the SynGAP1 locus; this inverted repeat was a substrate for dicer in vitro, and SynGAP1 siRNA was specifically associated with Argonaute proteins in vivo. Unexpectedly, a dramatic increase with training (more than 100-fold) was observed for a class of 25- to 30-nt small RNAs derived from specific sites within snoRNAs and abundant noncoding RNAs (Y1 RNA, RNA component of mitochondrial RNAse P, 28S rRNA, and 18S rRNA). Further studies are warranted to characterize the role(s) played by endogenous siRNAs and noncoding RNA-derived small RNAs in learning and memory. 相似文献
9.
Hai-Long Zhang Wei Han Yin-Quan Du Bing Zhao Pin Yang Dong-Min Yin 《The Journal of biological chemistry》2021,297(3)
Protein acetylation is a reversible posttranslational modification, which is regulated by lysine acetyltransferase (KAT) and lysine deacetyltransferase (KDAC). Although protein acetylation has been shown to regulate synaptic plasticity, this was mainly for histone protein acetylation. The function and regulation of nonhistone protein acetylation in synaptic plasticity and learning remain largely unknown. Calmodulin (CaM), a ubiquitous Ca2+ sensor, plays critical roles in synaptic plasticity such as long-term potentiation (LTP). During LTP induction, activation of NMDA receptor triggers Ca2+ influx, and the Ca2+ binds with CaM and activates calcium/calmodulin-dependent protein kinase IIα (CaMKIIα). In our previous study, we demonstrated that acetylation of CaM was important for synaptic plasticity and fear learning in mice. However, the KAT responsible for CaM acetylation is currently unknown. Here, following an HEK293 cell-based screen of candidate KATs, steroid receptor coactivator 3 (SRC3) is identified as the most active KAT for CaM. We further demonstrate that SRC3 interacts with and acetylates CaM in a Ca2+ and NMDA receptor-dependent manner. We also show that pharmacological inhibition or genetic downregulation of SRC3 impairs CaM acetylation, synaptic plasticity, and contextual fear learning in mice. Moreover, the effects of SRC3 inhibition on synaptic plasticity and fear learning could be rescued by 3KQ-CaM, a mutant form of CaM, which mimics acetylation. Together, these observations demonstrate that SRC3 acetylates CaM and regulates synaptic plasticity and learning in mice. 相似文献
10.
Andy V. Khamoui Dorota Tokmina-Roszyk Rafaela G. Feresin Gregg B. Fields Nishant P. Visavadiya 《Proteomics》2022,22(10):2100157
Tandem mass tag (TMT)-based quantitative proteomics was used to examine protein expression in skeletal muscle from mice with moderate and severe cancer cachexia to study mechanisms underlying varied cachexia severity. Weight loss of 10% (moderate) and 20% (severe) was induced by injection of colon-26 cancer cells in 10-week old Balb/c mice. In moderate cachexia, enriched pathways reflected fibrin formation, integrin/mitogen-activated protein kinase (MAPK) signaling, and innate immune system, suggesting an acute phase response and fibrosis. These pathways remained enriched in severe cachexia; however, energy-yielding pathways housed in mitochondria were prominent additions to the severe state. These enrichments suggest distinct muscle proteome expression patterns that differentiate cachexia severity. When analyzed with two other mouse models, eight differentially expressed targets were shared including serine protease inhibitor A3N (Serpina3n), synaptophysin-like protein 2 (Sypl2), Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial (Idh3a), peroxisomal acyl-coenzyme A oxidase 1 (Acox1), collagen alpha-1(VI) chain (Col6a1), myozenin 3 (Myoz3), UDP-glucose pyrophosphorylase (Ugp2), and solute carrier family 41 member 3 (Slc41a3). Acox1 and Idh3a control lipid oxidation and NADH generation in the TCA cycle, respectively, and Col6a1 comprises part of type VI collagen with reported profibrotic functions, suggesting influential roles in cachexia. A potential target was identified in fragile X mental retardation syndrome-related protein 1 (FXR1), an RNA-binding protein not previously implicated in cancer cachexia. FXR1 decreased in cachexia and related linearly with weight change and myofiber size. These findings suggest distinct mechanisms associated with cachexia severity and potential biomarkers and therapeutic targets. 相似文献
11.
Delint-Ramírez I Salcedo-Tello P Bermudez-Rattoni F 《Journal of neurochemistry》2008,106(4):1658-1668
NMDA receptors (NMDARs) activation in the hippocampus and insular cortex is necessary for spatial memory formation. Recent studies suggest that localization of NMDARs to lipid rafts enhance their signalization, since the kinases that phosphorylate its subunits are present in larger proportion in lipid raft membrane microdomains. We sought to determine the possibility that NMDAR translocation to synaptic lipid rafts occurs during plasticity processes such as memory formation. Our results show that water maze training induces a rapid recruitment of NMDAR subunits (NR1, NR2A, NR2B) and PSD-95 to synaptic lipid rafts and decrease in the post-synaptic density plus an increase of NR2B phosphorylation at tyrosine 1472 in the rat insular cortex. In the hippocampus, spatial training induces selective translocation of NR1 and NR2A subunits to lipid rafts. These results suggest that NMDARs translocate from the soluble fraction of post-synaptic membrane (non-raft PSD) to synaptic lipid raft during spatial memory formation. The recruitment of NMDA receptors and other proteins to lipid rafts could be an important mechanism for increasing the efficiency of synaptic transmission during synaptic plasticity process. 相似文献
12.
Dhanrajan M. Tiruchinapalli Marc G. Caron Jack D. Keene 《Journal of neurochemistry》2008,107(6):1529-1543
Growing evidence indicates that both seizure (glutamate) and cocaine (dopamine) treatment modulate synaptic plasticity within the mesolimbic region of the CNS. Activation of glutamatergic neurons depends on the localized translation of neuronal mRNA products involved in modulating synaptic plasticity. In this study, we demonstrate the dendritic localization of HuR and HuD RNA‐binding proteins (RBPs) and their association with neuronal mRNAs following these two paradigms of seizure and cocaine treatment. Both the ubiquitously expressed HuR and neuronal HuD RBPs were detected in different regions as well as within dendrites of the brain and in dissociated neurons. Quantitative analysis revealed an increase in HuR, HuD and p‐glycogen synthase kinase 3β (GSK3β) protein levels as well as neuronal mRNAs encoding Homer, CaMKIIα, vascular early response gene, GAP‐43, neuritin, and neuroligin protein products following either seizure or cocaine treatment. Inhibition of the Akt/GSK3β signaling pathway by acute or chronic LiCl treatment revealed changes in HuR, HuD, pGSK3β, p‐Akt, and β‐catenin protein levels. In addition, a genetically engineered hyperdopaminergic mouse model (dopamine transporter knockout) revealed decreased expression of HuR protein levels, but no significant change was observed in HuD or fragile‐X mental retardation protein RBPs. Finally, our data suggest that HuR and HuD RBPs potentially interact directly with neuronal mRNAs important for differentiation and synaptic plasticity. 相似文献
13.
Gold MG 《BioEssays : news and reviews in molecular, cellular and developmental biology》2012,34(7):599-608
The postsynaptic density (PSD) is a massive multi-protein complex whose functions include positioning signalling molecules for induction of long-term potentiation (LTP) and depression (LTD) of synaptic strength. These processes are thought to underlie memory formation. To understand how the PSD coordinates bidirectional synaptic plasticity with different synaptic activation patterns, it is necessary to determine its three-dimensional structure. A structural model of the PSD is emerging from investigation of its molecular composition and connectivity, in addition to structural studies at different levels of resolution. Technical innovations including mass spectrometry of cross-linked proteins and super-resolution light microscopy can drive progress. Integrating different information relating to PSD structure is challenging since the structure is so large and complex. The reconstruction of a PSD subcomplex anchored by AKAP79 exemplifies on a small scale how integration can be achieved. With its entire molecular structure coming into focus, this is a unique opportunity to study the PSD. 相似文献
14.
Yixin Yang Jinsong Zhao Yunze Li Xiangyao Li Xiaowei Chen Zhiying Feng 《Journal of neurochemistry》2021,159(3):512-524
15.
16.
Fabian Fernandez Jonathan C. Trinidad† Martina Blank Dong-Dong Feng‡ Alma L. Burlingame† Craig C. Garner 《Journal of neurochemistry》2009,110(1):157-169
Down syndrome (DS) is the most prevalent form of intellectual disability caused by the triplication of ∼230 genes on chromosome 21. Recent data in Ts65Dn mice, the foremost mouse model of DS, strongly suggest that cognitive impairment in individuals with DS is a consequence of reduced synaptic plasticity because of chronic over-inhibition. It remains unclear however whether changes in plasticity are tied to global molecular changes at synapses, or are due to regional changes in the functional properties of synaptic circuits. One interesting framework for evaluating the activity state of the DS brain comes from in vitro studies showing that chronic pharmacological silencing of neuronal excitability orchestrates stereotyped changes in the protein composition of synaptic junctions. In the present study, we use proteomic strategies to evaluate whether synapses from the Ts65Dn cerebrum carry signatures characteristic of inactive cortical neurons. Our data reveal that synaptic junctions do not exhibit overt alterations in protein composition. Only modest changes in the levels of synaptic proteins and in their phosphorylation are observed. This suggests that subtle changes in the functional properties of specific synaptic circuits rather than large-scale homeostatic shifts in the expression of synaptic molecules contribute to cognitive impairment in people with DS. 相似文献
17.
Mental retardation in Down's syndrome, human trisomy 21, is characterized by developmental delays, language and memory deficits and other cognitive abnormalities. Neurophysiological and functional information is needed to understand the mechanisms of mental retardation in Down's syndrome. The trisomy mouse models provide windows into the molecular and developmental effects associated with abnormal chromosome numbers. The distal segment of mouse chromosome 16 is homologous to nearly the entire long arm of human chromosome 21. Therefore, mice with full or segmental trisomy 16 (Ts65Dn) are considered reliable animal models of Down's syndrome. Ts65Dn mice demonstrate impaired learning in spatial tests and abnormalities in hippocampal synaptic plasticity. We hypothesize that the physiological impairments in the Ts65Dn mouse hippocampus can model the suboptimal brain function occuring at various levels of Down's syndrome brain hierarchy, starting at a single neuron, and then affecting simple and complex neuronal networks. Once these elements create the gross brain structure, their dysfunctional activity cannot be overcome by extensive plasticity and redundancy, and therefore, at the end of the maturation period the mind inside this brain remains deficient and delayed in its capabilities. The complicated interactions that govern this aberrant developmental process cannot be rescued through existing compensatory mechanisms. In summary, overexpression of genes from chromosome 21 shifts biological homeostasis in the Down's syndrome brain to a new less functional state. 相似文献
18.
An intracellular domain with a novel sequence regulates cell surface expression and synaptic clustering of leucine‐rich repeat transmembrane proteins in hippocampal neurons 下载免费PDF全文
Keiichiro Minatohara Yasunobu Murata Yoshinori Fujiyoshi Tomoko Doi 《Journal of neurochemistry》2015,134(4):618-628
Leucine‐rich repeat transmembrane proteins (LRRTMs) are single‐spanning transmembrane proteins that belong to the family of synaptically localized adhesion molecules that play various roles in the formation, maturation, and function of synapses. LRRTMs are highly localized in the post‐synaptic density; however, the mechanisms and significance of LRRTM synaptic clustering remain unclear. Here, we focus on the intracellular domain of LRRTMs and investigate its role in cell surface expression and synaptic clustering. The deletion of 55–56 residues in the cytoplasmic tail caused significantly reduced synaptic clustering of LRRTM1–4 in rat hippocampal neurons, whereas it simultaneously resulted in augmented LRRTM1–2 cell surface expression. A series of deletions and further single amino acid substitutions in the intracellular domain of LRRTM2 demonstrated that a previously uncharacterized sequence at the region of ‐16 to ‐13 from the C‐terminus was responsible for efficient synaptic clustering and proper cell surface trafficking of LRRTMs. Furthermore, the clustering‐deficient LRRTM2 mutant lost the ability to promote the accumulation of post‐synaptic density protein‐95 (PSD‐95). These results suggest that trafficking to the cell surface and synaptic clustering of LRRTMs are regulated by a specific mechanism through this novel sequence in the intracellular domain that underlies post‐synaptic molecular assembly and maturation.
19.
20.
Our modeling study examines short-term plasticity at the synapse between afferents from electroreceptors and pyramidal cells in the electrosensory lateral lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus. It focusses on steady-state filtering and coherence-based coding properties. While developed for electroreception, our study exposes general functional features for different mixtures of depression and facilitation. Our computational model, constrained by the available in vivo and in vitro data, consists of a synapse onto a deterministic leaky integrate-and-fire (LIF) neuron. The synapse is either depressing (D), facilitating (F) or both (FD), and is driven by a sinusoidally or randomly modulated Poisson process. Due to nonlinearity, numerically computed input-output transfer functions are used to determine the filtering properties. The gain of the response at each sinusoidally modulated frequency is computed by dividing the fitted amplitudes of the input and output cycle histograms of the LIF models. While filtering is always low-pass for F alone, D alone exhibits a gain resonance (non-monotonicity) at a frequency that decreases with increasing recovery time constant of synaptic depression (tau(d)). This resonance is mitigated by the presence of F. For D, F and FD, coherence improves as the synaptic conductance time constant (tau(g)) increases, yet the mutual information per spike decreases. The information per spike for D and F follows opposite trends as their respective time constants increase. The broadband but non-monotonic gain and coherence functions seen in vivo suggest that D and perhaps FD dynamics are involved at this synapse. Our results further predict that the likely synaptic configuration is a slower tau(g), e.g. via a mixture of AMPA and NMDA synapses, and a relatively smaller synaptic facilitation time constant (tau(f)) and larger tau(d) (with tau(f) smaller than tau(d) and tau(g)). These results are compatible with known physiology. 相似文献