首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial ArsA ATPase is the catalytic component of an oxyanion pump that is responsible for resistance to arsenicals and antimonials. Homologues of the bacterial ArsA ATPase are widespread in nature. We had earlier identified the mouse homologue (Asna1) that exhibits 27% identity to the bacterial ArsA ATPase. To identify the physiological role of the protein, heterozygous Asna1 knockout mice (Asna1+/-) were generated by homologous recombination. The Asna1+/- mice displayed similar phenotype as the wild-type mice. However, early embryonic lethality was observed in homozygous Asna1 knockout embryos, between E3.5 (E=embryonic day) and E8.5 stage. These findings indicate that Asna1 plays a crucial role during early embryonic development.  相似文献   

2.
Neurochondrin/norbin is a cytoplasmic protein involved in dendrite outgrowth. The expression of the gene has been restricted to neural, bone, and chondral tissues. To identify the functions of the gene in vivo, we have generated mice with a disrupted mutation in the neurochondrin/norbin gene. Histological analysis of heterozygous mutant mice indicates the possibility of specific functions of neurochondrin/norbin in chondrocyte differentiation. We defined the expression patterns of neurochondrin/norbin-lacZ fusion protein in the central nervous system. In the developing olfactory bulb, beta-galactosidase activity was detected in the mantle layer at 12.5 dpc and the strongest activity was detected in the presumptive mitral or tufted cell layer at 15.5 dpc. beta-Galactosidase activity was also detected in the lateral choroid plexus. In homozygous (-/-) mutant mice, the disruption of the neurochondrin/norbin gene leads to early embryonic death between 3.5 and 6.5 dpc. This result indicates that neurochondrin/norbin gene function is essential for the early embryogenesis.  相似文献   

3.
DNA ligase IV is the most recently identified member of a family of enzymes joining DNA strand breaks in mammalian cell nuclei [1] and [2]. The enzyme occurs in a complex with the XRCC4 gene product [3], an interaction mediated via its unique carboxyl terminus [4] and [5]. Cells lacking XRCC4 are hypersensitive to ionising radiation and defective in V(D)J recombination [3] and [6], implicating DNA ligase IV in the pathway of nonhomologous end-joining (NHEJ) of DNA double-strand breaks mediated by XRCC4, the Ku70/80 heterodimer and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in mammalian cells (reviewed in [7]). The phenotype of a null mutant of the Saccharomyces cerevisiae DNA ligase IV homologue indicates that the enzyme is non-essential and functions in yeast NHEJ [8], [9] and [10]. Unlike other mammalian DNA ligases for which cDNAs have been characterised, DNA ligase IV is encoded by an intronless gene (LIG4). Here, we show that targeted disruption of LIG4 in the mouse leads to lethality associated with extensive apoptotic cell death in the embryonic central nervous system. Thus, unlike Ku70/80 and DNA-PKcs [11], [12], [13] and [14], DNA ligase IV has an essential function in early mammalian development.  相似文献   

4.
5.
Inducible 6-phosphofructo-2-kinase (iPFK-2; PFKFB3) produces fructose-2,6-bisphosphate (F2,6BP), which is a potent allosteric activator of 6-phosphofructo-1-kinase (PFK-1), the rate-limiting step in glycolysis. iPFK-2 functions as an activator of anaerobic glycolysis within the hypoxic microenvironment of growing tumors. The early embryo is challenged similarly since the process of vasculogenesis does not begin until after embryonic day 7. We hypothesized that iPFK-2 expression is essential for the survival of the growing embryo. First, we cloned the mouse homolog of iPFK2 and found that it is abundantly expressed in cortical neurons, epithelial cells, and secretory cells of the choroid plexus, pancreas, and adrenal gland of the adult mouse. Using gene targeting, we then disrupted exons 3-7 of the mouse iPFK2 gene, which encode the substrate binding site. No full-term homozygous iPFK-2(-/-) progeny were produced from 11 F7 iPFK-2(+/-) crosses and no homozygous iPFK-2(-/-) embryos were detected after 8 days of embryogenesis.  相似文献   

6.
D-3-Phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95) is the first committed enzyme of L-serine biosynthesis in the phosphorylated pathway. To determine the physiological importance of Phgdh-dependent L-serine biosynthesis in vivo, we generated Phgdh-deficient mice using targeted gene disruption in embryonic stem cells. The absence of Phgdh led to a drastic reduction of L-serine metabolites such as phosphatidyl-L-serine and sphingolipids. Phgdh null embryos have small bodies with abnormalities in selected tissues and died after days post-coitum 13.5. Striking abnormalities were evident in the central nervous system in which the Phgdh null mutation culminated in hypoplasia of the telencephalon, diencephalon, and mesencephalon; in particular, the olfactory bulbs, ganglionic eminence, and cerebellum appeared as indistinct structures. These observations demonstrate that the Phgdh-dependent phosphorylated pathway is essential for normal embryonic development, especially for brain morphogenesis.  相似文献   

7.
Mutations in the cytosolic enzyme phosphomannomutase 2 (PMM2), which catalyzes the conversion of mannose-6-phosphate to mannose-1-phosphate, cause the most common form of congenital disorders of glycosylation, termed CDG-Ia. It is an inherited multisystemic disease with severe neurological impairment. To study the pathophysiology of CDG-Ia and to investigate possible therapeutic approaches, we generated a mouse model for CDG-Ia by targeted disruption of the Pmm2 gene. Heterozygous mutant mice appeared normal in development, gross anatomy, and fertility. In contrast, embryos homozygous for the Pmm2-null allele were recovered in embryonic development at days 2.5 to 3.5. These results indicate that Pmm2 is essential for early development of mice. Mating experiments of heterozygous mice with wild-type mice could further show that transmission of the female Pmm2-null allele is impaired.  相似文献   

8.
Targeted disruption of the insulin receptor gene (Insr) in the mouse was achieved using the homologous recombination approach. Insr+/- mice were normal as shown by glucose tolerance tests. Normal Insr-/- pups were born at expected rates, indicating that Insr can be dispensable for intrauterine development, growth and metabolism. However, they rapidly developed diabetic ketoacidosis accompanied by a marked post-natal growth retardation (up to 30-40% of littermate size), skeletal muscle hypotrophy and fatty infiltration of the liver and they died within 7 days after birth. Total absence of the insulin receptor (IR), demonstrated in the homozygous mutant mice, also resulted in other metabolic disorders: plasma triglyceride level could increase 6-fold and hepatic glycogen content could be five times less as compared with normal littermates. The very pronounced hyperglycemia in Insr-/- mice could result in an increased plasma insulin level of up to approximately 300 microU/ml, as compared with approximately 25 microU/ml for normal littermates. However, this plasma level was still unexpectedly low when compared with human infants with leprechaunism, who lack IR but who could have extremely high insulinemia (up to > 4000 microU/ml). The pathogenesis resulting from a null mutation in Insr is discussed.  相似文献   

9.
Fatty acid transport protein-4 (FATP4) is the major FATP in the small intestine. We previously demonstrated, using in vitro antisense experiments, that FATP4 is required for fatty acid uptake into intestinal epithelial cells. To further examine the physiological role of FATP4, mice carrying a targeted deletion of FATP4 were generated. Deletion of one allele of FATP4 resulted in 48% reduction of FATP4 protein levels and a 40% reduction of fatty acid uptake by isolated enterocytes. However, loss of one FATP4 allele did not cause any detectable effects on fat absorption on either a normal or a high fat diet. Deletion of both FATP4 alleles resulted in embryonic lethality as crosses between heterozygous FATP4 parents resulted in no homozygous offspring; furthermore, no homozygous embryos were detected as early as day 9.5 of gestation. Early embryonic lethality has been observed with deletion of other genes involved in lipid absorption in the small intestine, namely microsomal triglyceride transfer protein and apolipoprotein B, and has been attributed to a requirement for fat absorption early in embryonic development across the visceral endoderm. In mice, the extraembryonic endoderm supplies nutrients to the embryo prior to development of a chorioallantoic placenta. In wild-type mice we found that FATP4 protein is highly expressed by the epithelial cells of the visceral endoderm and localized to the brush-border membrane of extraembryonic endodermal cells. This localization is consistent with a role for FATP4 in fat absorption in early embryogenesis and suggests a novel requirement for FATP4 function during development.  相似文献   

10.
The targeted disruption of the CD98 gene results in embryonic lethality   总被引:1,自引:0,他引:1  
CD98 is one of the important molecules for development, cell differentiation, cell proliferation, and regulation of cellular function. In this study, CD98 heavy chain (HC) knockout mice were produced and analyzed. Five targeted ES clones were obtained and colony frequency was about 2%. One (clone 113) of the five heterozygous ES cell clones had undergone aberrant recombination at the 5' side. The aberrant recombination happened at the site between second intron and 5' arm. All lines from correctly targeted clones could not transmit the mutated allele to spermatozoa. The mutated allele derived from the aberrant targeted clone was transmitted to the progeny. However, none of the F2 mice was homozygous for the CD98 mutation, indicating that the targeted disruption of the CD98 gene results in embryonic lethality. The point of embryonic lethality is considered to be between 3.5 and 9.5 dps. These findings indicate that CD98 molecules are essential for mouse embryogenesis.  相似文献   

11.
Myosin phosphatase (MP) is a major phosphatase responsible for the dephosphorylation of the regulatory light chain of myosin II. MYPT1, a target subunit of smooth and nonmuscle MP, is responsible for activation and regulation of MP. To identity the physiological roles of MP, we have generated MYPT1-deficient mice by gene targeting. The heterozygous mice showed no changes in expression levels of MYPT1 and no distinct phenotype compared to wild-type mice was observed. None of the F2 mice were homozygous for the MYPT1 deletion, indicating that the targeted disruption of the MYPT1 gene resulted in embryonic lethality. The point of embryonic lethality is before 7.5 dpc. These findings indicate that MYPT1 is essential for mouse embryogenesis.  相似文献   

12.
K W Marek  I K Vijay  J D Marth 《Glycobiology》1999,9(11):1263-1271
Formation of the dolichol oligosaccharide precursor is essential for the production of asparagine- (N-) linked oligosaccharides (N-glycans) in eukaryotic cells. The first step in precursor biosynthesis requires the enzyme UDP-GlcNAc: dolichol phosphate N-acetylglucosamine-1-phosphate transferase (GPT). Without GPT activity, subsequent steps necessary in constructing the oligosaccharide precursor cannot occur. Inhibition of this biosynthetic step using tunicamycin, a GlcNAc analog, produces a deficiency in N-glycosylation in cell lines and embryonic lethality during preimplantation development in vitro, suggesting that N-glycan formation is essential in early embryogenesis. In exploring structure-function relationships among N-glycans, and since tunicamycin has various reported biochemical activities; we have generated a germline deletion in the mouse GPT gene. GPT mutant embryos were analyzed and the phenotypes obtained were compared with previous studies using tunicamycin. We find that embryos homozygous for a deletion in the GPT gene complete preimplantation development and also implant in the uterine epithelium, but die shortly thereafter between days 4-5 postfertilization with cell degeneration apparent among both embryonic and extraembryonic cell types. Of cells derived from these early embryos, neither trophoblast nor embryonic endodermal lineages are able to survive in culture in vitro. These results indicate that GPT function is essential in early embryogenesis and suggest that N-glycosylation is needed for the viability of cells comprising the peri-implantation stage embryo.  相似文献   

13.
14.
Checkpoints of DNA integrity are conserved throughout evolution, as are the kinases ATM (Ataxia Telangiectasia mutated) and ATR (Ataxia- and Rad-related), which are related to phosphatidylinositol (PI) 3-kinase [1] [2] [3]. The ATM gene is not essential, but mutations lead to ataxia telangiectasia (AT), a pleiotropic disorder characterised by radiation sensitivity and cellular checkpoint defects in response to ionising radiation [4] [5] [6]. The ATR gene has not been associated with human syndromes and, structurally, is more closely related to the canonical yeast checkpoint genes rad3(Sp) and MEC1(Sc) [7] [8]. ATR has been implicated in the response to ultraviolet (UV) radiation and blocks to DNA synthesis [8] [9] [10] [11], and may phosphorylate p53 [12] [13], suggesting that ATM and ATR may have similar and, perhaps, complementary roles in cell-cycle control after DNA damage. Here, we report that targeted inactivation of ATR in mice by disruption of the kinase domain leads to early embryonic lethality before embryonic day 8.5 (E8.5). Heterozygous mice were fertile and had no aberrant phenotype, despite a lower ATR mRNA level. No increase was observed in the sensitivity of ATR(+/-) embryonic stem (ES) cells to a variety of DNA-damaging agents. Attempts to target the remaining wild-type ATR allele in heterozygous ATR(+/-) ES cells failed, supporting the idea that loss of both alleles of the ATR gene, even at the ES-cell level, is lethal. Thus, in contrast to the closely related checkpoint gene ATM, ATR has an essential function in early mammalian development.  相似文献   

15.
16.
17.
J Y Chan  M Kwong  R Lu  J Chang  B Wang  T S Yen    Y W Kan 《The EMBO journal》1998,17(6):1779-1787
The CNC-basic leucine zipper (CNC-bZIP) family is a subfamily of bZIP proteins identified from independent searches for factors that bind the AP-1-like cis-elements in the beta-globin locus control region. Three members, p45-Nf-e2, Nrf-1 and Nrf-2 have been identified in mammals. Expression of p45-Nf-e2 is largely restricted to hematopoietic cells while Nrf-1 and Nrf-2 are expressed in a wide range of tissues. To determine the function of Nrf-1, targeted disruption of the Nrf-1 gene was carried out. Homozygous Nrf-1 mutant mice are anemic due to a non-cell autonomous defect in definitive erythropoiesis and die in utero.  相似文献   

18.
NaPi-IIb encodes a Na+-dependent Pi co-transporter, which is expressed in various adult tissues and mediates transport of extracellular Pi ions coupling with Na+ ion. To define the role of NaPi-IIbin vivo, NaPi-IIb gene deficient mice were generated utilizing targeted mutagenesis, yielding viable, heterozygous NaPi-IIb mice. In contrast, homozygous NaPi-IIb mice died in utero soon after implantation, indicating that NaPi-IIb was essential for early embryonic development. In situ hybridization revealed NaPi-IIb mRNA expression in the parietal endoderm, followed by the visceral endoderm, at a time point prior to establishment of a functioning chorio-allantoic placenta. At the time point of functional placenta development, the main site of NaPi-IIb production resided in the labyrinthine zone, where embryonic and maternal circulations were in closest contact. Expression patterns of NaPi-IIb suggest that NaPi-IIb plays an important role in Pi absorption from maternal circulation.  相似文献   

19.
The transforming growth factor-beta (TGF-beta) superfamily consists of a group of secreted signaling molecules that perform important roles in the regulation of cell growth and differentiation. TGF-beta activated kinase-1 binding protein-1 (TAB1) was identified as a molecule that activates TGF-beta activated kinase-1 (TAK1). Recent studies have revealed that the TAB1-TAK1 interaction plays an important role in signal transduction in vitro, but little is known about the role of these molecules in vivo. To investigate the role of TAB1 during development, we cloned the murine Tab1 gene and disrupted it by homologous recombination. Homozygous Tab1 mutant mice died, exhibiting a bloated appearance with extensive edema and hemorrhage at the late stages of gestation. By histological examinations, it was revealed that mutant embryos exhibited cardiovascular and lung dysmorphogenesis. Tab1 mutant embryonic fibroblast cells displayed drastically reduced TAK1 kinase activities and decreased sensitivity to TGF-beta stimulation. These results indicate a possibility that TAB1 plays an important role in mammalian embryogenesis and is required for TAK1 activation in TGF-beta signaling.  相似文献   

20.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive human disease whose clinical features include growth retardation, immunodeficiency, and increased susceptibility to lymphoid malignancies. Cells from NBS patients exhibit gamma-irradiation sensitivity, S-phase checkpoint defects, and genomic instability. Recently, it was demonstrated that this chromosomal breakage syndrome is caused by mutations in the NBS1 gene that result in a total loss of full-length NBS1 expression. Here we report that in contrast to the viability of NBS patients, targeted inactivation of NBS1 in mice leads to early embryonic lethality in utero and is associated with poorly developed embryonic and extraembryonic tissues. Mutant blastocysts showed greatly diminished expansion of the inner cell mass in culture, and this finding suggests that NBS1 mediates essential functions during proliferation in the absence of externally induced damage. Together, our results indicate that the complex phenotypes observed in NBS patients and cell lines may not result from a complete inactivation of NBS1 but may instead result from hypomorphic truncation mutations compatible with cell viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号