首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocardial protein synthesis was elevated 7 days after rats were subjected to experimental aortic outflow obstruction. Although RNA synthesis was not increased at this time, RNA concentration was elevated and may have provided for the observed increase in protein synthesis. A possible basis for the persistence of the high RNA levels was a decrease in the degradation of RNA. The increase in intracellular calcium observed in hypertrophied tissue may be involved in the maintenance of RNA concentration and in the increased rate of protein synthesis.  相似文献   

2.
The administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to rachitic chicks produces an increase in (a) RNA and protein synthesis, (b) calcium binding protein (CaBP) concentration, and (c) alkaline phosphatase activity in the duodenum. These events occur concomitantly with enhanced calcium transport. We inhibited RNA and protein synthesis in richitic chicks and measured the subsequent response to 1,25(OH)2D3. Actinomycin D, injected prior to and following 1,25(OH)2D3 administration, inhibited intestinal RNA polymerase activity, blocked the rise in serum calcium, reduced the amount of CaBP, and increased alkaline phosphatase activity. Cycloheximide injected in similar fashion, inhibited the 1,25(OH)2D3-mediated increase in intestinal protein synthesis, serum calcium, CaBP, and alkaline phosphatase activity. Neither inhibitor blocked the ability of 1,25(OH)2D3 to stimulate calcium transport as measured in isolated duodenal loops in vivo. The ability of either inhibitor to block 1,25(OH)2D3-mediated calcium transport despite inhibition of CaBP production and alkaline phosphatase activity (by cycloheximide) indicates that de novo RNA and protein synthesis, and in particular CaBP and alkaline phosphatase, are not required for the 1,25(OH)2D3 stimulation of calcium transport.  相似文献   

3.
The involvement of RNA/protein synthesis, calcium, calmodulin, protein kinase C, and polyamines in the lipolytic and antilipolytic (inhibition of glucagon-stimulated lipolysis) responses to GH have been investigated employing chicken adipose tissue in vitro. The lipolytic, but not the antilipolytic, effect of GH was blocked by inhibitors of RNA/protein synthesis (actinomycin D, cycloheximide, and puromycin) and calcium uptake (verapamil) and low calcium concentrations (0.28 mM CaCl2). The antilipolytic, but not the lipolytic, effect of GH was blocked by alpha-difluoromethylornithine (DFMO), a polyamine synthesis inhibitor. DFMO-induced blockade of the antilipolytic GH response was reversed by the addition of spermidine. The lipolytic and antilipolytic effects of GH were not influenced by chlorpromazine (a calmodulin inhibitor) or phorbol 12-myristate 13-acetate (PMA) (an activator of protein kinase C).  相似文献   

4.
When C6-2B rat glioma cells were stimulated with calf serum in the presence of calcium, ornithine decarboxylase activity increased maximally in 6-8 h after an initial 2-3 h lag period wherein RNA synthesis occurred. The increase of ornithine decarboxylase activity in serum-stimulated C6-2B cells was prevented by the calcium chelator EGTA, but EGTA had no effect upon RNA synthesis as judged by [3H]uridine incorporation into RNA. In addition, the calcium requirement for increased ornithine decarboxylase activity was temporally distal to the lag period. EGTA appeared to inhibit the synthesis of ornithine decarboxylase, because the half-life values of ornithine decarboxylase activity were similar (37-47 min) in the presence of EGTA or protein synthesis inhibitors such as cycloheximide or emetine. Also, calcium readdition rapidly reversed EGTA inhibition of ornithine decarboxylase activity by a mechanism which could be blocked by cycloheximide.  相似文献   

5.
6.
To determine whether 1 alpha, 25-dihydroxyvitamin D3-dependent increases in intestinal calcium uptake require de novo protein and RNA synthesis, the effects of several inhibitors of these processes have been re-examined in vitro using cultured embryonic chick duodenum. To minimize the contributions of antibiotic toxicity to the interpretation of results, care was taken to examine inhibitor effects at early times after the onset of the 1 alpha, 25-dihydroxyvitamin D3 response. Cycloheximide at a concentration of 5 microM blocked hormone-dependent calcium uptake at all times examined (6 to 24 h). Actinomycin D was similarly effective at 6 to 12 h. The effects of cycloheximide were totally reversible while actinomycin D inhibition was only partially reversible. These compounds inhibited protein or RNA synthesis by 68.4 +/- 1.4 and 51.4 +/- 1.1%, respectively. Anisomycin, another inhibitor of polypeptide chain elongation and alpha-amanitin, an inhibitor of RNA polymerase I, also blocked 1 alpha, 25-dihydroxyvitamin D3-dependent calcium uptake after 12 h in culture. These results further strengthen the hypothesis that 1 alpha, 25-dihydroxyvitamin D3 stimulates intestinal calcium transport via a nuclear mechanism involving new gene expression.  相似文献   

7.
Clostridium perfringens type A enterotoxin (CPE) has been shown previously to inhibit the incorporation of radiolabeled precursors into acid-insoluble material but the mechanism of inhibition is unknown. It has also been shown that extracellular calcium is required for some CPE effects. In this report, it is shown that CPE completely and virtually simultaneously inhibits incorporation of precursors into RNA, DNA and protein in either the presence or absence of extracellular divalent cations and that changes in intracellular precursor levels did not consistently correlate with this CPE-induced inhibition of incorporation. These results strongly suggest that CPE can inhibit macromolecular synthesis, not just inhibit precursor transport. It is inferred from this that CPE can affect DNA and RNA synthesis, and possibly protein synthesis, by altering other cellular processes besides, or in addition to, precursor transport and these effects then lead to a shutdown of macromolecular synthesis.  相似文献   

8.
Divalent cation ionophore A23187 has a potent inhibitory effect on protein synthesis in the C6 rat glioma cell line. Treatment with 4 μM A23187 resulted in 93% inhibition of [1-14C]leucine label incorporation into proteins and a 61% increase in free pool labeling. Total RNA synthesis was not affected. Extracellular ionic calcium or magnesium are not required for these changes to occur. Therefore, these effects of A23187 may be a direct effect on protein synthesis or may result from release of internal stores of divalent cations. By comparison, ionophore X537A (4 μM) has only a slight inhibitory effect on protein synthesis.  相似文献   

9.
The primary step in the biosynthesis of 12 KDa rat epidermal calcium binding protein was studied by cell-free protein synthesis. Poly(A)+ rich RNA was extracted and purified from whole newborn rat skin and translated in a lysate system in the presence of labeled methionine. Immunoprecipitation of translation products with a monospecific antibody directed against this protein, which did not react with parvalbumin yielded a product migrating as a single band of molecular weight 12 KDa on polyacrylamide gel electrophoresis. Thus, a mRNA coding for this protein is present in rat skin. The presence of this messenger RNA opens the way for further studies on the regulation of epidermal expression during epidermal cell proliferation and differentiation.  相似文献   

10.
The influence of membrane depolarization on somatostatin secretion and protein synthesis by fetal and neonatal cerebrocortical neurons was studied. Cortical cells obtained by mechanical dispersion were maintained as monolayer cultures for 8 days. The ability of fetal cerebrocortical and hypothalamic cells to release immunoreactive somatostatin (IR-SRIF) was confirmed. Total protein synthesis was determined by the incorporation of [3H]phenylalanine into trichloroacetic acid-precipitable proteins. To study the effect of acute depolarization on protein synthesis, cells were incubated for 30 min with [3H]phenylalanine or [3H]leucine and the depolarizing agent. In fetal cerebrocortical cells, potassium (30 and 56 mM) decreased protein synthesis and RNA levels and increased IR-SRIF release. Depolarization by veratridine, a sodium channel activator, induced a similar effect. The effect of veratridine on IR-SRIF and protein synthesis was reversed by tetrodotoxin, a sodium channel blocker, or verapamil, a calcium channel blocker. These findings suggest that protein synthesis by cerebrocortical cells is decreased in fetal brain cells by membrane depolarization and is dependent on Na+ and Ca2+ entry into cells. In postnatal (day 7) cerebrocortical cells, depolarization induced by high potassium concentrations led to a concomitant increase in protein synthesis, RNA content, and somatostatin release. These findings indicate that depolarization of the cellular membrane is coupled to an increase in protein synthesis in neonatal, but not in fetal, dispersed brain cells.  相似文献   

11.
线粒体是细胞内氧化磷酸化(oxidative phosphorylation,OXPHOS)和合成三磷酸腺苷(adenosine triphosphate,ATP)的细胞器,是细胞能量代谢的“动力工厂”。线粒体几乎存在于所有真核生物中,参与细胞凋亡、钙稳态以及先天免疫反应的调节等过程,对细胞行使正常的生理功能至关重要。线粒体是半自主细胞器,拥有自身的基因组DNA,编码37个基因,包括2个rRNA基因、13个m RNA基因和22个tRNA基因。线粒体的基因表达需要经过复杂的转录和转录后加工过程,包括多顺反子RNA的切割、RNA的修饰以及RNA的末端加工等过程。异常的线粒体RNA加工会导致线粒体RNA表达谱发生变化、线粒体翻译紊乱、线粒体功能失常等,从而造成多种线粒体相关疾病。本文综述了线粒体DNA的转录、RNA转录后加工以及影响RNA加工的因素方面的最新研究进展。  相似文献   

12.
The effects of double-stranded RNA (dsRNA) on interferon (IFN)-induced antiviral and anticellular activities was investigated by introducing poly(I)-poly(C) into mouse L-cells. Coprecipitation of dsRNA with calcium phosphate enabled its efficient penetration into cells in culture. Rate of cellular protein synthesis was inhibited by dsRNA only in cultures pretreated with IFN. Moreover, the anticellular effect of IFN, as measured by the inhibition of cell DNA synthesis, was also enhanced by dsRNA. The kinetics of dsRNA-mediated inhibition of protein synthesis were relatively slow as compared with the inhibitory effect of 2'-5' oligoadenylic acid (2'5'A), which was also introduced into cells by the calcium phosphate coprecipitation technique. To analyze the effects of dsRNA on the antiviral state induced by IFN, vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMC), replications were followed by measuring viral-specific RNA synthesis in the cell. Introduction of dsRNA after the infection had no effect on VSV and EMC replication in control cells, and it enhanced, to a small extent, the antiviral state of cells pretreated with IFN. In contrast, introduction of 2'5'A into virus-infected cells inhibited VSV and EMC replications regardless of IFN pretreatment. This work demonstrated that the role of dsRNA in regulating the antiviral and anticellular activities of IFN could be studied by introducing exogenous dsRNA into cells in culture by the calcium phosphate coprecipitation technique.  相似文献   

13.
PRL synthesis by GH cells in culture has previously been shown to increase when calcium is added to cultures grown in calcium-depleted medium or when cultures are treated for 18 h or longer with the dihydropyridine calcium channel agonist BAY K8644, whereas the antagonist nimodipine inhibits PRL. The experiments described here were designed to test whether differences in PRL synthesis caused by the dihydropyridines are due to changes in PRL mRNA levels, whether structurally different classes of calcium channel blockers alter PRL production, and whether long term treatment with calcium channel agonists and antagonists alters intracellular free calcium, [Ca2+]i. PRL synthesis and PRL mRNA levels were increased similarly by BAY K8644 and decreased in parallel by the dihydropyridine antagonist nimodipine, while overall protein and RNA synthesis were not changed by either the agonist or antagonist. Two calcium channel blockers which act at different sites on L-type channels than the dihydropyridines also inhibited PRL synthesis without affecting GH; 5 microM verapamil reduced PRL by 64% and 15 microM diltiazem by 89%. Partial depolarization with 5-25 mM KCl increased PRL synthesis up to 2-fold. The intracellular free calcium ion concentration was estimated by Quin 2 and averaged 142 nM for control cultures in normal medium, and 128 and 168 nM for cultures treated 72 h with nimodipine or BAY K8644, respectively. Nimodipine totally prevented the calcium rise obtained upon depolarization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The combination of phorbol 12-myristate 13-acetate (PMA) and ionomycin produces a dramatic increase in the incorporation of [2-3H]mannose into Glc3Man9GlcNAc2-P-P-dolichol and glycoprotein, and the induction of RNA and DNA synthesis in murine splenic B lymphocytes (B cells). The kinetics of the induction processes and the concentrations of PMA and ionomycin required for the optimal response have been defined. While the levels of induction of RNA and DNA synthesis by PMA + ionomycin were similar to the mitogenic response to bacterial lipopolysaccharide, activation by PMA and the calcium ionophore resulted in a threefold higher stimulation in dolichol-linked oligosaccharide biosynthesis and protein N-glycosylation. These results indicate that all signalling mechanisms that trigger RNA and DNA synthesis may not be sufficient to produce maximal induction of the N-glycosylation apparatus. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7), a potent protein kinase C inhibitor, prevented the induction of protein N-glycosylation activity (IC50 = 11 microM), as well as RNA (IC50 = 18 microM) and DNA synthesis (IC50 = 12 microM), two common indices of B cell activation. N-[2-(Methylamino)ethyl]-5-isoquinolinesulfonamide (H-8) also inhibited the induction of oligosaccharide-lipid intermediate, glycoprotein, RNA, and DNA synthesis, but required higher concentrations than H-7 for 50% inhibition. N-(2-Guanidinoethyl)-5-isoquinolinesulfonamide (HA1004), a potent inhibitor of cyclic nucleotide-dependent protein kinases, had little effect on the activation of the B cell metabolic processes. The H-7-sensitive reactions involved in the induction of RNA and DNA synthesis occurred within 4 h, but induction of lipid intermediate and glycoprotein biosynthesis remained sensitive to H-7 for 10 h after exposure to PMA and ionomycin. Direct in vitro assays in the presence of 0.6% Brij 58 reveal that a cytosolic, phospholipid-dependent protein kinase activity is translocated to a membrane site(s) after treatment with PMA and ionomycin, and the translocated protein kinase is sensitive to H-7. The relative order of potency of the protein kinase inhibitors on the metabolic processes strongly supports the hypothesis that protein kinase C, acting synergistically with Ca2+ mobilization, plays a key regulatory role in the early stages of B cell activation. The synthesis of oligosaccharide-lipid intermediates and protein N-glycosylation are also shown to be induced in B cells activated by PMA + ionomycin.  相似文献   

15.
Using an auxotrophic strain of Saccharomyces cerevisiae, we examined the kinetics of ribonucleic acid (RNA) synthesis following inhibition of protein synthesis caused by amino acid starvation or cycloheximide. Removal of a required amino acid immediately stopped net protein synthesis. After a brief lag, RNA synthesis also ceased. Cycloheximide, a ribosome-inhibiting drug, also immediately halted net protein synthesis. Again RNA synthesis stopped after a brief lag. Although cycloheximide and amino acid starvation affect different steps in protein biosynthesis, both inhibited RNA synthesis in identical fashion. This indicates that amino acids do not play a unique role in the control of RNA production in rapidly growing yeast; rather, it suggests that RNA synthesis is responsive to the overall rate of protein synthesis itself.  相似文献   

16.
17.
18.
During planarian regeneration, relationships in timing were established between variations of calcium and calmodulin contents on one hand, and protein phosphorylation and stimulation of DNA and RNA synthesis on the other. Special attention was paid to changes in histone phosphorylation in regenerating fragments. Using in vitro experiments on dissociated planarian cells, we demonstrated causal relationships between these events. In particular, the key role of Ca2+ in the activation of protein kinases and in the initiation of DNA synthesis was emphasized.  相似文献   

19.
Joe L. Key 《Plant physiology》1966,41(8):1257-1264
The effects of several base analogues and cycloheximide on RNA synthesis, protein synthesis, and cell elongation were studied in excised soybean hypocotyl. None of the pyrimidine analogues tested affected growth or protein synthesis; only 5-fluorouracil appreciably inhibited RNA synthesis. 8-Azaguanine and 6-methylpurine markedly inhibited RNA and protein synthesis and cell elongation. Cycloheximide effectively inhibited both cell elongation and protein synthesis.The results show that 5-fluorouracil selectively inhibited ribosomal and soluble RNA synthesis without affecting the synthesis of D-RNA. These results indicate that the requirement for RNA synthesis to support continued protein synthesis and cell elongation is restricted to the synthesis of D-RNA.5-Fluorouracil was incorporated into all classes of RNA in a form believed to be 5-fluorouridylic acid.Cycloheximide markedly inhibited the accumulation of ribosomal RNA, but the results indicate that CH did not inhibit, per se, the synthesis of ribosomal RNA. The accumulation of newly synthesized D-RNA was only slightly affected by cycloheximide. These results show that the inhibition of cell elongation by cycloheximide correlates with the inhibition of protein synthesis, but not with the effect on RNA metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号