首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Statistically significant differences were observed in the population density of the horn fly, Haematobia irritans irritans (L.), on different breeds of beef cattle. The European breed Chianina had a population density of horn flies generally less than or equal to 50% than that of the British cattle breeds (Angus, Hereford, Polled Hereford, and Red Poll) and another European breed (Charolais). Generally, no significant difference existed among numbers of horn flies on Hereford, Polled Hereford, and Red Poll cows in 1988 or among Angus, Hereford, Polled Hereford, and Red Poll cows in 1989. Factors other than color appeared to be involved in the selective process between the horn fly and its host. Population densities on two white European breeds (Charolais and Chianina) were significantly different on all weekly intervals except for 4 wk in both 1988 and 1989. No significant difference existed among Charolais and British breeds except during 4 wk in 1988 and 3 wk in 1989. When weaning weights of all calves were adjusted for the effects of age to 205 d, sex of calf, and age of dam, the indirect effect of the horn fly on weaning weight showed a significant linear regression. Each 100 flies per cow caused a reduction of 8.1 kg in calf weaning weight. Cows within each breed with low numbers of horn flies weaned significantly heavier calves than cows with higher numbers of horn flies.  相似文献   

2.
An electric walk-through fly trap was evaluated for the management of the horn fly, Hematobia irritans (L.), on dairy cattle in North Carolina over 2 yr. The trap relies on black lights and electrocution grids to attract and kill flies that are brushed from the cattle passing through. During the first season, horn fly densities were reduced from >1,400 to <200 flies per animal. Horn fly density averaged 269.2 +/- 25.8 on cattle using the walk-through fly trap twice daily, and 400.2 +/- 43.5 on the control group during the first year. The second year, seasonal mean horn fly density was 177.3 +/- 10.8 on cattle using the walk-through fly trap compared with 321.1 +/- 15.8 on the control group. No insecticides were used to control horn flies during this 2-yr study.  相似文献   

3.
Abstract. Statistically significant differences were observed in the population density of the horn fly, Haematobia irritans irritans L., on Angus cows having significantly different frame sizes. Angus cows, averaging <112.5 cm in height at the hip, had significantly lower numbers of horn flies than Angus cows that measured 112.5–117.5 cm, 117.5–120 cm, 120–126 cm and >126 cm in height at the hip. The Angus I cows(126 cm). The estimated heritability (h2) of horn fly resistance was 0.43 ± 0.07 and 0.95 ± 0.31 for 1989 and 1990, respectively. Horn fly counts on the Angus I herd (<112.5 cm in height) was 118.1 (probable breeding value, PBV = -20.69) to 165 horn flies per cow (PBV = 26.9 flies per cow in 1989) and from 75.9 (PBV = -29.1) to 134.5 (PBV = 29.5) flies per cow in 1990. Angus I bulls had PBV = -23.7 to 13.4 and from-26.5 to 14.75 in 1989 and 1990, respectively. The Angus II cows had horn fly counts that ranged from 159.6 (PBV of-23.5) to 208.1 (PBV of 25) per cow in 1989 and from 232.3 (PBV of-56.2) to 378.7 (PBV of 90) per cow in 1990. Angus II bulls had PBVs that ranged from-17.1 to 18.9 in 1989 and from -28.1 to 48.8 in 1990. The Angus I cows had significantly (P < 0.0001) lower numbers of hom flies (mean of 63.8 horn flies per m2) than the small, medium or large Angus II cows (mean of 129.4, 149.6 and 145.5 hom flies per m2, respectively). The data indicated that some specific factor(s) associated with cow size contribute(s) to innate resistance of cattle to the horn fly.  相似文献   

4.
The distribution of horn flies, Haematobia irritans (L.) (Diptera: Muscidae), in herds of Danish Holstein-Friesian cattle was investigated in two studies conducted during two field seasons. In the first study, highly significant differences in fly distribution between the most and the least fly-susceptible heifers were observed. In one herd, the mean difference between the most fly-susceptible and the most fly-resistant heifers was 268 Ha. irritans specimens. The highest ratio between upper and lower mean fly number was 64.1:1, whereas the lowest was 3.1:1. In the second year, it was demonstrated that the heifers kept their rank in fly attraction over time. The trial clearly demonstrated that some heifers were attracting flies, whereas others, even in the same herd, only carried a few. In the second study, heifers were moved in and out of herds in an attempt to manipulate fly loads in the herds. In year 1, one herd (herd A) received four fly-resistant heifers from another herd (herd B), resulting in a drop in the mean number of flies, whereas herd B received four fly-susceptible heifers from herd A, resulting in an elevation of the mean number of flies. In year 2, a similar pattern emerged using herds C and D, and when the cattle were later returned to their original herds, the fly loads returned to their original distribution. The data presented here show unequivocally that, for horn flies, there can be considerable differences in fly loads for individual heifers within the Holstein-Friesian breed. Furthermore, the overall fly load within herds can be manipulated, and can be reversed. Thus, the distribution in the number of flies within a herd appears to depend on the number of fly-resistant or fly-susceptible heifers. The possible role of chemical factors emitted by heifers, i.e. volatile semiochemicals, in determining differences in fly loads is discussed, whereby attractants are emitted by fly-susceptible heifers and enable flies to locate their host, and repellents are emitted by fly-resistant heifers such that the flies are actively repelled from the herd.  相似文献   

5.
A walk-through fly trap designed in 1938 by W. G. Bruce was tested for two field seasons in Missouri. Screened elements along both sides of the device functioned as cone traps, thereby catching horn flies, Haematobia irritans (L.), as they were swept from cattle by strips of carpet hung from the roof. Horn fly control on pastured cattle averaged 54 and 73% when they were afforded access to the trap. Analyses of Diptera captured in the trap indicated that horn flies comprised the most abundant species; face flies, Musca autumnalis De Geer, stable flies, Stomoxys calcitrans (L.), and others were present in smaller numbers. Cattle were not reluctant to use the trap, and no structural problems were observed during the experiment.  相似文献   

6.
A study was conducted at the Pressler ranch, near Kerrville, Texas, USA between 2002 and 2006 to determine the dynamics and mechanisms of resistance to permethrin in a field population of the horn fly, Haematobia irritans irritans (L.). Changes of resistance to pyrethroid insecticide associated with use of a pour-on formulation of cyfluthrin in 2002 and use of diazinon ear tags in subsequent years were studied using a filter paper bioassay technique and a polymerase chain reaction assay that detects two sodium channel mutations, kdr and super-kdr resistance alleles. A maximum of 294-fold resistance to permethrin was observed in the summer of 2002. A significant decrease in the resistance level was observed in spring 2003, and resistance continued to decline after animals were treated with diazinon ear tags. In response to pyrethroid treatments, the allelic kdr and super-kdr frequency increased from 56.3% to 93.8% and from 7.5% to 43.8%, respectively in 2002, and decreased significantly in 2003 when the pyrethroid insecticide was no longer used to treat animals. Females were found to have a higher allelic super-kdr frequency than males in 2002, while no difference was detected between males and females in the allelic kdr frequency. There was a significant positive correlation between frequencies of the sodium channel mutations and levels of permethrin resistance, suggesting that the sodium channel mutations, kdr and super-kdr , are the major mechanisms of resistance to pyrethroids in this horn fly population. Results of synergist bioassays also indicated possible contributions of two metabolic detoxification mechanisms, the mixed function oxidases (MFO) and glutathione S-transferases (GST). Compared to a horn fly infestation of an untreated herd, treatments with the pyrethroid pour-on formulation failed to control horn flies at the Pressler ranch in 2002. Sustained control of horn flies was achieved with the use of diazinon ear tags in 2003 and subsequent years.  相似文献   

7.
The horn fly Haematobia irritans L. (Diptera: Muscidae) has recently spread to Argentina and Uruguay and is believed to cause damage to cattle hides. Four groups of ten Holstein steers each were maintained for 58 weeks under different infestation levels with H. irritans to determine if it was the cause of this problem. Hides (chrome tanned) from steers maintained under minimum infestation level had 4.7 +/- 3.8% of the area damaged. Maintaining the steers under low H. irritans level for the last 44 days of the trial using insecticidal ear-tags, resulted in 29.5 +/- 15.8% of hide area being damaged. Steers that were treated with 5% cypermethrin pour-on, when the H. irritans population was close to 50 flies, showed that 31.3 +/- 16.6% of hide area was injured, and 46.6 +/- 12.8% of damaged hide area was found in hides from non-treated steers. Significant differences were found between mean hide damage from steers maintained continuously under low H. irritans infestation levels and all other groups. Hyperaemia was significantly lower in the skin of steers under low H. irritans infestation level than in the skins of non-treated steers and steers maintained under low-level infestations for the final 44 days. Eosinophil and mononuclear cell infiltration was significantly lower when the population of H. irritans was less than six per steer than when the population was more than 100 flies per steer. Low numbers of Stomoxys calcitrans were found in all groups, but most hide damage was presumed due to H. irritans.  相似文献   

8.
Abstract We show the relationships that exist between the amount of hair and quantity of sebum on cattle skin and the population density of the horn fly, Haematobia irritans. Brahman and Chianina steers had means of 2390 and 1587 hairs per cm2, respectively, significantly more than the mean number of hairs on Angus, Brahman x Angus Crossbred, Charolais, and Red Poll steers. The Chianina steers had > 30% more sebum present on their skin and hair (0.58g/929cm2) than the Angus, Charolais, and Red Poll steers at the Beef Cattle Research Station Savoy, Arkansas. The Brahman steers had a significantly greater amount of sebum present on the skin (1.51 g/ 929 cm2) than the Crossbred and purebred Angus steers (0.55 and 0.25g/929cm2, respectively) at the South Central Family Farms Research Centre Booneville, Arkansas. The Brahman and Chianina steers had means of 61.9 and 17.0 horn flies per steer, respectively, during the fly season, whereas the Angus, Crossbred, Charolais and Red Poll steers had fly season means that ranged from 76.9 to 265.8 flies per steer. Regression analysis showed that an increase of 100 hairs per cm2, was associated with a reduction of 11 horn flies in the Angus II, 5 in Angus I, 20 in Charolais, 37 in Red Poll, and 0.4 in Chianina steers at the Savoy Station and a reduction of 6.6 horn flies for the Angus, Brahman, and Crossbred steers at the Booneville Centre. Regardless of cattle breed, an increase of 1.0 g of sebum per 929 cm2 output by the steer was associated with 478.5 additional hairs per cm2 on the animal. Each increase of 0.25 g of sebum per 929 cm2 resulted in a decrease of 9.2 horn flies per steer. We conclude that some of the factors responsible for fly-resistance in cattle are hair density and the corresponding amount of sebum present on cattle skin and hair.  相似文献   

9.
From June 1993 to May 1995, horn fly counts were conducted twice a month on untreated Nelore cattle raised extensively in the Pantanal. Horn fly population showed a bimodal fluctuation and peaks were observed every year after the beginning (November/December) and at the end (May/June) of the rainy season, which coincided with mid-late spring and mid-late fall, respectively. Horn flies were present on cattle throughout the year in at least 64% of the animals. Mean horn fly numbers on animals did not exceed 85 flies/cow during peaks and were under 35 flies/cow in most of the remaining periods. The highest infestations (population peaks) were short and dropped suddenly within two weeks. Less than 15% of the animals in both herds could be considered as "fly-susceptible" - showing consistently higher infestations, or "fly-resistant" - showing consistently lower infestations.  相似文献   

10.
Laboratory studies were conducted to determine the effects of horn fly, Haematobia irritans (L.), and house fly, Musca domestica L., larvae on the development of a mixed population of parasitic nematodes in compressed and crumbled bovine dung. Fresh dung (100 g per sample) from a single calf passing trichostrongyle type eggs was infested with 150 horn fly or 150 house fly eggs. After 14-15 d, more horn flies and house flies had emerged from the compressed dung than from the crumbled dung, but more third stage parasitic nematode larvae were recovered from the crumbled dung containing either fly species than from dung containing no flies.  相似文献   

11.
Lambdacyhalothrin cattle ear tags controlled horn fly, Haematobia irritans (L.), for 14 wks or longer during 1986-1988 in Georgia, USA. In 1989 and 1990, control of < 50 horn flies per side of cow was achieved for < or = 4 wk because of high levels of pyrethroid resistance in horn flies selected with lambdacyhalothrin. The highest resistance ratios (RRs) were seen in 1989. These were 498 for lambdacyhalothrin; 92,000 for fenvalerate; and 54 for permethrin. RRs for cypermethrin as high as 8,800 were estimated in 1990 when the RR for fenvalerate was only 1,060. No cross-resistance to diazinon was detected. These high levels of pyrethroid resistance seem to have a large component of metabolic resistance. Synergistic coefficients as high as 3,600 were determined by addition of nonlethal amounts of piperonyl butoxide. Resistance development in a no-pyrethroid-use area indicates movements of > or = 3km by sufficient numbers of horn flies can significantly change the RR.  相似文献   

12.
Horn flies, Haematobia irritans irritans (Linneaus) (Diptera: Muscidae) were reared in vitro using cattle, pig, horse, rabbit, sheep, goat or chicken blood. The highest survival, bloodmeal size and rate of ovarian development were recorded for both female and male flies fed cattle blood. Flies fed pig, rabbit, sheep and goat blood showed intermediate survival. Flies fed chicken blood showed the lowest survival rates, ingested the smallest bloodmeals and did not develop ovaries. The relationship between dietary factors and host specificity of the horn fly, and the efficiency of vertebrate blood source of several animals for laboratory colonization of horn fly are discussed.  相似文献   

13.
A 20% diazinon formulation was evaluated for control efficacy against the horn fly, Haematobia irritans (L.), in the Morgan Recharger (Morgan International Products, College Grove, Tenn.). The Morgan Recharger releases insecticide with a wicking system from an insecticide reservoir and can be attached to an animal's ear or tail. This device was most effective against the horn fly when used as an ear tag with two per head; horn fly counts did not exceed five flies per side through 8 wk. The diazinon formulation tested was released from the Morgan Recharger at a decreasing rate. The problems and potential of the Morgan Recharger as an effective horn fly control device are discussed.  相似文献   

14.
Abstract.  The horn fly, Haematobia irritans (Linnaeus 1758) (Diptera: Muscidae) is one of the most widespread and economically important pests of cattle. Although insecticides have been used for fly control, success has been limited because of the development of insecticide resistance in all countries where the horn fly is found. This problem, along with public pressure for insecticide-free food and the prohibitive cost of developing new classes of compounds, has driven the investigation of alternative control methods that minimize or avoid the use of insecticides. This review provides details of the economic impact of horn flies, existing insecticides used for horn fly control and resistance mechanisms. Current research on new methods of horn fly control based on resistant cattle selection, semiochemicals, biological control and vaccines is also discussed.  相似文献   

15.
A bioassay was used to detect active site insensitivity (knock-down resistance [kdr]) in pyrethroid resistant larvae of the horn fly, Haematobia irritans (L.). The larvae of the resistant population had KD50's 42.0-, 28.1- and 29.2-fold greater to permethrin, fenvalerate and lambda-cyhalothrin, respectively, compared with the susceptible population. In filter paper bioassays, resistant adult horn flies were 17 to 39.1 times less susceptible to the pyrethroids than susceptible adults at LC50. These results further document active site insensitivity as the major mechanism of pyrethroid resistance in the horn fly.  相似文献   

16.
Published reports on the effect of buffalo fly Haematobia irritans exigua De Meijere (Diptera: Muscidae) and the closely related horn fly (H. irritans) were examined and analysed using non-linear weighted regression techniques in an attempt to establish the relationship between daily production loss (D), average number of parasites (n) and the average damage per parasite per day (d), and to provide estimates of expected losses in milk yield (MYD) and live-weight gain (LWG) in dairy cattle. A Mitscherlich three-parameter model was used to explain the relationship between the total loss of production attributable to buffalo flies and the average number of flies associated with cattle. This model was significant (P<0.01), with R2 = 20.2% and predicted a threshold number of flies (n = 30) below which no adverse effects would be noted. At a moderate level of infestation (n = 200) dMYD was 2.6 ml/fly/day and dLWG was 0.14 g/fly/day, resulting in estimated daily losses in milk yield (D(MYD)) and live-weight gain (D(LWG)) of 520 ml and 28 g, respectively.  相似文献   

17.
Horn flies could not be maintained below 50 per animal with sprays or dusts during a 21-wk study. However, weights of cows and calves and condition scores of cows were not influenced by suppression of Haematobia irritans (L.) populations. Results show that cattle in northwest Florida can tolerate average populations of greater than or equal to 200 flies for 70 d with no adverse economic effects. Spray treatments providing the best fly control were Lintox-D and Ra-Vap. The most economical products for use were Del-Tox, Lintox-D, and Ra-Vap.  相似文献   

18.
The toxicity of cypermethrin to the horn fly Haematobia irritans (L.) (Diptera: Muscidae) was determined for samples collected from untreated herds at a farm in central Argentina from October 1997 to May 2001. Field tests of the efficacy of cypermethrin against horn flies were first carried out at this farm in 1993, when the fly was shown to be susceptible to pyrethroids. Subsequently the horn fly populations on this farm were shown to have become resistant and, since 1997, the use of cypermethrin has been restricted to experimental purposes. In this study, fly samples collected in 1999, 2000 and 2001 were subjected to a polymerase chain reaction (PCR) to detect the presence of a specific nucleotide substitution in the sodium channel gene sequence, which has been associated with target site insensitivity to pyrethroids. This analysis showed that the level of cypermethrin resistance had diminished between 1997 and 2001. However, this was not sufficient to restore the efficacy of this pyrethroid to the level found prior to the onset of resistance. Heterozygous and homozygous resistant flies were detected in all samples of flies subjected to PCR diagnosis of alleles conferring target site resistance.  相似文献   

19.
The horn fly Haematobia irritans (Diptera: Muscidae) is a blood obligate ectoparasite of bovids that causes annual losses to the U.S. beef cattle industry of over US$1.75 billion. Climate warming, the anthropogenic dispersion of bovids and the cross‐breeding of beef cattle with other bovid species may facilitate novel horn fly–host interactions. In particular, hybridizing yaks [Bos grunniens (Artiodactyla: Bovidae)] with beef cows (Bos taurus) for heterosis and carcass improvements may increase the exposure of yak × beef hybrids to horn flies. The present paper reports on the collection of digital images of commingled beef heifers (n = 12) and F1 yak × beef hybrid bovids (heifers, n = 7; steers, n = 5) near Laramie, Wyoming (~ 2200 m a.s.l.) in 2018. The total numbers of horn flies on beef heifers and F1 yak × beef heifers [mean ± standard error (SE): 88 ± 13 and 70 ± 17, respectively] did not differ significantly; however, F1 yak × beef steers had greater total horn fly abundance (mean ± SE: 159 ± 39) than female bovids. The present report of this experiment is the first such report in the literature and suggests that F1 yak × beef bovids are as susceptible as cattle to horn fly parasitism. Therefore, similar monitoring and treatment practices should be adopted by veterinarians, entomologists and producers.  相似文献   

20.
Effects of azadirachtin, a triterpenoid extracted from neem seed, Azadirachta indica A. Juss., were similar to those of insect growth regulators against the immature stages of the born fly, Haematobia irritans (L.), the stable fly, Stomoxys calcitrans (L.), and the house fly, Musca domestica L. When an ethanolic extract of ground seed was blended into cow manure, LC50 and LC90's for larval horn flies were 0.096 and 0.133 ppm azadirachtin, respectively. An emulsifiable concentrate (EC) had an LC50 for larval horn flies of 0.151 ppm and an LC90 of 0.268 ppm. For larval stable flies, the EC formulation had an LC50 of 7.7 ppm and an LC90 of 18.7 ppm azadirachtin in manure. Against larval house flies, the LC50 and LC90 were 10.5 and 20.2 ppm, respectively. When the EC formulation was administered orally to cattle at a rate of greater than or equal to 0.03 mg azadirachtin per kg of body weight per day or when ground neem seed was given as a daily supplement of greater than or equal to 10 mg seed per kg body weight, horn fly development in the manure was almost completely inhibited. In contrast, ground seed mixed in cattle feed at the rate of 100-400 mg seed per kg of body weight per day caused less than 50% inhibition of stable flies in the manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号