首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In Saccharomyces cerevisiae both the induction of heat shock proteins (98, 85, 70 kD) and the intracellular pH, determined by means of 31P-NMR spectroscopy, show a similar dose response to increasing temperature or concentrations of 2,4-dinitrophenol (DNP). Temperature increases from 23 degrees to 32 degrees C or more, or concentrations of DNP higher than 1 mM cause a significant increase in the synthesis rate of heat shock proteins and a significant decrease of the intracellular pH. A similar correlation is found in a mitochondrial mutant (Q) defective in oxidative phosphorylation. Intracellular signal transduction may thus involve H+-concentration changes independent of intact oxidative phosphorylation.  相似文献   

2.
Effects of low culture temperature on the induction of heat shock proteins in FM3A cells by a heat shock and on the thermal sensitivity of the cells were examined. FM3A cells maintained at 33 degrees C could not induce hsp70 during continuous heating or after a short heat shock at either 39, 42, or 45 degrees C, although FM3A cells maintained at a normal culture temperature of 37 degrees C can induce the synthesis of hsp70. Furthermore, the cells maintained at 33 degrees C were more sensitive to the subsequent heat shock than the cells maintained at 37 degrees C. Thus, the culture temperature of the mammalian cells may be an important factor for the induction of hsp70, and hsp70 may play an important role to protect or repair the thermal damage of cells.  相似文献   

3.
When Saccharomyces cerevisiae cells grown at 23 degrees C were transferred to 36 degrees C, they initiated synthesis of heat shock proteins, acquired thermotolerance to a lethal heat treatment given after the temperature shift, and arrested their growth transiently at the G1 phase of the cell division cycle. The bcy1 mutant which resulted in production of cyclic AMP (cAMP)-independent protein kinase did not synthesize the three heat shock proteins hsp72A, hsp72B, and hsp41 after the temperature shift. The bcy1 cells failed to acquire thermotolerance to the lethal heat treatment and were not arrested at the G1 phase after the temperature shift. In contrast, the cyr1-2 mutant, which produced a low level of cAMP, constitutively produced three heat shock proteins and four other proteins without the temperature shift and was resistant to the lethal heat treatment. The results suggest that a decrease in the level of cAMP-dependent protein phosphorylation results in the heat shock response, including elevated synthesis of three heat shock proteins, acquisition of thermotolerance, and transient arrest of the cell cycle.  相似文献   

4.
Isolation and characterization of a soybean hsp70 gene   总被引:7,自引:0,他引:7  
  相似文献   

5.
In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock proteins (hsp70) overproduced trehalose during heat shock at 37 degrees C or 40 degrees C and showed abnormally slow degradation of trehalose upon temperature decrease from 40 degrees C to 27 degrees C. The mutant cells were unimpaired in the induction of thermotolerance; however, the decay of thermotolerance during recovery at 27 degrees C was abnormally slow. Since both a high content of trehalose and induced thermotolerance are associated with the heat-stressed state of cells, the abnormally slow decline of trehalose levels and thermotolerance in the mutant cells indicated a defect in recovery from the heat-stressed state. A similar albeit minor defect, as judged from measurements of trehalose degradation during recovery, was detected in a delta hsp104 mutant, but not in a strain deleted in the polyubiquitin gene, UB14. In all our experiments, trehalose levels were closely correlated with thermotolerance, suggesting a thermoprotective function of trehalose. In contrast, heat-shock proteins, in particular hsp70, appear to be involved in recovery from the heat-stressed state rather than in the acquisition of thermotolerance. Cells partially depleted of hsp70 displayed an abnormally low activity of neutral trehalase when shifted to 27 degrees C after heat shock at 40 degrees C. Trehalase activity is known to be under positive control by cAMP-dependent protein kinases, suggesting that hsp70 directly or indirectly stimulate these protein-kinase activities. Alternatively, hsp70 may physically interact with neutral trehalase, thereby protecting the enzyme from thermal denaturation.  相似文献   

6.
7.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

8.
9.
Analysis of alpha-synuclein-associated proteins by quantitative proteomics   总被引:10,自引:0,他引:10  
To identify the proteins associated with soluble alpha-synuclein (AS) that might promote AS aggregation, a key event leading to neurodegeneration, we quantitatively compared protein profiles of AS-associated protein complexes in MES cells exposed to rotenone, a pesticide that produces parkinsonism in animals and induces Lewy body (LB)-like inclusions in the remaining dopaminergic neurons, and to vehicle. We identified more than 250 proteins associated with Nonidet P-40 soluble AS, and demonstrated that at least 51 of these proteins displayed significant differences in their relative abundance in AS complexes under conditions where rotenone was cytotoxic and induced formation of cytoplasmic inclusions immunoreactive to anti-AS. Overexpressing one of these proteins, heat shock protein (hsp) 70, not only protected cells from rotenone-mediated cytotoxicity but also decreased soluble AS aggregation. Furthermore, the protection afforded by hsp70 transfection appeared to be related to suppression of rotenone-induced oxidative stress as well as mitochondrial and proteasomal dysfunction.  相似文献   

10.
11.
Do Xenopus oocytes have a heat shock response?   总被引:3,自引:0,他引:3  
  相似文献   

12.
Toxoplasma gondii is an important human and veterinary pathogen. The induction of bradyzoite development in vitro has been linked to temperature, pH, mitochondrial inhibitors, sodium arsenite and many of the other stressors associated with heat shock protein induction. Heat shock or stress induced activation of a set of heat shock protein genes, is characteristic of almost all eukaryotic and prokaryotic cells. Studies in other organisms indicate that heat shock proteins are developmentally regulated. We have established that increases in the expression of bag1/hsp30 and hsp70 are associated with bradyzoite development. The T. gondii hsp70 gene locus was cloned and sequenced. The regulatory regions of this gene were analysed by deletion analysis using beta-galactosidase expression vectors transiently transfected into RH strain T. gondii. Expression was measured at pH 7.1 and 8.1 (i.e. pH shock) and compared to the expression obtained with similar constructs using BAG1 and SAG1 promoters. A pH-regulated region of the Tg-hsp70 gene locus was identified which has some similarities to heat shock elements described in other eukaryotic systems. Green fluorescent protein expression vectors driven by the Tg-hsp70 regulatory region were constructed and stably transfected into T. gondii. Expression of green fluorescent protein in these parasites was induced by pH shock in those lines carrying the Tg-hsp70 regulatory constructs. Gel shift analysis was carried out using oligomers corresponding to the pH-regulated region and a putative DNA binding protein was identified. These data support the identification of a pH responsive cis-regulatory element in the T. gondii hsp70 gene locus. A model of the interaction of hsp70 and small heat shock proteins (e.g. BAG1) in development is presented.  相似文献   

13.
Heat shock response of the archaebacterium Methanococcus voltae.   总被引:1,自引:1,他引:0       下载免费PDF全文
The general properties of the heat shock response of the archaebacterium Methanococcus voltae were characterized. The induction of 11 heat shock proteins, with apparent molecular weights ranging from 18,000 to 90,000, occurred optimally at 40 to 50 degrees C. Some of the heat shock proteins were preferentially enriched in either the soluble (cytoplasm) or particulate (membrane) fraction. Alternative stresses (ethanol, hydrogen peroxide, NaCl) stimulated the synthesis of subsets of the heat shock proteins as well as unique proteins. Western blot (immunoblot) analysis, in which antisera to Escherichia coli heat shock proteins (DnaK and GroEL) were used, did not detect any immunologically cross-reactive proteins. In addition, Southern blot analysis did not reveal any homology between M. voltae and four highly conserved heat shock genes, mopB and dnaK from E. coli and hsp70 genes from Drosophila species and Saccharomyces cerevisiae.  相似文献   

14.
The analysis of proteins synthesized in rat thymocytes and mouse teratocarcinoma PCC-4 Aza 1 and myeloma Sp2/0 cells after 1 h of treatment at 42 or 44 degrees C was carried out. Shock at 42 degrees C reduced the total synthetic rate of proteins in all three cell lines and induced "classical" heat-shock protein with a mass of 70 kDa (hsp 70). Heat shock at 44 degrees C resulted in almost complete inhibition of protein synthesis; only a small amount of hsp 70 was synthesized. Meanwhile a new 48-kDa polypeptide (pI = 7.5) was found in the cells exposed to severe heat shock. This protein was compared by peptide mapping with other known polypeptides of the same size: heat-shock protein from chicken embryo cells and mitogen-stimulated polypeptide from human lymphoid cells. The peptide maps were not identical. It was also shown that after a shock at 44 degrees C teratocarcinoma cells were able to accumulate anomalous amounts of hsp 70 despite hsp 70 synthesis inhibition. The data show that reaction of various cells to extreme heat shock depends heavily on cell type.  相似文献   

15.
Saccharomyces cerevisiae cells exposed to 43 degrees C (normal being 30 degrees C) exhibit the synthesis of heat shock proteins (hsps). Time course studies indicated that the major hsps (97 kDa, 85 kDa and 70 kDa family) are induced within 10 min. of heat shock and attain maximum amount with two hours of treatment. The viability of cells decreased by 99% when directly frozen into liquid nitrogen. However, a prior heat shock (2 hours) increased the cell survival by 20-30 fold. Such an effect of prior heat shock treatment could be supported by light and electron microscopical studies. Differential scanning calorimetric analysis of whole cells revealed that heat shock treatment decreases the denaturation (delta H) of total cellular proteins. A direct correlation between the degree of hsp inducibility and protection against freezing and thawing injury was observed. Cycloheximide treatment curtailed the synthesis of hsps as well as protection against subsequent freezing. This suggests that prior heat shock treatment protects the cells from freezing injury and, furthermore, that hsps can act as biological cryoprotectants.  相似文献   

16.
SSH1, a newly identified member of the heat shock protein (hsp70) multigene family of the budding yeast Saccharomyces cerevisiae, encodes a protein localized to the mitochondrial matrix. Deletion of the SSH1 gene results in extremely slow growth at 23 degrees C or 30 degrees C, but nearly wild-type growth at 37 degrees C. The matrix of the mitochondria contains another hsp70, Ssc1, which is essential for growth and required for translocation of proteins into mitochondria. Unlike SSC1 mutants, an SSH1 mutant showed no detectable defects in import of several proteins from the cytosol to the matrix compared to wild type. Increased expression of Ssc1 partially suppressed the cold- sensitive growth defect of the SSH1 mutant, suggesting that when present in increased amounts, Ssc1 can at least partially carry out the normal functions of Ssh1. Spontaneous suppressors of the cold-sensitive phenotype of an SSH1 null mutant were obtained at a high frequency at 23 degrees C, and were all found to be respiration deficient. 15 of 16 suppressors that were analyzed lacked mitochondrial DNA, while the 16th had reduced amounts. We suggest that Ssh1 is required for normal mitochondrial DNA replication, and that disruption of this process in ssh1 cells results in a defect in mitochondrial function at low temperatures.  相似文献   

17.
18.
In the yeast Saccharomyces cerevisiae, the splicing of mRNA precursors is disrupted by a severe heat shock. Mild heat treatments prior to severe heat shock protect splicing from disruption, as was previously reported for Drosophila melanogaster. In contrast to D. melanogaster, protein synthesis during the pretreatment is not required to protect splicing in yeast cells. However, protein synthesis is required for the rapid recovery of splicing once it has been disrupted by a sudden severe heat shock. Mutations in two classes of yeast hsp genes affect the pattern of RNA splicing during the heat shock response. First, certain hsp70 mutants, which overproduce other heat shock proteins at normal temperatures, show constitutive protection of splicing at high temperatures and do not require pretreatment. Second, in hsp104 mutants, the recovery of RNA splicing after a severe heat shock is delayed compared with wild-type cells. These results indicate a greater degree of specialization in the protective functions of hsps than has previously been suspected. Some of the proteins (e.g., members of the hsp70 and hsp82 gene families) help to maintain normal cellular processes at higher temperatures. The particular function of hsp104, at least in splicing, is to facilitate recovery of the process once it has been disrupted.  相似文献   

19.
20.
This study compares the expression after heat shock of the two major variants of the mammalian 70 kilodalton heat shock family in three separate systems. The ability of wild type and temperature sensitive mutant (ts85) FM3A cells to elicit a heat shock response following a 45 degrees C, 12 min exposure was examined. The ts85 cells were found to be both significantly more thermosensitive than parent FM3A cells and to induce a 66kDa heat shock protein (hsp66) not visibly synthesized in the parent line by this exposure. However, a constitutive (synthesized at 37 degrees C) 68kDa heat shock protein (hsp68) is comparably induced in both cell lines after heat. A relationship between the severity of the heat exposure as seen by the cell and hsp66 expression is suggested and tested in Chinese hamster ovary cells. In CHO cells a brief 45 degrees C heat shock induces the constitutive hsp68 (but not hsp66), while longer and more severe exposures are required for the expression of hsp66. The induction of these two proteins is also examined in situ in mouse skeletal muscle. In this case both hsp66 and hsp68 are induced following comparatively mild heat treatments, and the 'threshold' for hsp66 induction observed in cultured cells either does not occur or is greatly reduced. However, once again, hsp68 is naturally synthesized at 37 degrees C while hsp66 appears to be de novo synthesized after heat shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号