首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our recent linear dichroism study of heme transitions (Gryczynski, Z., E. Bucci, and J. Kusba. 1993. Photochem. Photobiology. in press) indicate that heme cannot be considered a planar oscillator when it acts as an acceptor of radiationless excitation energy transfer from tryptophan. The linear nature of the heme absorption transition moment in the near-UV region implies a strong dependence of the transfer rate factors on the relative angular position of the heme and tryptophan, i.e., on the kappa 2 orientation parameter of the Förster equation. Using the atomic coordinates of SW myoglobin we have estimated the variation of kappa 2 parameter as a function of the heme absorption transition moment direction. The simulations proved that transfer is very efficient and anticipates lifetimes in the picosecond range. Also, they showed that transfer is very sensitive to rotations of the heme around its alpha-gamma-meso-axis, which may reduce the efficiency of transfer to almost zero values, producing lifetimes very similar to those of free tryptophan, in the nanosecond range. Comparisons between the lifetime values reported in the literature and those here estimated suggest that natural heme disorder, in which heme is rotated 180 degrees around its meso axis, is at the origin of the nanosecond lifetimes found in myoglobin systems.  相似文献   

2.
Excitation of apotryptophanase from Escherichia coliBlt7-A at 290 nm yielded a fluorescence emission centered at 340 nm. Binding of pyridoxal phosphate to apoenzyme induced quenching of protein fluorescence concomitant with an appearance of another peak at 510 nm by way of energy transfer from tryptophan. Based on the results, an approximate distance between the coenzyme and tryptophan was estimated to be 18–24 Å according to the Förster's theory. The ozone-inactivated enzyme yielded only the 340 nm-peak upon excitation at 290 nm following reconstitution with the coenzyme. The fluorescence decay time of the tryptophyl residue was somewhat increased by ozone-inactivation. These results suggest that the tryptophyl residue essential for the activity is involved in a direct interaction with the coenzyme.  相似文献   

3.
Fluorescence energy transfer analysis of calmodulin-peptide complexes.   总被引:2,自引:0,他引:2  
The interactions between calmodulin and the tryptophan residues of synthetic peptides corresponding to the calmodulin binding domains of skeletal muscle myosin light-chain kinase and the plasma membrane calcium pump were examined. The single tryptophan residue contained in each peptide became relatively immobilized and inaccessible to iodide ion upon binding to calmodulin, indicating that the indole side chain was inserted into a hydrophobic cleft in the surface of calmodulin. Fluorescence energy transfer from peptidyl tryptophan residues to an AEDANS moiety attached to cysteine-26 of spinach calmodulin was measured. Included in these analyses was a tryptophan-containing peptide analog of the calmodulin binding domain of neuromodulin. These data indicated that the indole ring of each peptide inserted 32-35 A away from cysteine-26 and may therefore interact with the carboxyl-terminal lobe of CaM in its "bent" conformation [Persechini & Kretsinger (1988a) J. Cardiovasc. Pharmacol. 12 (Suppl 5), S1-S12; Ikura et al. (1992) Science 256, 632-638; Vorherr et al. (1992) Eur. J. Biochem. 204, 931-937]. The interchange of tryptophan-3 and phenylalanine-21 of the calcium pump peptide increased the efficiency of energy transfer to the AEDANS-moiety approximately 12-fold, reducing the calculated distance to 20 A. These data suggest that phenylalanine-21 of the calcium pump peptide interacts with the hydrophobic cleft in the amino-terminal lobe of CaM.  相似文献   

4.
5.
Axial coordination of ferric Aplysia myoglobin   总被引:3,自引:0,他引:3  
Resonance Raman spectra of ferric Aplysia myoglobin in the ligand-free and the azide-bound forms have been studied over a wide pH range to determine the coordination states of the heme iron atom. In the hydroxide form at high pH (approximately 9) the iron is six-coordinate and is in a high/low spin equilibrium. As the pH is lowered below the acid/alkaline transition (pKa = 7.5), the heme becomes five-coordinate. When the pH is lowered even further no other changes in the resonance Raman spectrum are detected; thus, the heme remains five-coordinate down to pH 4, the lowest value studied. For ferric azide-bound Aplysia myoglobin, the iron is six-coordinate in a high/low spin equilibrium at all pH values (4.8-9). These data indicate (i) that the unusual reactivity toward azide previously observed at neutral pH is indeed related to the absence of a coordinated water molecule, and (ii) that causes other than the heme coordination are responsible for the spectral differences and the ligand-binding kinetics differences observed below pH 6.  相似文献   

6.
7.
The method of fluorescence energy transfer has been used to measure the distance between the active sites in a dimeric enzyme, aspartate aminotransferase. The procedure involves the prior preparation of a hybrid enzyme with the natural chromophore, pyridoxal phosphate, in one subunit as the aldimine and of the reduced aldimine in the other subunit. The two active site chromophores are used as donor and acceptor of the energy transfer and a distance of 21 Å is obtained for the separation of the active sites.  相似文献   

8.
9.
Aplysia limacina myoglobin. Crystallographic analysis at 1.6 A resolution   总被引:4,自引:0,他引:4  
The crystal structure of the ferric form of myoglobin from the mollusc Aplysia limacina has been refined at 1.6 A resolution, by restrained crystallographic refinement methods. The crystallographic R-factor is 0.19. The tertiary structure of the molecule conforms to the common globin fold, consisting of eight alpha-helices. The N-terminal helix A and helix G deviate significantly from linearity. The distal residue is recognized as Val63 (E7), which, however, does not contact the heme directly. Moreover the sixth (distal) co-ordination position of heme iron is not occupied by a water molecule at neutrality, i.e. below the acid-alkaline transition point of A. limacina myoglobin. The heme group sits in its crevice in the conventional orientation and no signs of heme isomerism are evident. The iron atom is 0.26 A out of the porphyrin plane, with a mean Fe-N (porphyrin) distance of 2.01 A. The co-ordination bond to the proximal histidine has a length of 2.05 A, and forms an angle of 4 degrees with the heme normal. A plane containing the imidazole ring of the proximal His intersects the heme at an angle of 29 degrees with the (porphyrin) 4N-2N direction. Inspection of the structure of pH 9.0 indicates that a hydroxyl ion is bound to the Fe sixth co-ordination position.  相似文献   

10.
Bacterial endotoxins or lipopolysaccharides (LPS), cell wall components of gram-negative bacteria, are involved in septic shock. LPS consists of a lipid A tail attached to core and O-antigen polysaccharides, but little is known about the supramolecular structure of LPS in blood. We have developed an approach to locate donor and acceptor probes in sulfobetaine palmitate detergent micelles using steady-state and time-resolved fluorescence resonance energy transfer. C18-fluorescein and several LPS species of varying molecular weight labeled with fluorescein isothiocyanate (FITC-LPS) were the donor probes. Acceptor probes were 1,1-dilinoleyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (Fast C18-Dil, Ro approximately 68 A), and octadecyl B rhodamine chloride (C18-Rhd, Ro approximately 58 A). With either acceptor, the transfer was of similar high efficiency when FITC-LPS Salmonella minnesota Re 595 (2,500 mol wt, lacking both core and O-antigen) or C18-fluorescein were the fluorescent donor probes. Thus, the donor FITC-LPS with short polysaccharide chain S. minnesota Re 595 and the control donor C18-fluorescein appear to be close to the micelle surface. The transfer efficiency decreased as the molecular weight of the LPS increased. Separation distances between the longest FITC-LPS, S. minnesota (20,000 mol wt, with a long O-antigen), and the micelle were estimated to be 1.5 Ro or more (approximately 100 A), consistent with an extended conformation for the longer O-antigen polysaccharide chain in the detergent.  相似文献   

11.
The present paper reports a study on the equilibria and kinetics of the acid-alkaline transition and the azide binding reaction by ferric Aplysia myoglobin. A single completely reversible spectrophotometric titration curve is found over the pH range from similar to 5 to similar to 9, with an apparent pK equals to 7.5 for the acid-alkaline transition. The kinetics of the process, followed by the temperature-jump method, gives, at pH values close to the pK of the transition, one single, well-resolved, relaxation independent of protein concentration and of type of buffer used. The pattern accords to a simple pH dependent reaction, in buffered medium, between the two forms of the protein. The results of the azide binding reaction show that the process conforms to simple equilibrium as expected for a single site protein. The méasured association constant is reported as a function of pH. The kinetics of the reaction of Aplysia metMb with N3- minus shows, on the other hand, a complex behavior. The relaxation pattern is found to strongly depend on pH and ligand concentration in such a way to suggest a linkage between ligand binding and acid-alkaline transition. The system is discussed on the basis of two simplifying conditions, i.e., at low and higher pH with respect to the pK of the acid-alkaline transition. At acid pH the reaction corresponds to a single bimolecular process as expected for a simple binding reaction; at alkaline pH, the dependence of relaxation time on ligand concentration implies the existence of a rate-limiting monomolecular step. On the basis of a reaction scheme implying that binding of the ligand can only occur through the acid (aquomet) form of the protein via the displacement of the water molecule, the experimental data are quantitatively accounted for.  相似文献   

12.
Fluctuation domains in myoglobin. Fluorescence quenching studies   总被引:1,自引:0,他引:1  
The dynamics of two domains in the myoglobin molecule, close to the heme and inside the protein medium including the surface, are investigated through the study of the fluorescence oxygen quenching of two probes imbedded in the heme pocket: zinc protoporphyrin IX (with a fluorescence lifetime of 2.1 ns) and metal-free protoporphyrin IX (with a fluorescence lifetime of 17.8 ns).  相似文献   

13.
14.
Using the Förster equations we have estimated the rate of energy transfer from tryptophans to hemes in hemoglobin. Assuming an isotropic distribution of the transition moments of the heme in the plane of the porphyrin, we computed the orientation factors and the consequent transfer rates from the crystallographic coordinates of human oxy- and deoxy-hemoglobin. It appears that the orientation factors do not play a limiting role in regulating the energy transfer and that the rates are controlled almost exclusively by the intrasubunit separations between tryptophans and hemes. In intact hemoglobin tetramers the intrasubunit separations are such as to reduce lifetimes to 5 and 15 ps/ns of tryptophan lifetime. Lifetimes of several hundred picoseconds would be allowed by the intersubunit separations, but intersubunits transfer becomes important only when one heme per tetramer is absent or does not accept transfer. If more than one heme per tetramer is absent lifetimes of more than 1 ns would appear.  相似文献   

15.
16.
Energy transfer between tryptophans and aromatic ligands in apomyoglobin   总被引:1,自引:0,他引:1  
C K Luk 《Biopolymers》1971,10(8):1317-1329
The binding of three aromatic molecules to apomyoglobin has been investigated. In each case equilibrium dialysis studies and tryptophan fluorescence quenching studies indicate that a one to one complex has been formed. The fluorescence quenching studies further suggest that the binding of the aromatic molecules is at the heme site with possible involvement of the arginine CD3. Xenon, which is known to quench the fluorescence of aromatic hydrocarbons, is found to be bound to apomyoglobin-aromatic molecule complexes and quenches the emission of the aromatic molecule in the complexes. Oxygen quenches pyrene fluorescence in water solution but does not quench the pyrene fluorescence from the apomyoglobin-pyrene complex. This is explained by a slower rate of diffusion of oxygen to pyrene in the apomyoglobin-pyrene complex.  相似文献   

17.
Fluorescence resonance energy transfer on DNA has been studied for the estimation of distances between specific sites. Two kind of fluorophores, donor and acceptor, were incorporated on double-stranded DNA via phosphorothioate linkage (Sp, Rp, or racemic mixture). The thermal stability of labeled DNA's was slightly dependent on the stereochemical orientation of fluorophore, however all of the duplex structures were stable under the conditions for fluorescence study. The distances between donor and acceptor fluorophores, estimated from fluorescence energy transfer, generally agreed with the expected distance in a B-type DNA for the limiting distance.  相似文献   

18.
19.
C.P. Rijgersberg  J. Amesz 《BBA》1980,593(2):261-271
Fluorescence emission spectra of Anacystis nidulans, Porphyridium cruentum and Cyanidium caldarium, three phycobiliprotein-containing algae, were measured at temperatures between 4 and 120 K in the absence and in the presence of quinones as quenchers of chlorophyll fluorescence. In all species three major emission bands were observed in the chlorophyll a region, near 685 nm (F-685), 695 nm (F-695) and between 710 and 730 nm. Additional bands were observed at shorter wavelengths; these were preferentially excited by light absorbed by the phycobiliproteins and are presumably due to phycocyanins and allophycocyanins.

The amplitudes of F-685, F-695 and the long-wave emission showed a distinct increase upon cooling. For F-685 and F-695 the temperature dependence was similar to that earlier observed with spinach chloroplasts, for the long-wave emission it appeared to depend on the location of the emission bands, which was different for different species. All three bands were strongly quenched by quinones. These and other data suggest that the origin of these bands is the same as in higher plants, and that the fluorescence increase upon cooling can be explained by a lowering of the efficiency of energy transfer between chlorophyll molecules. It is concluded that at most a small percentage of the emission at 685 nm can be ascribed to allophycocyanin B, and that the efficiency of energy transfer between allophycocyanin B and chlorophyll a probably exceeds 99% both at 77 and 4 K. Experiments with isolated phycobilisomes suggest that energy transfer from allophycocyanin to allophycocyanin B occurs with an efficiency of about 90% at low temperature.

The effect of quenchers can be understood by the assumption that the quenching is caused by the formation of non-fluorescent traps in the bulk chlorophyll. Of three quinones tested, the strongest quenching was observed with dibromothymoquinone, which quenched F-685, F-695 and the long-wave emission approximately equally. Menadione and 1,4-naphthoquinone, however, preferentially quenched the long-wave bands, indicating a stronger interaction with Photosystem I than with Photosystem II chlorophylls.  相似文献   


20.
The primary or secondary structure of single-stranded nucleic acids has been investigated with fluorescent oligonucleotides, i.e., oligonucleotides covalently linked to a fluorescent dye. Five different chromophores were used: 2-methoxy-6-chloro-9-amino-acridine, coumarin 500, fluorescein, rhodamine and ethidium. The chemical synthesis of derivatized oligonucleotides is described. Hybridization of two fluorescent oligonucleotides to adjacent nucleic acid sequences led to fluorescence excitation energy transfer between the donor and the acceptor dyes. This phenomenon was used to probe primary and secondary structures of DNA fragments and the orientation of oligodeoxynucleotides synthesized with the alpha-anomers of nucleoside units. Fluorescence energy transfer can be used to reveal the formation of hairpin structures and the translocation of genes between two chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号