首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the visual system. Functional studies have revealed that it has roles in axon guidance and laminar patterning in Xenopus and chick embryos, and in controlling cephalic neural tube closure in mouse embryos. The recent identification of neogenin as a receptor for RGM has provided evidence of the diverse functions of this ligand-receptor pair. Re-expression of RGM is observed after injury in the adult human and rat central nervous systems. Inhibition of RGM enhances growth of injured axons and promotes functional recovery after spinal cord injury in rats. Thus, re-expression of embryonic repulsive cues in adult tissues contributes to failure of axon regeneration in the central nervous system.  相似文献   

2.
Zebrafish (Danio rerio) is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr−1 s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day−1 growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF)-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca2+-imaging revealed local elevation of cytoplasmic Ca2+ concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca2+ signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development, chemotropic axon guidance, and mechanisms underlying inhibition of neural regeneration in vitro, and complement observations made in vivo.  相似文献   

3.
Polysialic acid (polySia) is mainly described as a glycan modification of the neural cell adhesion molecule NCAM1. PolySia-NCAM1 has multiple functions during the development of vertebrate nervous systems including axon extension and fasciculation. Phylogenetic analyses reveal the presence of two related gene clusters, NCAM1 and NCAM2, in tetrapods and fishes. Within the ncam1 cluster, teleost fishes express ncam1a (ncam) and ncam1b (pcam) as duplicated paralogs which arose from a second round of ray-finned fish-specific genome duplication. Tetrapods, in contrast, express a single NCAM1 gene. Using the zebrafish model, we identify Ncam1b as a novel major carrier of polySia in the nervous system. PolySia-Ncam1a is expressed predominantly in rostral regions of the developing nervous system, whereas polySia-Ncam1b prevails caudally. We show that ncam1a and ncam1b have different expression domains which only partially overlap. Furthermore, Ncam1a and Ncam1b and their polySia modifications serve different functions in axon guidance. Formation of the posterior commissure at the forebrain/midbrain junction requires polySia-Ncam1a on the axons for proper fasciculation, whereas Ncam1b, expressed by midbrain cell bodies, serves as an instructive guidance cue for the dorso-medially directed growth of axons. Spinal motor axons, on the other hand, depend on axonally expressed Ncam1b for correct growth toward their target region. Collectively, these findings suggest that the genome duplication in the teleost lineage has provided the basis for a functional diversification of polySia carriers in the nervous system.  相似文献   

4.
5.
The semaphorin gene family contains a large number of secreted and transmembrane proteins; some function as repulsive and attractive cues of axon guidance during development. Here, we report cloning and characterization of zebrafish transmembrane semaphorin gene, semaphorin 6D (sema6D). Sema6D is expressed predominantly in the nervous system during embryogenesis, as determined by in situ hybridization. We also found that Sema6D binds Plexin-A1 in vitro, but not other Plexins. It induces the repulsion of dorsal root ganglion axons, but not sympathetic axons. Consequently, Sema6D might use Plexin-A1 as a receptor to repel specific types of axons during development.  相似文献   

6.
During development, motor axons navigate from the spinal cord to their muscle targets in the periphery using stereotyped pathways. These pathways are broken down into shorter segments by intermediate targets where axon growth cones are believed to coordinate guidance cues. In zebrafish stumpy mutants, embryonic development proceeds normally; however, as trunk motor axons stall at their intermediate targets, suggesting that Stumpy is needed specifically for motor axon growth cones to proceed past intermediate targets. Fine mapping and positional cloning revealed that stumpy was the zebrafish homolog of the atypical FACIT collagen collagenXIXa1 (colXIX). colXIX expression was observed in a temporal and spatial pattern, consistent with a role in motor axon guidance at intermediate targets. Knocking down zebrafish ColXIX phenocopied the stumpy phenotype and this morpholino phenotype could be rescued by adding back either mouse or zebrafish colXIX RNA. The stumpy phenotype was also partially rescued in mutants by first knocking down zebrafish ColXIX and adding back colXIX RNA, suggesting that the mutation is acting as a dominant negative. Together, these results demonstrate a novel function for a FACIT collagen in guiding vertebrate motor axons through intermediate targets.  相似文献   

7.
8.
Neurolin (zf DM-GRASP), a transmembrane protein with five extracellular immunoglobulin domains, is expressed by secondary but not primary motoneurons during zebrafish development. The spatiotemporally restricted expression pattern suggests that Neurolin plays a role in motor axon growth and guidance. To test this hypothesis, we injected zebrafish embryos with function-blocking Neurolin antibodies. In injected embryos, secondary motor axons form a broadened bundle along the common path and ectopic branches leave the common path at right angles. Moreover, the formation of the ventral and the rostral projection of secondary motor axons is inhibited during the second day of development. Pathfinding errors, resulting in secondary motor axons growing through ectopic regions of the somites, occur along the common path and in the dorsal and rostral projection. Our data are compatible with the view that Neurolin is involved in the recognition of guidance cues and acts as a receptor on secondary motor axons. Consistent with this idea is the binding pattern of a soluble Neurolin-Fc construct showing that putative ligands are distributed along the common path, the ventral projection, and in the area where the rostral projection develops.  相似文献   

9.
mAb DSS-8 binds to a 164-kD developmental stage-specific cell surface antigen in the nervous system of the cockroach, Periplaneta americana. The antigen is localized to different subsets of cells at various stages of development. The spatial and temporal distributions of DSS-8 binding were determined and are consistent with this antigen playing multiple roles in the development of the nervous system. Direct identification of some of these functions was made by perturbation experiments in which pioneer axon growth occurs in embryos that are cultured in vitro in the presence of mAb DSS-8 or its Fab fragment. Under these conditions the pioneer axons of the median fiber tract grow but follow altered pathways. In a smaller percentage of the ganglia, the immunoreagents additionally produce defasciculation of a subset of DSS-8 labeled axons. Therefore, direct roles for the DSS-8 antigen in both the guidance of pioneer axons and selective fasciculation have been demonstrated.  相似文献   

10.
Polysialic acid (PSA), a carbohydrate epitope attached to the neural cell adhesion molecule, serves as a modulator of axonal interactions during vertebrate nervous system development. We have used PSA-specific antibodies and whole-mount immunocytochemistry to describe the spatiotemporal expression pattern of PSA during zebrafish central nervous system development. PSA is transiently expressed on all cell bodies and, except for the posterior commissure, it is not found on axons. Floorplate cells in the spinal cord and hindbrain strongly express PSA throughout development. Enzymatic removal of PSA leads to a defasciculated growth pattern of the posterior commissure and also affects distinct subsets of commissural axons in the hindbrain, which fail to cross the midline. Whereas the disordered growth pattern of hindbrain commissures produced by PSA-removal could be mimicked by injections of soluble PSA, the growth of axons in the posterior commissure was unaffected by such treatment. These results suggest that there are distinct mechanisms for PSA action during axon growth and pathfinding in the developing zebrafish CNS.  相似文献   

11.
The segmental arrangement of spinal nerves in higher vertebrate embryos provides a simple system in which to study the factors that influence axon pathfinding. Developing motor and sensory axons are intimately associated with surrounding tissues that direct axon guidance. We argue that two distinct guidance mechanisms, viz. contact repulsion and chemorepulsion, act simultaneously to prescribe spinal axon trajectories by ’surround-repulsion’. Motor and sensory axons grow freely within the anterior half of each mesodermal somite, because they are excluded from posterior half-somites by contact repulsion. By contrast, the dorsoventral trajectory that bipolar sensory axons of the dorsal root ganglia follow is governed by diffusible repellents originating from the notochord medially and dermamyotome laterally. Even though spinal nerve development appears to be a simple system for elucidating axon guidance mechanisms, many distinct candidate guidance molecules have been implicated and their relative contributions remain to be evaluated. Received: 28 May 1997 / Accepted: 27 June 1997  相似文献   

12.
13.
Early neuronal scaffold development studies suggest that initial neurons and their axons serve as guides for later neurons and their processes. Although this arrangement might aid axon navigation, the specific consequence(s) of such interactions are unknown in vivo. We follow forebrain commissure formation in living zebrafish embryos using timelapse fluorescence microscopy to examine quantitatively commissural axon kinetics at the midline: a place where axon interactions might be important. Although it is commonly accepted that commissural axons slow down at the midline, our data show this is only true for leader axons. Follower axons do not show this behavior. However, when the leading axon is ablated, follower axons change their midline kinetics and behave as leaders. Similarly, contralateral leader axons change their midline kinetics when they grow along the opposite leading axon across the midline. These data suggest a simple model where the level of growth cone exposure to midline cues and presence of other axons as a substrate shape the midline kinetics of commissural axons.  相似文献   

14.
15.
Although recent studies have extended our understanding of agrin's function during development, its function in the central nervous system (CNS) is not clearly understood. To address this question, zebrafish agrin was identified and characterized. Zebrafish agrin is expressed in the developing CNS and in nonneural structures such as somites and notochord. In agrin morphant embryos, acetylcholine receptor (AChR) cluster number and size on muscle fibers at the choice point were unaffected, whereas AChR clusters on muscle fibers in the dorsal and ventral regions of the myotome were reduced or absent. Defects in the axon outgrowth by primary motor neurons, subpopulations of branchiomotor neurons, and Rohon-Beard sensory neurons were also observed, which included truncation of axons and increased branching of motor axons. Moreover, agrin morphants exhibit significantly inhibited tail development in a dose-dependent manner, as well as defects in the formation of the midbrain-hindbrain boundary and reduced size of eyes and otic vesicles. Together these results show that agrin plays an important role in both peripheral and CNS development and also modulates posterior development in zebrafish.  相似文献   

16.
During embryogenesis, the basic axon scaffold of the nervous system is formed by special axons that pioneer pathways between groups of cells. To find their way, the pioneer growth cones detect specific cues in their extracellular environment. One of these guidance cues is netrin. Observations and experimental manipulations in vertebrates and nematodes have shown that netrin is a bifunctional guidance cue that can simultaneously attract and repel axons. During the formation of this basic axon scaffold in Caenorhabditis elegans, the netrin UNC-6 is expressed by neuroglia and pioneer neurons, providing hierarchical guidance cues throughout the animal. Each cue has a characteristic role depending on the cell type, its position and the developmental stage. These roles include activities as global, decussation and labeled-pathway cues. This hierarchical model of UNC-6 netrin-mediated guidance suggests a method by which guidance cues can direct formation of basic axon scaffolds in developing nervous systems.  相似文献   

17.
Semaphorins are a large class of proteins that function throughout the nervous system to guide axons. It had previously been shown that Semaphorin 5A (Sema5A) was a bifunctional axon guidance cue for mammalian midbrain neurons. We found that zebrafish sema5A was expressed in myotomes during the period of motor axon outgrowth. To determine whether Sema5A functioned in motor axon guidance, we knocked down Sema5A, which resulted in two phenotypes: a delay in motor axon extension into the ventral myotome and aberrant branching of these motor axons. Both phenotypes were rescued by injection of full-length rat Sema5A mRNA. However, adding back RNA encoding the sema domain alone significantly rescued the branching phenotype in sema5A morphants. Conversely, adding back RNA encoding the thrombospondin repeat (TSR) domain alone into sema5A morphants exclusively rescued delay in ventral motor axon extension. Together, these data show that Sema5A is a bifunctional axon guidance cue for vertebrate motor axons in vivo. The TSR domain promotes growth of developing motor axons into the ventral myotome whereas the sema domain mediates repulsion and keeps these motor axons from branching into surrounding myotome regions.  相似文献   

18.
Repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the visual system [T. Yamashita, B.K. Mueller, K. Hata, Neogenin and RGM signaling in the central nervous system, Curr. Opin. Neurobiol. 17 (2007) 29-34]. Functional studies in Xenopus and chick embryos have revealed the roles of RGM in axon guidance and laminar patterning, while those in mouse embryos have demonstrated its function in regulating the cephalic neural tube closure. Importantly, RGM inhibition enhanced the growth of injured axons and promoted functional recovery after spinal cord injury in rats. Here, we identified two RGMa-derived peptides that functioned as antagonists against RGMa. The peptides studied in vitro dose-dependently suppressed the neurite growth inhibition and growth cone collapse induced by RGMa. Thus, these peptides are promising reagents to treat injuries of the central nervous system.  相似文献   

19.
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.  相似文献   

20.
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号