首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Carboxypeptidase E (CPE) functions in the posttranslational processing of bioactive peptides. Like other peptide processing enzymes, CPE is initially produced as a precursor ("proCPE") that undergoes posttranslational processing at a site containing five adjacent Arg residues near the N-terminus and at other sites near the C-terminus of proCPE. The time course of the N-terminal processing step suggests that this conversion occurs in either the Golgi apparatus or the secretory vesicles. To delineate further the site of proCPE processing, pulse/chase analysis was performed under conditions that block transit out of the Golgi apparatus (brefeldin A, carbonyl cyanide m -chlorophenylhydrazone, or 20°C) or that block acidification of vesicles (chloroquine, monensin, or ammonium chloride). The results of these analysis suggest that efficient proCPE processing requires an acidic post-Golgi compartment. To test whether known processing enzymes can perform this cleavage, purified proCPE was incubated with furin, prohormone convertase 1, or a dynorphin converting enzyme, and the products were analyzed on denaturing polyacrylamide gels. Furin cleaves proCPE within the N-terminal region, although the reaction is not very efficient, requiring relatively large amounts of furin or long incubation times. The other two peptide processing enzymes did not cleave proCPE, whereas a relatively small amount of secretory granule extract was able to convert proCPE into CPE. Taken together, these findings suggest that the conversion of proCPE into CPE occurs primarily in secretory vesicles.  相似文献   

2.
The posttranslational processing enzyme peptidylglycine alpha-amidating monooxygenase (PAM) occurs naturally in integral membrane and soluble forms. With the goal of understanding the targeting of these proteins to secretory granules, we have compared the maturation, processing, secretion, and storage of PAM proteins in stably transfected AtT-20 cells. Integral membrane and soluble PAM proteins exit the ER and reach the Golgi apparatus with similar kinetics. Biosynthetic labeling experiments demonstrated that soluble PAM proteins were endoproteolytically processed to a greater extent than integral membrane PAM; this processing occurred in the regulated secretory pathway and was blocked by incubation of cells at 20 degrees C. 16 h after a biosynthetic pulse, a larger proportion of soluble PAM proteins remained cell-associated compared with integral membrane PAM, suggesting that soluble PAM proteins were more efficiently targeted to storage granules. The nonstimulated secretion of soluble PAM proteins peaked 1-2 h after a biosynthetic pulse, suggesting that release was from vesicles which bud from immature granules during the maturation process. In contrast, soluble PAM proteins derived through endoproteolytic cleavage of integral membrane PAM were secreted in highest amount during later times of chase. Furthermore, immunoprecipitation of cell surface-associated integral membrane PAM demonstrated that very little integral membrane PAM reached the cell surface during early times of chase. However, when a truncated PAM protein lacking the cytoplasmic tail was expressed in AtT-20 cells, > 50% of the truncated PAM-1 protein reached the cell surface within 3 h. We conclude that the trafficking of integral membrane and soluble secretory granule-associated enzymes differs, and that integral membrane PAM proteins are less efficiently retained in maturing secretory granules.  相似文献   

3.
Activation and membrane binding of carboxypeptidase E   总被引:3,自引:0,他引:3  
Carboxypeptidase E (CPE) is a carboxypeptidase B-like enzyme that is thought to be involved in the processing of peptide hormones and neurotransmitters. Soluble and membrane-associated forms of CPE have been observed in purified secretory granules from various hormone-producing tissues. In this report, the influence of membrane association on CPE activity has been examined. A substantial amount of the membrane-associated CPE activity is solubilized upon extraction of bovine pituitary membranes with either 100 mM sodium acetate buffer (pH 5.6) containing 0.5% Triton X-100 and 1 M NaCl, or by extraction with high pH buffers (pH greater than 8). These treatments also lead to a two- to threefold increase in CPE activity. CPE extracted from membranes with either NaCl/Triton X-100 or high pH buffers hydrolyzes the dansyl-Phe-Ala-Arg substrate with a lower Km than the membrane-associated CPE. The Vmax of CPE present in extracts and membrane fractions after the NaCl/Triton X-100 treatment is twofold higher than in untreated membranes. Treatment of membranes with high pH buffers does not affect the Vmax of CPE in the soluble and particulate fractions. Pretreatment of membranes with bromoacetyl-D-arginine, an active site-directed irreversible inhibitor of CPE, blocks the activation by NaCl/Triton X-100 treatment. Thus the increase in CPE activity upon extraction from membranes is probably not because of the conversion of an inactive form to an active one, but is the result of changes in the conformation of the enzyme that effect the catalytic activity.  相似文献   

4.
Carboxypeptidase E (CPE), a peptide hormone-processing enzyme, is present within secretory granules in both a soluble form and a form which is membrane-bound at pH 5.5 but soluble at neutral pH. Antisera raised against a peptide corresponding to the predicted COOH-terminus of CPE bind to the membrane-associated form of CPE but not to the soluble form. This COOH-terminal region is predicted to form an amphiphilic alpha-helix, containing several pairs of hydrophobic residues separated by hydrophilic residues. Synthetic COOH-terminal peptides 11-24 residues in length are able to bind to bovine pituitary membranes and can be extracted by conditions that extract the membrane-bound form of CPE. The influence of pH on the membrane binding of a 21-residue COOH-terminal peptide is similar to the membrane binding of CPE: at pH values less than 6 the majority of the peptide is membrane-bound, while at pH values above 8 less than 20% is membrane-bound. Both the 21-residue COOH-terminal peptide and the purified membrane form of CPE, but not the soluble form, partition into Triton X-114 only at low pH (pH less than 6). Combined polar and hydrophobic interactions of the COOH-terminal peptide appear to be responsible for the reversible, pH-dependent association of CPE with membranes.  相似文献   

5.
Cultured astrocytes have recently been shown to produce certain neuropeptides, as well as neuropeptide processing enzymes. To characterize the secretory pathway in cultured astrocytes, we used the neuropeptide processing enzyme carboxypeptidase E (CPE) as a marker for neuropeptide secretion. Cultured astrocytes and AtT-20 cells, a mouse pituitary-derived neuroendocrine cell line, were labeled with [35S]Met for 15 min and then chased with unlabeled Met. CPE was isolated from either medium or cell extracts using a substrate affinity column. The time course of secretion of radiolabeled CPE was significantly different for cultured astrocytes as compared with AtT-20 cells. CPE was rapidly secreted from the astrocytes after a 30-min lag time, presumably reflecting transport through the endoplasmic reticulum and Golgi apparatus, followed by constitutive secretion. The secretion of radiolabeled CPE was essentially complete by 2 h. In contrast, only a portion of the radiolabeled CPE was secreted from AtT-20 cells over a 2-3-h period, indicating that the majority of newly synthesized CPE is stored, presumably in secretory granules within the AtT-20 cells. The regulation of CPE secretion from astrocytes was also examined. CPE secretion is stimulated two- to threefold by prolonged treatment (3-48 h) with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) but not by treatment with other secretagogues that stimulate CPE secretion from AtT-20 cells (forskolin, isoproterenol, A23187, and vasoactive intestinal peptide) or short (less than 3 h) exposure to TPA. Taken together, these results indicate that the secretory pathway for CPE, and presumably neuropeptides, is substantially different in astrocytes than the secretory pathway for CPE in neuroendocrine cells.  相似文献   

6.
Peptidylglycine alpha-amidating monooxygenase (PAM) is a bifunctional enzyme responsible for the alpha-amidation of peptides in secretory granules of neuroendocrine cells. The single gene encoding PAM undergoes tissue-specific alternative splicing and endoproteolytic processing to generate bifunctional membrane proteins with a single transmembrane domain as well as soluble proteins that are mono- or bifunctional. In order to examine the endoproteolytic processing and subcellular localization of the various forms of PAM in cells lacking regulated secretory granules, we established stably transfected hEK-293 cell lines expressing naturally occurring and mutant forms of PAM. As expected, newly synthesized soluble PAM proteins were rapidly secreted into the medium. Integral membrane protein forms of PAM were largely localized in the perinuclear region with punctate staining visible throughout the cell and 2-5% of the enzyme activity detectable on the cell surface. Bifunctional PAM proteins were slowly released into the medium after expression of integral membrane protein forms of PAM. Deletion of 77 amino acids from the COOH-terminus of the integral membrane forms of PAM resulted in a membrane-bound protein which retained both enzymatic activities but accumulated on the cell surface. Rapid internalization of full-length PAM proteins was observed by incubating live cells with antiserum to PAM; deletion of the COOH-terminal domain eliminated the ability of cells to internalize PAM. Thus the cytoplasmic domain of integral membrane PAM contains a routing determinant recognized by cells lacking the regulated secretory pathway.  相似文献   

7.
Enkephalin convertase, the enkephalin-synthesizing carboxypeptidase B-like enzyme, has been purified to apparent homogeneity from bovine pituitary and adrenal chromaffin granule membranes. The membrane-bound enkephalin convertase can be solubilized in high yield with 0.5% Triton X-100 in the presence of 1 M NaCl. Extensive purification is achieved by affinity chromatography with p-aminobenzoyl-L-arginine linked to Sepharose 6B. Enzyme purified from both pituitary and adrenal chromaffin granule membranes shows a single band by sodium dodecyl sulfate polyacrylamide gel electrophoresis with an apparent molecular weight of 52,500, whereas enkephalin convertase purified from soluble extracts of these tissues has an apparent molecular weight of 50,000. The regional distribution of the membrane-bound enzyme in the rat brain differs from that of the soluble enzyme. While the soluble enzyme shows 10-fold variations, resembling somewhat the enkephalin peptides, membrane-bound enkephalin convertase is more homogeneously distributed throughout the brain. In rat pituitary glands, membrane-bound enzyme activity is similar in the anterior and posterior lobes, whereas the soluble enzyme is enriched in the anterior lobe. Membrane-bound and soluble forms of enkephalin convertase isolated from either bovine pituitary glands or adrenal chromaffin granules show identical substrate and inhibitor specificities. As with the soluble enzyme, membrane-bound enkephalin convertase hydrolyzes [Met]- and [Leu]enkephalin-Arg6 and -Lys6 to enkephalin, with no further degradation of the pentapeptide.  相似文献   

8.
Peptidylglycine alpha-amidating monooxygenase (PAM: EC 1.14.17.3) is a bifunctional protein which catalyzes the COOH-terminal amidation of bioactive peptides; the NH2-terminal monooxygenase and mid-region lyase act in sequence to perform the peptide alpha-amidation reaction. Alternative splicing of the single PAM gene gives rise to mRNAs generating PAM proteins with and without a putative transmembrane domain, with and without a linker region between the two enzymes, and forms containing only the monooxygenase domain. The expression, endoproteolytic processing, storage, and secretion of this secretory granule-associated protein were examined after stable transfection of AtT-20 mouse pituitary cells with naturally occurring and truncated PAM proteins. The transfected proteins were examined using enzyme assays, subcellular fractionation, Western blotting, and immunocytochemistry. Western blots of crude membrane and soluble fractions of transfected cells demonstrated that all PAM proteins were endoproteolytically processed. When the linker region was present between the monooxygenase and lyase domains, monofunctional soluble enzymes were generated from bifunctional PAM proteins; without the linker region, bifunctional enzymes were generated. Soluble forms of PAM expressed in AtT-20 cells and soluble proteins generated through selective endoproteolysis of membrane-associated PAM were secreted in an active form into the medium; secretion of the transfected proteins and endogenous hormone were stimulated in parallel by secretagogues. PAM proteins were localized by immunocytochemistry in the perinuclear region near the Golgi apparatus and in secretory granules, with the greatest intensity of staining in the perinuclear region in cell lines expressing integral membrane forms of PAM. Monofunctional and bifunctional PAM proteins that were soluble or membrane-associated were all packaged into regulated secretory granules in AtT-20 cells.  相似文献   

9.
Peptide alpha-amidation is a widespread, often essential posttranslational modification shared by many bioactive peptides and accomplished by the products of a single gene encoding a multifunctional protein, peptidylglycine alpha-amidating monooxygenase (PAM). PAM has two catalytic domains that work sequentially to produce the final alpha-amidated product peptide. Tissue-specific alternative splicing can generate forms of PAM retaining or lacking a domain required for the posttranslational separation of the two catalytic activities by endoproteases found in neuroendocrine tissue. Tissue-specific alternative splicing also governs the presence of a transmembrane domain and generation of integral membrane or soluble forms of PAM. The COOH-terminal domain of the integral membrane PAM proteins contains routing information essential for the retrieval of PAM from the surface of endocrine and nonendocrine cells. Tissue-specific endoproteolytic processing can generate soluble PAM proteins from integral membrane precursors. Soluble PAM proteins are rapidly secreted from stably transfected nonneuroendocrine cells but are stored in the regulated secretory granules characteristic of neurons and endocrine cells.  相似文献   

10.
《The Journal of cell biology》1986,103(6):2299-2309
The biosynthesis of the peptides caerulein and PGLa in granular skin glands of Xenopus laevis proceeds through a pathway that involves discrete morphological rearrangements of the entire secretory compartment. Immunocytochemical localization of these peptides during gland development indicates that biosynthetic precursors are synthesized in intact secretory cells, whereas posttranslational processing requires morphological reorganization to a vacuolated stage. The bulk of the processed secretory material is then stored in vacuolae- derived storage granules. In the mature gland, storage granules are still formed at a low level. However, in this case processing takes place in a distinct cytoplasmic structure, the multicored body, which we suggest to be functionally equivalent to vacuolae. When granular glands regenerate after having lost all their storage granules upon strong stimuli, another morphological pathway is used. 2 wk after gland depletion, secretory cells become arranged in a monolayer that covers the luminal surface of the gland. Storage granules are formed continuously within these intact secretory cells. Here, precursor processing does not require a vacuolated stage as in newly generated glands but occurs in multicored bodies. Most storage granules seem to be formed in the third week of regeneration. The high biosynthetic activity is also reflected by the high activity of the putative processing enzyme dipeptidyl aminopeptidase during this period of regeneration.  相似文献   

11.
Abstract: The molecular forms and membrane association of SPC2, SPC3, and furin were investigated in neuroendocrine secretory vesicles from the anterior, intermediate, and neural lobes of bovine pituitary and bovine adrenal medulla. The major immunoreactive form of SPC2 was the full-length enzyme with a molecular mass of 64 kDa. The major immunoreactive form of SPC3 was truncated at the carboxyl terminus and had a molecular mass of 64 kDa. Full-length 86-kDa SPC3 with an intact carboxyl terminus was found only in bovine chromaffin granules. Immunoreactive furin was also detected in secretory vesicles. The molecular masses of 80 and 76 kDa were consistent with carboxyl-terminal truncation of furin to remove the transmembrane domain. All three enzymes were distributed between the soluble and membrane fractions of secretory vesicles although the degree of membrane association was tissue specific and, in the case of SPC3, dependent on the molecular form of the enzyme. Significant amounts of membrane-associated and soluble forms of SPC2, SPC3, and furin were found in pituitary secretory vesicles, whereas the majority of the immunoreactivity in chromaffin granules was membrane associated. More detailed analyses of chromaffin granule membranes revealed that 86-kDa SPC3 was more tightly associated with the membrane fraction than the carboxyl terminus-truncated 64-kDa form.  相似文献   

12.
We explored the effect of copper availability on the synthesis and trafficking of peptidylglycine alpha-amidating monooxygenase (PAM), an essential cuproenzyme whose catalytic domains function in the lumen of peptide-containing secretory granules. Corticotrope tumor cell lines expressing integral membrane and soluble forms of PAM were depleted of copper using bathocuproinedisulfonic acid or loaded with copper by incubation with CuCl(2). Depleting cellular copper stimulates basal secretion of soluble enzyme produced by endoproteolytic cleavage of PAM in secretory granules and transit of membrane PAM though the endocytic pathway and back into secretory granules. Unlike many cuproenzymes, lack of copper does not lead to instability of PAM. Copper loading decreases cleavage of PAM in secretory granules, secretion of soluble enzyme, and the return of internalized PAM to secretory granules. The trafficking and stability of the soluble, luminal domain of PAM and truncated membrane PAM lacking a cytosolic domain are not affected by copper availability. Taken together, our data demonstrate a role for copper-sensitive cytosolic machinery in directing endocytosed membrane PAM back to secretory granules or to a degradative pathway. The response of PAM to lack of copper suggests that it facilitates copper homeostasis.  相似文献   

13.
Carboxypeptidase E (CPE) is a sorting receptor that directs the prohormone pro-opiomelanocortin (POMC) to the regulated secretory pathway, and is also a prohormone processing enzyme in neuro/endocrine cells. It has been suggested that the 25 C-terminal amino acids are necessary for the binding of CPE to secretory granule membranes, but its orientation in the membrane is not known. In this study, we examined the structure and orientation of the membrane-binding domain at the C-terminus of CPE. In vitro experiments using model membranes demonstrated that the last 22 amino acids of CPE (CP peptide) insert in a shallow orientation into lipid bilayers at low pH. Circular dichroism analysis indicated that the CP peptide adopts a partial alpha-helical configuration at low pH, and helix content increases when it is bound to lipid. Protease protection experiments, immunolabeling, and immunoisolation of intact secretory granules with a C-terminal antibody revealed a cytoplasmic domain in CPE, consistent with a transmembrane orientation of this protein. We conclude that the membrane-binding domain of CPE must adopt an alpha-helical configuration to bind to lipids, and that CPE may require another integral membrane "chaperone" protein to insert through the lipid bilayer in a transmembrane fashion.  相似文献   

14.
William G North  Jinlin Du 《Peptides》1998,19(10):1743-1747
Small-cell carcinoma of the lung (SCCL) is a neuroendocrine tumor characterized by having the capacity to produce and secrete a number of small neuropeptides. These peptides serve the tumor as autocrine growth factors. SCCL is known to undergo a process of dedifferentiation to a variant (drug-resistant) form, and this process is associated with loss of marker enzymes such as neuron-specific enolase (NSE) and dopa decarboxylase (DDC). The current study was designed to discover if variant SCCL, represented by cell line NCI H82, retains some capacity to generate active neuropeptides (like vasopressin) from their precursors by continuing to express the three key classes of enzymes necessary for such conversions, namely prohormone convertases (PCs), carboxypeptidases (CPs), and peptidylglycine α-amidating monooxygenase (PAM). RT-PCR for mRNAs representing PC1, PC2, CPE, and PAM was performed on total RNA extracted from NCI H82. The primers selected for PCR and partial sequencing were synthetic 20, 21, 22, and 24 oligomers designed to yield products of 533, 880, 405, and 560 base pairs (bp) for PC1, PC2, CPE, and PAM, respectively. For the conditions used, we were able to demonstrate products for all four enzymes. Each of the four products generated were of the expected size. Cloning and sequencing of these products revealed that each had a structure identical to that published for the human form of the respective enzyme. Western analysis with antibodies against PC1, PC2, CPE, and PAM, provided evidence that mRNAs for the four enzymes are translated into proteins that could represent functional forms. Our findings therefore demonstrate that key enzymes involved in the generation of active neuropeptides, unlike the marker enzymes NSE and DDC, continue to be expressed by variant SCCL.  相似文献   

15.
Carboxypeptidase E (CPE; EC 3.4.17.10) is a carboxypeptidase B-like enzyme involved with the biosynthesis of numerous peptide hormones and neurotransmitters, including the enkephalins. Reflex splanchnic stimulation of the rat adrenal medulla, which has previously been found to substantially increase enkephalin mRNA and enkephalin peptide levels, was examined for an influence on CPE mRNA and enzymatic activity. Several hours after insulin-induced reflex splanchnic stimulation, the levels of CPE activity in rat adrenal medulla are reduced to 40-60% of control. CPE activity returns to the control level 2 days after the treatment and then continues to increase, reaching approximately 200% of control 1 week after the treatment. The time course of the changes in CPE activity is different from those of the changes in epinephrine levels and the previously reported changes in enkephalin peptide levels. CPE mRNA is also influenced by the insulin shock, with levels increasing to 155% of the control level after 6 h and 170% after 2 days. The time course of the change in CPE mRNA levels is similar to that previously found for proenkephalin mRNA. However, the magnitude of the change is much different: Proenkephalin mRNA has been reported to increase by 1,600%. The changes in CPE mRNA and enzymatic activity are consistent with the proposal that CPE is not a rate-limiting enzyme in the biosynthesis of enkephalin.  相似文献   

16.
When the intracellular transit of 3H-labeled (pro)-insulin polypeptides is perturbed by monensin in the pancreatic B-cell, proinsulin conversion is impaired and the radioactive peptides accumulate in a clathrin-coated membrane compartment related to the Golgi apparatus. Clathrin was demonstrated by immunocytochemistry using the postembedding protein A-gold technique. The coated compartment, which is dilated by monensin, comprises Golgi cisternae with condensing secretory material and newly formed secretory granules; under monensin block, the noncoated (storage) secretory granules do not become significantly labeled. These data suggest that an unperturbed passage through a Golgi-related, clathrin-coated membrane compartment which subsequently matures into noncoated secretory granules is needed for the normal processing of (pro)insulin polypeptides.  相似文献   

17.
In the midgut of Spodoptera frugiperda larvae, subcellular fractionation data suggest that aminopeptidase and part of amylase, carboxypeptidase A, dipeptidase, and trypsin are bound to the microvillar membranes; that major amounts of soluble dipeptidase, cellobiase, and maltase are trapped in the cell glycocalyx; and finally that soluble carboxypeptidase, amylase, and trypsin occur in intracellular vesicles. Most luminal acetylglucosaminidase is soluble and restricted to the ectoperitrophic contents. Aminopeptidase occurs in minor amounts bound to membranes both in the ectoperitrophic contents and incorporated in the peritrophic membrane. Amylase, carboxypeptidase A, and trypsin are found in minor amounts in the ectoperitrophic contents (both soluble and membrane-bound) and in major amounts in the peritrophic membrane with contents. Part of the activities recovered in the last mentioned contents corresponds to enzyme molecules incorporated in the peritrophic membrane. The results suggest that initial digestion is carried out in major amounts by enzymes in the endoperitrophic space and, in minor amounts, by enzymes immobilized in the peritrophic membrane. Intermediate and final digestion occur at the ectoperitrophic space or at the surface of midgut cells. The results also lend support to the hypothesis that amylase and trypsin are derived from membrane-bound forms, are released in soluble form by a microapocrine mechanism, and are partly incorporated into the peritrophic membrane. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Two Ca(2+)-dependent endopeptidases endowed with specificities for paired basic residues have been disclosed in rat and ox neurohypophysial secretory granules. Specificities investigated by using synthetic fluorogenic substrates showed the presence of a Lys-Arg endopeptidase with optimum pH close to the granule pH (5.5) and of an Arg-Arg endopeptidase more active at pH 7.0. Granule extracts have virtually no activity towards Lys-Lys-containing substrate or monobasic substrates. Pro-Gly-Lys-Arg-chloromethylketone appears a very efficient inhibitor for the Lys-Arg enzyme. Soluble and membrane-bound forms of both endopeptidases have been detected. pH-dependence of membrane binding and partitioning into Triton X-114 suggest that the membrane-bound form of Lys-Arg endopeptidase is associated through an amphiphilic alpha-helix. It is proposed that the enzyme Lys-Arg cleaves prooxytocin and provasopressin at their signal sequence Gly-Lys-Arg when these precursors arrive in the neurosecretory granules. The processing proceeds in the granules through carboxypeptidase E and alpha-amidating enzyme complex for giving mature pharmacologically active nonapeptide hormones.  相似文献   

19.
Acinetobacter calcoaceticus is known to contain soluble and membrane-bound quinoprotein D-glucose dehydrogenases, while other oxidative bacteria contain the membrane-bound enzyme exclusively. The two forms of glucose dehydrogenase were believed to be the same enzyme or interconvertible forms. Previously, Matsushita et al. [(1988) FEMS Microbiol. Lett 55, 53-58] showed that the two enzymes are different with respect to enzymatic and immunological properties, as well as molecular weight. In the present study, we purified both enzymes and compared their kinetics, reactivity with ubiquinone homologues, and immunological properties in detail. The purified membrane-bound enzyme had a molecular weight of 83,000, while the soluble form was 55,000. The purified enzymes exhibited totally different enzymatic properties, particularly with respect to reactivity toward ubiquinone homologues. The soluble enzyme reacted with short-chain homologues only, whereas the membrane-bound enzyme reacted with long-chain homologues including ubiquinone 9, the native ubiquinone of the A. calcoaceticus. Furthermore, the two enzymes were distinguished immunochemically; the membrane-bound enzyme did not cross-react with antibody raised against the soluble enzyme, nor did the soluble enzyme cross-react with antibody against the membrane-bound enzyme. Thus, each glucose dehydrogenase is a molecularly distinct entity, and the membrane-bound enzyme only is coupled to the respiratory chain via ubiquinone.  相似文献   

20.
Human erythrocytes are shown to contain soluble proteinase(s) that convert excess β-hemoglobin introduced by in vitro entrapment to modified forms that are bound to the erythrocyte membrane. The bound modified hemoglobin chains are degraded in the membrane to yield acid soluble products. Native hemoglobin chains are not bound to the membrane and are not degraded. The cooperative degradation of excess β-hemoglobin chains by soluble and membrane-bound enzymes occurs at neutral pH and does not require energy. The results provide a role for the membrane-bound acid proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号