首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lu TL  Chen CS  Yang FL  Fung JM  Chen MY  Tsay SS  Li J  Zou W  Wu SH 《Carbohydrate research》2004,339(15):2593-2598
The structure of a major glycolipid isolated from the thermophilic bacteria Thermus oshimai NTU-063 was elucidated. The sugar and fatty acid compositions were determined by GC-MS and HPLC analysis on their methanolysis and methylation derivatives, respectively. After removal of both O- and N-acyl groups by alkaline treatment, the glycolipid was converted to a fully acetylated tetraglycosyl glycerol derivative, the structure of which was then determined by NMR spectroscopy (TOCSY, HSQC, HMBC). Thus, the complete structure of the major glycolipid from T. oshimai NTU-063 was established as beta-Glcp-(1-->6)-beta-Glcp-(1-->6)-beta-GlcpNAcyl-(1-->2)-alpha-Glcp-(1-->1)-glycerol diester. The N-acyl groups on the 2-amino-2-deoxy-glucopyranose residue are C15:0 and C17:0 fatty acids, whereas the fatty acids of glycerol diester are more heterogeneous including both straight and branched fatty acids from C15:0 to C18:0.  相似文献   

2.
Structural studies on the major glycolipid isolated from Rothia mucilaginosa were carried out utilising specific chemical degradation, NMR spectroscopy and matrix-assisted laser-desorption/ionization time of flight mass spectrometry (MALDI TOF-MS). The glycolipid was found to be a dimannosylacylmonoglyceride in which the carbohydrate part was the glycerol-linked dimannoside alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-sn-Gro (Man A-Man B-Gro), of which Man B was esterified at O-6 by a fatty acid residue. A second fatty acid substituted the secondary methylene position of the glycerol residue, in contrast to the glycolipid previously found in R. dentocariosa and Saccharopolyspora strains, in which the second fatty acid esterified the primary methylene position of glycerol. Results of the ELISA experiment with rabbit specific antibacterial sera indicate that these two major glycolipids are antigenic, and the patterns of serological reactivity are similar but not identical.  相似文献   

3.
1. The total lipid was extracted from the non-capsulated strain of Pneumococcus I-192R, A.T.C.C. 12213, with chloroform-methanol mixtures. Two glycolipids were isolated by chromatography on silicic acid and DEAE-cellulose (acetate form). 2. The major glycolipid was obtained pure in a yield of 640mg./34g. dry wt. of cells and represents about 34% of the total lipid. It contained galactose, glucose, glycerol and fatty acid ester residues in the proportions 1:1:1:2, and yielded on saponification a crystalline non-reducing glycoside. 3. The structure of the glycoside was shown to be O-alpha-d-galactopyranosyl-(1-->2)-O-alpha-d-glucopyranosyl-(1-->1)-d-glycerol. The fatty acids obtained on saponification were identified by gas-liquid partition chromatography of their methyl esters. 4. The minor glycolipid was obtained as a 1:1 (w/w) mixture with the major component, but after saponification the two glycosides were separated by paper chromatography. Evidence was obtained for the structure of the glycoside derived from the minor glycolipid as 1-O-alpha-d-glucosylglycerol. 5. A general method is described for determining the stereochemistry of the glycerol moiety in 1-linked glycerol glycosides.  相似文献   

4.
A mixture of two lyso isomers of a galactolipid was obtained from Dictyonema glabratum. Aqueous hydrolysis gave rise to galactose and glycerol in a 3:1 molar ratio. ESI-MS spectroscopy gave, in the positive-ion mode, a pseudomolecular ion at m/z 839 and daughter ions with m/z 677, 600, 515 and 353, suggesting three galactosyl units linked to a glycerol moiety, substituted by one O-acyl group. 1D and 2D NMR experiments were used to characterize the glycolipid, and HMQC examination showed three anomeric signals, corresponding to two alpha-Galp and one beta-Galp residue liked to glycerol. The glycolipid structure was shown to be O-alpha-D-Galp-(1-->6)-O-alpha-D-Galp-(1-->6)-O-beta-D-Galp-(1<-->1)-2- and -3-monoacyl-D-glycerol, the latter structures not having been previously found in nature. The fatty acid composition was determined by GC-MS of derived methyl esters: that of palmitic acid C(16:0) was the most abundant, although the presence of C(12:0), C(14:0), C(16:1) and C(18:0) esters was observed.  相似文献   

5.
The lipid composition of Mycoplasma laidlawii strain B   总被引:15,自引:4,他引:11       下载免费PDF全文
1. Total lipid was extracted from Mycoplasma laidlawii strain B with chloroform-methanol mixtures and fractionated into neutral lipid, glycolipid and phospholipid components by chromatography on silicic acid. 2. Saponification of the glycolipid fraction, which represented nearly half of the total lipid, yielded two glycosides for which the structures O-alpha-d-glucopyranosyl-(1-->1)-d-glycerol and O-alpha-d-glucopyranosyl-(1-->2)-O-alpha-d-glucopyranosyl-(1-->1)-d-glycerol were established. 3. The ratio of monoglucosyl diglyceride to diglucosyl diglyceride increased with the age of the culture, though the total glycolipid concentration remained virtually constant. The glycolipid concentration was unaffected by the addition of cholesterol to the culture medium. 4. The phospholipid fraction consisted of two components, phosphatidylglucose and phosphatidylglycerol. Organisms harvested at acidic pH also contained O-amino acyl esters of phosphatidylglycerol. No lipids containing inositol could be detected.  相似文献   

6.
A novel glycosphingolipid, beta-D-GalNAcp(1-->4)[alpha-D- Fucp(1-->3)]-beta-D-GlcNAcp(1-->)Cer (1), isolated from the marine sponge Aplysinella rhax, has a unique structure, with D-fucose and N-acetyl-D-galactosamine attached to a reducing-end N-acetyl-D-glucosamine through an alpha1-->3 and beta1-->4 linkage, respectively. We synthesized glycolipid analogues carrying a 2-branched fatty alkyl residue or a 2-trimethylsilyl ethyl residue in place of ceramide (2 and 3), non-natural type trisaccharide analogue containing an L-fucose residue (4), and other analogues (5 and 6). Among these prepared compounds, 2 showed the most potent nitric oxide (NO) production inhibitory activity against LPS-activated J774.1 cells. In addition, their structure-activity relationships were established.  相似文献   

7.
The Streptococcus sp. studied here is closely related to Streptococcus pneumoniae with 98.6% 16S rRNA similarity and 65% DNA/DNA homology. We isolated the lipoteichoic acid and the membrane glycolipids whose structures were established using conventional procedures and NMR spectroscopy. The lipoteichoic acid contains a linear 1,3-linked poly(glycerophosphate) chain which is partly substituted with D-alanine ester and is phosphodiester-linked to O6 of beta-D-Galf(1-->3)acyl2Gro. This lipoteichoic acid is the first example in which a monohexosylglycerol serves as the glycolipid anchor; and with an average chain length of 10 glycerophosphate residues it is the shortest known to date. MS analysis, applied for the first time to a native acylated lipoteichoic acid, revealed a continuous increase in chain length from seven to 17 glycerophosphate residues with a maximum at 10, and allowed identification of the fatty acid combinations. Membrane glycolipids consisted of beta-D-Galf(1-->3)acyl2Gro (9%), alpha-D-Glcp(1-->3)acyl2Gro (22%), alpha-D-Galp(1-->2)-alpha-D-Glcp(1-->3)acyl2Gro (64%) and alpha-D-Galp(1-->2)-(6-O-acyl)-alpha-D-Glcp(1-->3)acyl2Gro (5%). It is noteworthy that in lipoteichoic acid biosynthesis, Galfacyl2Gro, a less abundant membrane glycolipid, is selected as the lipid anchor. Despite the genetic relatedness to Streptococcus pneumoniae, the lipoteichoic acid structure is quite different to the complex structure of pneumococcal lipoteichoic acid [T. Behr et al. (1992) Eur. J. Biochem. 207, 1063-1075], thus providing an example that minor differences in DNA sequence exert major changes in macromolecular structure.  相似文献   

8.
A lipoteichoic acid and a membrane glycolipid were isolated from Bacillus licheniformis 6346 MH-1. The fatty acid composition of the two preparations were similar. Most of the fatty acids were of the branched chain type. The glycolipid was shown to be a diacyl derivative of O-beta-D-glucopyranosyl-(1 leads to 6)-O-beta-D-glucopyranosyl-(1 leads to 3)-glycerol. The lipoteichoic acid contained lipid, polyglycerol phosphate, and glucosamine. The lipid was released by treatment with hydrofluoric acid and by hydrolysis in dilute acid and was shown to have a structure identical with that of the membrane glycolipid.  相似文献   

9.
The N-terminus of the type 1 interferon receptor subunit, IFNAR1, has high amino acid sequence similarity to the receptor binding B subunit of the Escherichia coli-derived verotoxin 1, VT1. The glycolipid, globotriaosyl ceramide (Gb(3): Gal alpha(1) --> 4 Gal beta 1 --> 4 Glu beta 1 --> 1 Cer) is the specific cell receptor for VT1. Gb(3)-deficient variant cells selected for VT resistance are cross-resistant to interferon-alpha (IFN-alpha)-mediated antiproliferative activity. The association of eIFNAR1 with Gal alpha 1 --> 4 Gal containing glycolipids has been previously shown to be important for the receptor-mediated IFN-alpha signal transduction for growth inhibition. The crucial role of Gb(3) for the signal transduction of IFN-alpha-mediated antiviral activity is now reported. IFN-alpha-mediated antiviral activity, nuclear translocation of activated Stat1, and increased expression of PKR were defective in Gb(3)-deficient vero mutant cells, although the surface expression of IFNAR1 was unaltered. The VT1B subunit was found to inhibit IFN-alpha-mediated antiviral activity, Stat1 nuclear translocation and PKR upregulation. Unlike VT1 cytotoxicity, IFN-alpha-induced Stat1 nuclear translocation was not inhibited when RME was prevented, suggesting that the accessory function of Gb(3) occurs at the plasma membrane. IFN-alpha antiviral activity was also studied in Gb(3)-positive MRC-5 cells, which are resistant to IFN-alpha growth inhibition, partially resistant to VT1 but still remain fully sensitive to IFN-alpha antiviral activity, and two astrocytoma cell lines expressing different Gb(3) fatty acid isoforms. In both systems, long chain fatty acid-containing Gb(3) isoforms, which are less effective to mediate VT1 cytotoxicity, were found to correlate with higher IFN-alpha-mediated antiviral activity. Inhibition of Gb(3) synthesis in toto prevented IFN-alpha antiviral activity in all cells. We propose that the long chain Gb(3) fatty isoforms preferentially remain in the plasma membrane, and by associating with IFNAR1, mediate IFN-alpha antiviral signaling, whereas short chain Gb(3) fatty acid isoforms are preferentially internalized to mediate VT1 cytotoxicity and IFNAR1-dependent IFN-alpha growth inhibition.  相似文献   

10.
Propionibacterium propionicum belongs to the "acnes group" of propionibacteria, which is currently considered as clinically important because of its growing potential in infections, in particular with those connected with immune system dysfunctions. Propionibacteria are thought to be actinomycete-like microorganisms and may still cause diagnostic difficulties. The chloroform-methanol extracts of the cell mass of P. propionicum (type strain) gave in TLC analysis the characteristic glycolipid profile containing four major glycolipids, labeled G(1) through G(4). These polar lipids were found to be useful chemotaxonomic markers to differentiate P. propionicum from other cutaneous propionibacteria, in particular from strains of the acnes group. Glycolipids G(1)-G(4) were isolated and purified using gel-permeation chromatography, TLC, and high performance liquid chromatography, and their structures were elucidated by compositional and methylation analyses, specific chemical degradations, MALDI-TOF mass spectrometry, and (1)H NMR and (13)C NMR spectroscopy, including HMBC, TOCSY, HMQC, and NOESY experiments. Glycolipids G(2) and G(3) possess as backbone alpha-d-Glcp-(1 --> 3)-alpha-d-Glcp-(1 --> 1)-Gro (Gro, glycerol), in which position O-2 of the glycerol residue is acylated by a fatty acid (mainly C(15):0) while O-3 is substituted by an alkyl ether chain. In glycolipid G(3), an additional fatty acyl chain was linked to O-6 of the terminal glucose residue. Glycolipid G(4) was structurally related to G(2) but devoid of one glucose residue. Glycolipid G(1) was isolated in small amounts, and its structure was therefore deduced from MALDI-TOF-MS experiments alone, which revealed that it possessed the structure of G(2) but was lacking one fatty acid residue. In studies on the biological properties of P. propionicum glycolipids, the anti-P. propionicum rabbit antisera reacted in dot enzyme-immunoblotting test with G(2) and G(3). Glycolipid G(3) was able to induce the delayed type of hypersensitivity. The results indicated that these novel ether linkage-containing polar glycolipids are immunogenic and possibly active in hypersensitivity, and thus, in pathogenesis.  相似文献   

11.
Endotoxic glycolipid extracted from the heptose-less mutant of Salmonella typhimurium was treated with alkali and acid reagents. The glycolipid freed of all O-ester linked fatty acids by hydroxylamine had lost tumor regression activity and toxicity, whereas a partial removal of O-ester linked fatty acids by mild alkali did not impair with these activities. The glycolipid retained both activities after removal of 2-keto-3-deoxyotonate by sodium acetate (pH 4.5) but was rendered nontoxic while retaining antitumor activity when hydrolyzed by 0.1N HCl whereby 2-keto-3-deoxyoctonate and glycosidic phosphate was split off the glycolipid molecule. Nontoxic and tumor regressive fractions were separated by means of preparative thin layer chromatography of glycolipid hydrolyzed by mild acid. Thus, it was concluded that glycosidic bound phosphate and at least a portion of fatty acids of the lipid A moiety were essential for toxicity, but that this phosphate is not essential for tumor regression activity.  相似文献   

12.
From a nonpolar lipid fraction of Mycobacterium avium--Mycobacterium intracellulare complex cell mass, a new glycolipid was obtained, which was shown to be 5-mycoloyl-beta-arabinofuranosyl-(1-->2)-5-mycoloyl-alpha-ar abinofuranosyl- (1-->1')-glycerol. When examined by TLC, all the 12 strains of this species tested, including clinical isolates, were found to contain this glycolipid. But the glycolipid was not detected in Mycobacterium bovis BCG or Mycobacterium tubrculosis H37Rv.  相似文献   

13.
We have critically addressed the question of lateral distribution of glycolipids in bilayer membranes, and the effect of glycolipid fatty acid chain length upon such distribution. For this purpose we synthesised the complex neutral glycosphingolipid, globoside, with spin-labelled fatty acid. Base hydrolysis to remove the natural fatty acid was found to deacetylate the GalNAc residue concomitantly, necessitating application of the synthetic route described for gangliosides by Neuenhofer et al. (Biochemistry 24, 525-532 (1985)). Globosides were produced with 18-carbon and 24-carbon fatty acids bearing a spin label at the C-16 position. Spin-labelled globosides were incorporated at 2 and 10 mol% into rigid, highly cooperative bilayer matrices of 1,2-dipalmitoylglycerophosphocholine (DPPC) and also into semi-fluid, non-cooperative membranes of DPPC/cholesterol. Recorded electron paramagnetic resonance (EPR) spectra were analysed by comparison with a library of standards representing samples of known composition. Spectra were manipulated using a computer program which permitted linear combination of standards to stimulate coexistence of laterally separated domains of different composition. The most important conclusions were as follows: (1) at least 80% of the globoside was definitely not confined to domains highly enriched in glycolipid, although there was evidence of binary-phase separation in the rigid DPPC/globoside matrix; (2) the presence of 33 mol% cholesterol reduced the evidence of globoside phase separation; (3) there was remarkably little difference in results whether the globoside fatty acid chain length was similar to that of the phospholipid host matrix or eight carbons longer. Temperature profiles derived over the phase-transition region of DPPC using spin-labelled globoside or an unattached amphiphilic spin label were consistent with these findings. The same systems lent themselves to consideration of the role of glycolipid fatty acid chan length and cholesterol in determining glycolipid crypticity in membranes: (1) polyclonal anti-globoside IgG bound to globoside in DPPC liposomes without inducing agglutination. (2) The same antibodies did agglutinate DPPC/cholesterol liposomes bearing globoside. (3) The effect of cholesterol probably was upon glycolipid dynamics or attitude in the membrane, rather than upon distribution. (4) These observations were basically unaffected by the choice of 18-carbon vs. 24-carbon glycolipid fatty acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
1. The total lipid was extracted from Staphylococcus lactis I3 with chloroform-methanol mixtures and the glycolipid component was isolated by chromatography on silicic acid. 2. Saponification yielded a non-crystalline glycoside for which the structure O-beta-d-glucopyranosyl-(1-->6)-O-beta-d-glucopyranosyl-(1-->1)-d-glycerol has been established by chemical degradations and by comparison with synthetic material. 3. The role of the glycosyl diglycerides in bacterial membranes is discussed.  相似文献   

15.
1. Lipids were extracted from five strains of Propionibacterium with chloroform–methanol mixtures and fractionated by chromatography on silicic acid. 2. All five extracts contained a glycolipid composed of fatty acids, inositol and mannose in the molar proportions 2:1:1. 3. Hydrolysis of the glycolipid with alkali gave a mixture of fatty acids and O-α-d-mannopyranosyl-(1→2)-myoinositol. 4. Analysis of the fatty acids by g.l.c. showed that they were predominantly straight- and branched-chain isomers of pentadecanoic acid and heptadecanoic acid. 5. The location and distribution of the fatty acid residues in the molecule was established by periodate oxidation studies and mass spectrometry. The structure of the major glycolipid is 1-O-pentadecanoyl-2-O-(6-O-heptadecanoyl-α-d-mannopyranosyl)myoinositol. 6. The glycolipids are located in the membrane; the cell walls are devoid of lipid. 7. Possible functions of the glycolipid are discussed.  相似文献   

16.
Yeast strains were screened for producers of glycolipid-type biosurfactants from soybean oil as a sole carbon source. The structure of the glycolipid (MEL-I-11) produced by strain I-11 was analyzed. The hydrophilic sugar moiety was mannosylerythritol and the fatty acid components were C8:0 (36.4%), C12:0 (11.9%), and C14:2 (25.9%). The MEL-I-11 was identified as 6-O-acetyl-2,3-di-O-alkanoyl-beta-D-mannopyranosyl-(1-->4)-O-meso-erythritol. The strain I-11 was identified as a Kurtzmanomyces species, a novel producer of mannosylerythritol lipid.  相似文献   

17.
Skin fibroblast cultures from patients with inherited lysosomal enzymopathies, alpha-N-acetylgalactosaminidase (alpha-NAGA) and alpha-galactosidase A deficiencies (Schindler and Fabry disease, respectively), and from normal controls were used to study in situ degradation of blood group A and B glycosphingolipids. Glycosphingolipids A-6-2 (GalNAc (alpha 1-->3)[Fuc alpha 1-->2]Gal(beta1-->4)GlcNAc(beta 1-->3)Gal(beta 1--> 4)Glc (beta 1-->1')Cer, IV(2)-alpha-fucosyl-IV(3)-alpha-N-acetylgalactosaminylneolactotetraosylceramide), B-6-2 (Gal(alpha 1-->3)[Fuc alpha 1--> 2] Gal (beta 1-->4)GlcNAc(beta 1-->3)Gal(beta 1-->4)Glc(beta 1-->1')Cer, IV(2)- alpha-fucosyl-IV(3)-alpha-galactosylneolactotetraosylceramide), and globoside (GalNAc(beta 1-->3)Gal(alpha 1-->4)Gal(beta 1-->4)Glc(beta 1-->1') Cer, globotetraosylceramide) were tritium labeled in their ceramide moiety and used as natural substrates. The degradation rate of glycolipid A-6-2 was very low in fibroblasts of all the alpha-NAGA-deficient patients (less than 7% of controls), despite very heterogeneous clinical pictures, ruling out different residual enzyme activities as an explanation for the clinical heterogeneity. Strongly elevated urinary excretion of blood group A glycolipids was detected in one patient with blood group A, secretor status (five times higher than upper limit of controls), in support of the notion that blood group A-active glycolipids may contribute as storage compounds in blood group A patients. When glycolipid B-6-2 was fed to alpha-galactosidase A-deficient cells, the degradation rate was surprisingly high (50% of controls), while that of globotriaosylceramide was reduced to less than 15% of control average, presumably reflecting differences in the lysosomal enzymology of polar glycolipids versus less-polar ones. Relatively high-degree degradation of substrates with alpha-D-Galactosyl moieties hints at a possible contribution of other enzymes.  相似文献   

18.
Hada N  Sonoda Y  Takeda T 《Carbohydrate research》2006,341(10):1341-1352
A novel glycosphingolipid, beta-D-Manp-(1-->4)-[alpha-L-Fucp-(1-->3)]-beta-D-Glcp-(1-->1)-Cer, found in the millipede, Parafontaria laminata armigera, and multivalent derivatives of its carbohydrate moiety were synthesized. As the key step, the target glycolipid (1) was obtained through an inversion reaction at the 2-position of a beta-glucopyranoside residue yielding a beta-mannopyranoside. In addition, the synthesis of fluorescently labeled trimer and tetramer glycoconjugates (2, 3) was achieved by iterative amide bond formation using a monomer unit (24).  相似文献   

19.
A Gram-positive actinomycete growing on n-hexadecane secreted a family of anionic glycolipid surfactant homologs. The major homolog, with a molecular weight of 1210.6347, had the formula C58H98O26. Following mild alkaline saponification, 1H and 13C NMR spectroscopy were used to characterize the non-reducing trisaccharide backbone: beta-Glcp-(1-->3)-alpha-Glcp-(1<-->1)-alpha-Glcp ('laminaratrehalose'). Hexanoate, succinate, 3-hydroxyoctanoate, and 3-hydroxydecanoate were found in 3:1:1:1 molar ratio using GC-EIMS analysis of fatty acid methyl esters (FAME) prepared by transesterification. We found that the beta-hydroxy acids bore secondary hexanoate chains in 3-O-ester linkage, giving acyloxyacyl anions of appropriate m/z in FABMS and FABMS/MS spectra. COSY, HETCOR, HMBC, and HMQC NMR experiments established the acylation pattern: succinate at C-2 of the terminal alpha-glucopyranose ring; hexanoate at C-3" of the beta-glucopyranose ring; 3-hexanoyloxyoctanoate and 3-hexanoyloxydecanoate at the 2'- and 4-positions. In FABMS spectra, the homologs flanked the molecular ion by +/- 14 and +/- 28 amu, suggesting heterogeneity in acyl chain length.  相似文献   

20.
Submerged mycelium of a xylotrophic basidiomycete Lentinus edodes produces an extracellular glycolipid, S3, associated with a lectin. Galactose glycan residue, as well as the lipid pool composition, which includes nonhydroxylated short-chain fatty acids, is uncommon for basidiomycetes. The glycolipid consists of D-galactopyranose (15% of S3 contains galactose sulfate) acylated by octadecanoic and nonadecanoic fatty acid residues (28 and 72%, respectively). The glycolipid structure and composition are confirmed by physicochemical analysis. The glycolipid is assumed to be a regulator of lectin activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号