首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iodination of the C-terminal half-molecule domain of ovotransferrin (OTF) causes a significant reduction in binding to transferrin receptors on chick reticulocytes when compared to the binding observed with holo-OTF or the N-terminal half-molecule domain. (In such studies binding of iodinated half-molecule is measured in the presence of equimolar unlabelled complementary half-molecule). In particular iodination of the C-terminal half-molecule domain by the solid-phase reagent Iodogen resulted in half the binding found when ICl was used. The iodinated N-terminal half-molecule domain labelled by either Iodogen or ICl showed consistently higher binding than was observed with the C-terminal half-molecule or Fe2OTF. Although the molecular basis for the reduced binding of these proteins relative to the N-terminal half-molecule has not been definitively established, the implication is that there is a Tyr in the C-terminal domain which is involved in receptor recognition and binding. Addition of one or more bulky iodine atoms to the Tyr interferes with the interaction. Tryptic peptide maps of unlabelled holo-OTF and half-molecule domains and of the half-molecule domains labelled by both ICl and Iodogen are presented. The maps indicate limited access of the tyrosine residues to iodination especially in the C-terminal half-molecule domain. Equilibrium binding experiments have been carried out to compare the Kd (the apparent dissociation constant for the interaction between OTF and the transferrin receptors on chick-embryo red blood cells) with the Bmax, (binding at infinite free-ligand concentration) for Fe2OTF labelled using ICl, Iodogen, Enzymobeads and Chloramine-T. The effect of labelling Fe2OTF by Bolton-Hunter reagent has also been assessed. These studies show that ICl appears to be the reagent of choice for labelling Fe2OTF and its half-molecule domains.  相似文献   

2.
A previous paper (Harris (1985) Biochemistry 24, 7412-7418) reported the occurrence of two classes of anion binding sites in transferrin. To evaluate the locations of the two anion binding sites in relation to the two major domains of transferrin we determined the binding constants of whole ovotransferrin and its two half-molecules by means of the difference UV spectroscopic technique. Anions induced strong negative absorbance at 245 nm in the order: citrate greater than phosphate greater than bicarbonate for whole ovotransferrin and the N-terminal half-molecule; and: phosphate greater than citrate greater than bicarbonate for the C-terminal half-molecule. The anion dissociation constants of the N-terminal half-molecule were consistent with lower dissociation constants, and those of the C-terminal half-molecule, with higher dissociation constants of whole ovotransferrin, indicating that the two classes of anion binding sites correspond to the binding sites in individual structural domains. Anion binding markedly protected the N-terminal half-molecule, but not the C-terminal half-molecule from digestion with trypsin and disulfide reduction with dithiothreitol. As to the far and near ultraviolet CD spectra data, however, there was no significant difference between in the presence and absence of an anion. Therefore, the binding of an anion would induce some conformational changes which were not reflected by the CD spectrum.  相似文献   

3.
Lee SY  Klevit RE 《Biochemistry》2000,39(15):4225-4230
Calmodulin is an essential Ca(2+)-binding protein involved in a multitude of cellular processes. The calmodulin sequence is highly conserved among all eukaryotic species; calmodulin from the yeast S. cerevisiae (yCaM) is the most divergent form, while still sharing 60% sequence identity with vertebrate calmodulin (vCaM). Although yCaM can be functionally substituted by vCaM in vivo, the two calmodulin proteins possess significantly different Ca(2+)-binding properties as well as abilities to activate vertebrate target enzymes in vitro. In addition, it has been observed that certain properties of the N-terminal and C-terminal domains of Ca(2+)-yCaM differ depending on whether they are in the context of the whole protein or isolated as half-molecule fragments. To investigate the structural basis for these differing properties, we have undertaken nuclear magnetic resonance (NMR) studies on yCaM and the two half-molecule fragments representing its two individual domains, yTr1(residues 1-76) and yTr2 (residues 75-146). We present direct evidence that the two domains of Ca(2+)-yCaM interact via their exposed hydrophobic surfaces. Thus, the Ca(2+)-bound form of yCaM exists in a novel compact structure in direct contrast to the well-established structure of Ca(2+)-vCaM comprised of two independent globular domains.  相似文献   

4.
Utilizing electrophoretic and gel filtration techniques it was shown that a bovine C-terminal peptic fragment [residues 307-582] spontaneously forms interspecies hybrid molecules with three complementary N-terminal fragments derived from human [residues 1-308; 49-308] and rat [residues 1-308] albumins. The fragments associate with 1:1 stoichiometry to produce an albumin-like complex which has a molecular weight and electrophoretic mobility similar to intact albumin. These data demonstrate, for the first time, that albumin fragments derived from different species associate in a complementary fashion and provide direct evidence that the tertiary structure may be highly conserved.  相似文献   

5.
X-ray crystallographic studies revealed that various amino acid dehydrogenases fold into two domains in each subunit, a substrate-binding domain and an NAD(P)(+)-binding domain (Baker, P. J., Turnbull, A. P., Sedelnikova, S. E., Stillman, T. J., and Rice, D. W. (1995) Structure 3, 693-705). To elucidate the function and folding process of these two domains, we have genetically constructed a fragmentary form of thermostable leucine dehydrogenase of Bacillus stearothermophilus consisting of an N-terminal polypeptide fragment corresponding to the substrate-binding domain including an N-terminus, and a C-terminal fragment corresponding to the NAD(+)-binding domain. The two peptide fragments were expressed in separate host cells and purified. When both fragments were mixed, the leucine dehydrogenase activity with a specific activity of 1.4% of that of the wild-type enzyme appeared. This suggests that both peptide fragments mutually recognize each other, associate and fold correctly to be catalytically active, although the activity is low. However, the fragmentary form of enzyme produced catalyzed the oxidative deamination of l-leucine, l-isoleucine, and l-valine with broad substrate specificity compared to that of the wild-type enzyme. The fragmentary enzyme retained more than 75% of the initial activity after heating at 50 degrees C for 60 min. The fragmentary enzyme was more stable on heating than separate peptide fragments. These results suggest that the two domains of leucine dehydrogenase probably fold independently, and the two peptide fragments interact and associate with each other to form a functional active site.  相似文献   

6.
In addition to the major carbohydrate moieties of the glycosylphosphatidylinositol (GPI) anchor, we report that Plasmodium falciparum merozoite surface protein 1 (MSP-1) bears O-GlcNAc modifications predominantly in beta-anomeric configuration, in both the C- and N-terminal portions of the protein. Subcellular fractionation of parasitized erythrocytes in the late trophozoite/schizont stage reveals that GPI-anchored C-terminal fragments of MSP-1 are recovered in Triton X-100 resistant, low-density membrane fractions. Our results suggest that O-GlcNAc-modified MSP-1 N-terminal fragments tend to localize within the parasitophorous vacuolar membrane while GPI-anchored MSP-1 C-terminal fragments associate with low-density, Triton X-100 resistant membrane domains (rafts), redistribute in the parasitized erythrocyte and are eventually shed as membrane vesicles that also contain the endogenous, GPI-linked CD59.  相似文献   

7.
Creatine kinase (CK) has been postulated to consist of two flexibly hinged domains. A previously demonstrated protease-sensitive site in M-CK (Morris & Jackson, 1991) has directed our attempts to dissect mitochondrial CK (Mi-CK) into two protein fragments encompassing amino acids [1-167] and [168-380]. When expressed separately in Escherichia coli, the two fragments yielded large amounts of insoluble inclusion bodies, from which the respective polypeptides could be purified by a simple two-step procedure. In contrast, co-expression of the two fragments yielded a soluble, active, and correctly oligomerizing enzyme. This discontinuous CK showed nearly full specific activity and was virtually indistinguishable from native Mi-CK by far- and near-UV CD. However, the positive cooperativity of substrate binding was abolished, suggesting a role of the covalent domain linkage in the crosstalk between the substrate binding sites for ATP and creatine. The isolated C-terminal fragment refolded into a native-like conformation in vitro, whereas the N-terminal fragment was largely unfolded. Prefolded [168-380] interacted in vitro with [1-167] to form an active enzyme. Kinetic analysis indicated that the fragments associate rapidly and with high affinity (1/K1 = 17 microM) and then isomerize slowly to an active enzyme (k2 = 0.12 min-1; k-2 = 0.03 min-1). Our data suggest that the C-terminal fragment of Mi-CK represents an autonomous folding unit, and that the folding of the C-terminal part might precede the conformational stabilization of the N-terminal moiety in vivo.  相似文献   

8.
Digestion of lactoferrin with pepsin at pH3.0 gave an iron-binding half-molecule that represents the C-terminal part of the native protein. Tryptic or chymotryptic digestion of 30%-iron-saturated lactoferrin yielded the N- and C-terminal half molecules, which could be separated by DEAE-Sephadex chromatography. The N- and C-terminal fragments did not show any immunological cross-reaction. The carbohydrate of lactoferrin was distributed equally between the two fragments.  相似文献   

9.
J Lan  S Albaugh  R F Steiner 《Biochemistry》1989,28(18):7380-7385
Fluorescent probes have been used to study the interaction of troponin I and its inhibitory peptide TnIp with troponin C, calmodulin, and the proteolytic fragments of calmodulin. The probes used included the noncovalently bound ligand TNS and the covalently attached labels dansyl and AEDANS. The fluorescence intensity of TNS bound to troponin C, calmodulin, or the calmodulin fragments was greatly enhanced by the presence of TnIp. This effect was used to estimate the corresponding binding constants. It was found that TnIp is bound by the C-terminal half-molecule of calmodulin, TR2C, with an affinity comparable to that of intact calmodulin or troponin C, while the binding affinity of the N-terminal half-molecule, TR1C, was an order of magnitude less, suggesting that the TnIp-containing portion of troponin I combines with the C-terminal half of calmodulin or troponin C. The fluorescence properties of an AEDANS group linked to Cys-98 of troponin C were modified by interaction with troponin I or TnIp. The fluorescence properties of the same group linked to Cys-27 of wheat germ calmodulin were affected by TnI, but not TnIp. TnI had a small effect upon the fluorescence of a dansyl group linked to Met-25 of troponin C. TnIp also inhibited the tryptic hydrolysis of the midpoint of the central connecting strand of calmodulin and troponin C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Monoclonal antibodies produced to both chicken ovotransferrin and to the isolated N- and C-terminal half-molecule domains of ovotransferrin have been used to probe the interaction of ovotransferrin with its specific receptor on chick embryo red blood cells. Two antibodies to epitopes on the N-terminal domain and one antibody to an epitope on the C-terminal domain were able to block the binding of 125I-labeled diferric ovotransferrin to the receptor. When the cellular surface receptors were first saturated with ovotransferrin at 0 degrees C, none of these antibodies bound to the cell-associated ovotransferrin. This suggests that the antibodies are to epitopes which lie very near to, or in the regions of, the two domains which interact with receptor. The same three antibodies also blocked the binding to the receptor of ovotransferrin associated in situ from the isolated N- and C-terminal half-molecule domains. A fourth antibody did not block binding to receptor of 125I-labeled diferric ovotransferrin or the associated domains; furthermore, it was able to bind to ovotransferrin bound to the cell surface at 0 degrees C. This antibody thus appears to recognize an epitope remote from the receptor binding region of ovotransferrin. Additional evidence for the requirement of the presence of both domains of ovotransferrin to effect binding to the transferrin receptor on chick reticulocytes was obtained with a fifth antibody which recognized only the N-terminal half-molecule domain but not holo-ovotransferrin. Although this antibody had no effect on the binding of 125I-labeled ovotransferrin to cells, it blocked binding to receptor of the associated domains of ovotransferrin, presumably by inhibiting the association of the two domains.  相似文献   

11.
Atrial natriuretic factor (ANF) N-terminal (ANF 1-98) and C-terminal (ANF 99-126) fragments were determined by radioimmunoassay in human plasma. Mean basal plasma ANF N-terminal concentrations in 9 healthy subjects were 461 +/- 58 fmol/ml, significantly (p less than 0.0001) higher than ANF C-terminal concentrations (4.8 +/- 0.5 fmol/ml). Central volume stimulation by one hour head-out water immersion (WI) induced a significant (p less than 0.01) increase of the C-terminal peptide levels to 11.6 +/- 2.3 fmol/ml, paralleled by a significant (p less than 0.001) increase of the N-terminal fragment levels to 749 +/- 96 fmol/ml. Increases of plasma concentrations of both fragments upon WI correlated significantly (r = 0.71; p less than 0.05). These data suggest cosecretion of the N-terminal fragment with the C-terminal fragment of pro ANF 1-126 following a physiological stimulus of ANF release in man.  相似文献   

12.
K Sutoh  H L Yin 《Biochemistry》1989,28(12):5269-5275
Gelsolin was cleaved by chymotrypsin or thermolysin into an N-terminal Mr 45,000 fragment (45N) and a C-terminal Mr 38,000 fragment (38C). The N-terminal half was further cleaved into two fragments with Mr 17,000 (17N) and Mr 28,000 (28N). These fragments were complexed with actin and cross-linked with 1-ethyl-3-[3-(dimethylamino)prophyl]carbodiimide (EDC) to introduce covalent bonds into their contact sites. The location of these bonds was mapped along the actin sequence by end-label fingerprinting with highly sensitive probes for the N- and C-termini of actin. The mapping studies revealed that two gelsolin N-terminal fragments (17N and 28N) were cross-linked with the actin C-terminal segment. The result indicates that the actin N- and C-terminal segments are in the binding site of gelsolin.  相似文献   

13.
P Sacerdote  A E Panerai 《Peptides》1989,10(3):565-569
We evaluated the chemotactic activity of beta-endorphin and beta-endorphin-related peptides on human monocytes. We tested beta-endorphin(1-31) and fragments (1-16), (1-17), (1-27) in which the N-terminal of the opioid is preserved, N-acetyl-beta-endorphin(1-31) and fragments (6-31) and (28-31) in which the C-terminal is preserved, and fragment (2-17) that lacks both the N- and C-terminal. The fragments in which the N- and C-terminal were preserved [with the exception of fragment (28-31)] showed a chemotactic effect, while the lack of both terminals deprived the peptides of any activity. Moreover, only the N-terminal-mediated effects were naloxone reversible, while the C-terminal effects were not. These results indicate that while the intact N-terminal is necessary for opioid like effects, both N- and C-terminal can mediate effects on the immune system, thus offering evidence for a nonopioid receptor-mediated effect of opioid peptides on the immune system.  相似文献   

14.
A method that makes use of polyacrylamide gel electrophoresis was developed for the analysis of intramolecular disulfide bonds in proteins. Proteins with different numbers of cleaved disulfide bonds are alkylated with iodoacetic acid or iodoacetamide as the first step. The disulfide bonds remaining were reduced by excess dithiothreitol, and the newly generated free sulfhydryl groups were alkylated with the reagent not yet used (iodoacetamide, iodoacetic acid, or vinyl-pyridine) as the second step. This treatment made it possible for lysozyme (Mr, 14,000; 4 disulfides), the N-terminal half-molecule of conalbumin (Mr, 36,000; 6 disulfides), the C-terminal half-molecule of conalbumin (Mr, 40,000; 9 disulfides), and whole conalbumin (Mr, 78,000; 15 disulfides) to be separated by acid-urea polyacrylamide gel electrophoresis into distinct bands depending on the number of disulfide bonds cleaved. The method allowed us to determine the total number of disulfide bonds in native proteins and to assess the cleaved levels of disulfide bonds in partially reduced proteins. Two-step alkylation used in combination with radioautography was especially useful for the analysis of disulfide bonds in proteins synthesized in complex biological systems.  相似文献   

15.
R F Steiner  S Albaugh 《Biopolymers》1990,29(6-7):1005-1014
The interaction of cyclosporin A and dansyl cyclosporin A with bovine and wheat germ calmodulin has been monitored by measurements of induced changes in dansyl and bound toluidinyl naphthalene sulfonate fluorescence. The interaction is Ca2(+)-dependent and 1:1. Measurements of the efficiency of radiationless energy transfer from bound dansyl cyclosporin A to an acceptor group located on Cys-27 of wheat germ calmodulin suggest that the primary binding site is not located on the N-terminal lobe (residues 1-65). However, studies with proteolytic fragments of calmodulin indicate that elements of the N-terminal half-molecule (residues 1-77) may be involved in the stabilization of the binding site. The binding of cyclosporin alters the physical properties of calmodulin and, in particular, reduces the localized rotational mobility of a fluorescent probe.  相似文献   

16.
Use of fragments of hirudin to investigate thrombin-hirudin interaction   总被引:1,自引:0,他引:1  
Site-directed mutagenesis was used to create hirudin in which Asn52 was replaced by methionine. Cyanogen bromide cleavage at this unique methionine resulted in two fragments. These fragments have been used to study the kinetic mechanism of the inhibition of thrombin by hirudin and to identify areas of the two molecules which interact with each other. The binding of the C-terminal fragment (residues 53-65) to thrombin resulted in a decrease in the Michaelis constant for the substrate D-phenylalanylpipecolylarginyl-p-nitroanilide (DPhe-Pip-Arg-NH-Ph). The N-terminal fragment (residues 1-52) was a competitive inhibitor of thrombin. There was a small amount of cooperativity in the binding of the two fragments. Whereas hirudin and its C-terminal fragment protected alpha-thrombin against cleavage by trypsin, the N-terminal fragment did not. Hirudin and the N-terminal fragment completely prevented the cleavage of alpha-thrombin by pancreatic elastase while the C-terminal fragment afforded a lesser degree of protection. The results of these experiments with trypsin and elastase are discussed in terms of interaction areas on thrombin and hirudin.  相似文献   

17.
Jourdan M  Searle MS 《Biochemistry》2000,39(40):12355-12364
Peptide fragments corresponding to the N- and C-terminal portions of bovine ubiquitin, U(1-35) and U(36-76), are shown by NMR to associate in solution to form a complex of modest stability (Kassn approximately 1.4 x 10(5) M(-1) at pH 7.0), with NMR features characteristic of a nativelike structure. The complex undergoes cold denaturation, with temperature-dependent estimates of stability from NMR indicating a DeltaC(p) degrees for fragment complexation in good agreement with that determined for native ubiquitin, suggesting that fragment association results in the burial of a similar hydrophobic surface area. The stability of the complex shows appreciable pH dependence, suggesting that ionic interactions on the surface of the protein contribute significantly. However, denaturation studies of native ubiquitin in the presence of guanidine hydrochloride (Gdn.HCl) show little pH dependence, suggesting that ionic interactions may be "screened" by the denaturant, as recently suggested. Examination of the conformation of the isolated peptide fragments has shown evidence for a low population of nativelike structure in the N-terminal beta-hairpin (residues 1-17) and weak nascent helical propensity in the helical fragment (residues 21-35). In contrast, the C-terminal peptide (36-76) shows evidence in aqueous solution, from some Halpha chemical shifts, for nonnative phi and psi angles; nonnative alpha-helical structure is readily induced in the presence of organic cosolvents, indicating that tertiary interactions in both native ubiquitin and the folded fragment complex strongly dictate its structural preference. The data suggest that the N-terminal fragment (1-35), where interaction between the helix and hairpin requires the minimum loss of conformational entropy, may provide the nucleation site for fragment complexation.  相似文献   

18.
Inhibitor kappaB kinase beta binding by inhibitor kappaB kinase gamma   总被引:1,自引:0,他引:1  
Drew D  Shimada E  Huynh K  Bergqvist S  Talwar R  Karin M  Ghosh G 《Biochemistry》2007,46(43):12482-12490
  相似文献   

19.
Sedimentation analysis in the analytical ultracentrifuge has been used to characterize the size and shape of thermolysin and a number of its fragments obtained by chemical or enzymatic cleavage of the protein. Four fragments (121-316, 206-316, 225/226-316 and 255-316) originate from the C-terminal domain, and two (1-155 and 1-205) from the N-terminal domain of the intact molecule. In aqueous solution at neutral pH the hydrodynamic properties of the C-terminal fragments, except 255-316, are consistent with compact homogeneous monomers. Fragment 255-316 is a monomeric species below 0.08 mg/ml concentration and forms a dimer above this concentration. Dimerization does not lead to changes in fragment conformation, as determined by far-ultraviolet circular dichroic measurements, but to an increase of 5.6 degrees C (to 68.2 degrees C at 1.0 mg/ml) in the temperature for thermal unfolding and a corresponding increase of 4.6 kJ/mol in the free energy of unfolding. Fragments derived from the N-terminal domain show a strong tendency to form high-molecular-mass aggregates. Previous experiments utilizing circular dichroic measurements and antibody binding data suggested that the C-terminal fragments listed above are able to refold in aqueous solution at neutral pH into a stable conformation of native-like characteristics [Dalzoppo, D., Vita, C. & Fontana, A. (1985) J. Mol. Biol. 182, 331-340] (and references cited therein). Present data establish that all these C-terminal fragments are globular monomeric species in solution (at concentrations approximately 0.1 mg/ml) and thus represent 'isolated' domains (or subdomains) with intrinsic conformational stability typical of small globular proteins.  相似文献   

20.
The C- and N-terminal fragments of substance P were compared to the parent molecule with respect to their ability to: (a) contract the isolated guinea pig ileum, (b) induce salivation in the rat, (c) excite single cat dorsal horn neurones, and (d) induce scratching by intracranial injections in mice. C-terminal fragments as small as the heptapeptide were potent SP agonists on all assay systems. C-terminal fragments containing five amino acids or less were, at most, only weakly active. The C-terminal hexapeptide was a potent SP receptor stimulant on the isolated guinea pig ileum and, when directly applied by microiontophoresis, on cat dorsal horn neurons. However, the same compound was only 2-5% as potent as substance P in eliciting salivation and scratching in vivo, an indication that this fragment may be especially labile to enzymatic degradation. N-terminal fragments were totally inactive on the isolated guinea pig ileum. On the rat salivation and central nervous system assays, however, N-terminal fragments were capable of weak SP-like activity. It is concluded that SP receptors exist in multiple forms which we have labelled SP1 and SP2 receptors for those insensitive or sensitive to N-terminal fragments, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号