首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that calcineurin, a calmodulin-stimulated phosphatase, may exist in different metal ion-dependent conformational states (Pallen, C.J., and Wang, J. H. (1984) J. Biol. Chem. 259, 6134-6141). Evidence in favor of this hypothesis comes from studies involving a monoclonal antibody, VA1, which is specific for the small (beta) subunit of calcineurin. This antibody inhibits Ni2+-stimulated but not Mn2+-stimulated phosphatase activity against p-nitrophenyl phosphate and phosphorylase kinase. Inhibition is not due to competition of the antibody with substrate or to interference with metal ion binding to the enzyme. Complex formation between the antibody and calcineurin can be demonstrated either in the presence of Mn2+ or Ni2+ or in the absence of metal ion activators. These results indicate that the active conformational states of calcineurin are metal ion dependent, that the monoclonal antibody VA1 affects the Ni2+-induced conformational change of the enzyme, and that the beta subunit of calcineurin plays a critical role in the expression of Ni2+-stimulated phosphatase activity.  相似文献   

2.
Calcineurin purified from bovine brain was found to be active towards beta-naphthyl phosphate greater than p-nitrophenyl phosphate greater than alpha-naphthyl phosphate much greater than phosphotyrosine. In its native state, calcineurin shows little activity. It requires the synergistic action of Ca2+, calmodulin, and Mg2+ for maximum activation. Ca2+ and Ca2+ X calmodulin exert their activating effects by transforming the enzyme into a potentially active form which requires Mg2+ to express the full activity. Ni2+, Mn2+, and Co2+, but not Ca2+ or Zn2+, can substitute for Mg2+. The pH optimum, and the Vm and Km values of the phosphatase reaction are characteristics of the divalent cation cofactor. Ca2+ plus calmodulin increases the Vm in the presence of a given divalent cation, but has little effect on the Km for p-nitrophenyl phosphate. The activating effects of Mg2+ are different from those of the transition metal ions in terms of effects on Km, Vm, pH optimum of the phosphatase reaction and their affinity for calcineurin. Based on the Vm values determined in their respective optimum conditions, the order of effectiveness is: Mg2+ greater than or equal to Ni2+ greater than Mn2+ much greater than Co2+. The catalytic properties of calcineurin are markedly similar to those of p-nitrophenyl phosphatase activity associated with protein phosphatase 3C and with its catalytic subunit of Mr = 35,000, suggesting that there are common features in the catalytic sites of these two different classes of phosphatase.  相似文献   

3.
The findings of our work were 2-fold: (1) calcineurin (from bovine brain) can catalyze the complete dephosphorylation of the phosphotyrosine and phosphoserine residues in the human placental receptor for epidermal growth factor urogastrone (EGF-URO), and (2) the major calmodulin-binding protein of human placental membranes is a calcineurin-related protein. In terms of its metal ion dependence (Ni2+ greater than Mn2+ greater than Co2+), its calmodulin dependence, and its sensitivity to inhibitors (Zn2+, fluoride, orthovanadate), the phosphotyrosyl protein phosphatase activity of calcineurin, using the EGF-URO receptor as substrate, paralleled the enzyme activity measured with p-nitrophenyl phosphate (PNPP) as a substrate. These characteristics distinguish calcineurin from other classes of protein phosphotyrosyl phosphatases. Calcineurin purified from placental membranes was similar to, if not identical with, bovine brain calcineurin in terms of enzymatic specific activity toward PNPP, subunit electrophoretic mobilities, and immunological cross-reactivity. The enzymatic properties and comparative abundance of calcineurin in the placenta membranes suggest that this enzyme may play an important role in regulating the phosphorylation state of those receptors (e.g., for EGF-URO or insulin) also known to be present in the membranes.  相似文献   

4.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

5.
A metal-ion-independent, nonspecific phosphoprotein phosphatase (Mr = 35000) which represents the major phosphorylase phosphatase activity in bovine adrenal cortex has been purified to apparent homogeneity. An alkaline phosphatase activity (p-nitrophenyl phosphate as a substrate) of the same molecular weight, which requires both a metal ion (Mg2+ greater than Mn2+ greater than Co2+) and a sulfhydryl compound for activity, has been found to co-purify with the phosphoprotein phosphatase throughout the purification procedures. Characterization of the phosphoprotein and the alkaline phosphatase activities with respect to their catalytic properties, substrate and metal ion specificities, relationship with large molecular forms of the enzymes and responses to various effectors has been carried out. The results indicate that the phosphoprotein phosphatase can be converted by pyrophosphoryl compounds (e.g. PPi and ATP) to a metal-ion-dependent form which, subsequently, can be reactivated by Co2+ greater than Mn2+ but not by Mg2+ or Zn2+. The results also indicate that, although the phosphoprotein and the alkaline phosphatase activities are closely associated, they exhibit distinct physical and catalytic properties. Discussions concerning whether these two activities represent two different forms of the same protein or two different yet very similar polypeptide chains have been presented.  相似文献   

6.
A high molecular weight protein phosphatase (phosphatase H-II) was isolated from rabbit skeletal muscle. The enzyme had a Mr = 260,000 as determined by gel filtration and possessed two types of subunit, of Mr = 70,000 and 35,000, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On ethanol treatment, the enzyme was dissociated to an active species of Mr = 35,000. The purified phosphatase dephosphorylated lysine-rich histone, phosphorylase a, glycogen synthase, and phosphorylase kinase. It dephosphorylated both the alpha- and beta-subunit phosphates of phosphorylase kinase, with a preference for the dephosphorylation of the alpha-subunit phosphate over the beta-subunit phosphate of phosphorylase kinase. The enzyme also dephosphorylated p-nitrophenyl phosphate at alkaline pH. Phosphatase H-II is distinct from the major phosphorylase phosphatase activities in the muscle extracts. Its enzymatic properties closely resemble that of a Mr = 33,500 protein phosphatase (protein phosphatase C-II) isolated from the same tissue. However, despite their similarity of enzymatic properties, the Mr = 35,000 subunit of phosphatase H-II is physically different from phosphatase C-II as revealed by their different sizes on sodium dodecyl sulfate-gel electrophoresis. On trypsin treatment of the enzyme, this subunit is converted to a form which is a similar size to phosphatase C-II.  相似文献   

7.
Treatment of quiescent 3T3 cells with sodium orthovanadate induces a 10-fold stimulation of a kinase that phosphorylates ribosomal protein S6. The kinase in crude extracts is extremely labile and rapidly loses activity when incubated at 37 degrees C. This reaction is blocked by phosphatase inhibitors such as p-nitrophenyl phosphate and beta-glycerophosphate, suggesting that dephosphorylation of the kinase leads to its inactivation (Novak-Hofer, I., and Thomas, G. (1985) J. Biol. Chem. 260, 10314-10319). After three steps of purification the kinase can be separated from greater than 99% of the cellular phosphorylase a phosphatases. At this stage the kinase preparation is almost completely stable but can be inactivated by readdition of specific column fractions that contain both phosphorylase phosphatase and protease activity. However, employing a number of specific inhibitors it is shown that the inactivating agent in these fractions is a protein phosphatase. Furthermore, the physical and enzymatic properties of the kinase inactivator argue that it can be classified as a type 2A phosphatase. These results are consistent with the finding that the purified catalytic subunits of phosphatase type 1 and type 2A also inactivate the kinase. At equivalent phosphorylase a phosphatase activities, the type 2A catalytic subunit is 3 times more potent than the type 1 enzyme in carrying out this reaction. These data indicate that the major S6 kinase inactivator in 3T3 cell extracts is a type 2A phosphatase, supporting the hypothesis that the orthovanadate-stimulated S6 kinase is regulated in vivo by a phosphorylation-dephosphorylation mechanism.  相似文献   

8.
Protein phosphatase activity specific for Tyr(P) (phosphotyrosine) residues (PTP-phosphatase) was found in the cytosol and particulate fractions of human placenta. In the particulate fraction, half of the PTP-phosphatase activity could be extracted with 1% Triton X-100. The PTP-phosphatase remaining in the Triton-insoluble residue was solubilized with 0.6 M-KCl plus 1% CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]propane-1-sulphonate) and was purified 1850-fold by adsorption to DEAE-Sepharose, affinity chromatography on Zn2+-iminodiacetate-agarose, phosphocellulose adsorption, Fractogel filtration and Mono Q chromatography. The cytoskeleton-associated PTP-phosphatase was distinguished from acid, alkaline and other protein Ser(P) (phosphoserine)/Thr(P) (phosphothreonine) phosphatases by its neutral pH optimum, activity in the presence of EDTA, inhibition by Zn2+, vanadate, or molybdate, and low activity with either [Ser(P)]phosphorylase a or p-nitrophenyl phosphate. The PTP-phosphate displayed a Km of 0.15 microM with [Tyr(P)]serum albumin as substrate, 10-100-fold lower than the Km for previously described protein phosphatases. The cytoskeleton-associated PTP-phosphatase catalysed the dephosphorylation of receptors for insulin, insulin-like growth factor-1 and epidermal growth factor labelled by autophosphorylation. The properties of this PTP-phosphatase suggest that it plays a role in the regulation of hormone receptors and cytoskeleton proteins by reversible phosphorylation on tyrosine residues.  相似文献   

9.
Calcineurin, originally identified as a calmodulin-dependent phosphoprotein phosphatase (Stewart, A.A. et al. (1982) FEBS Lett. 137, 80-84) also uses p-nitrophenyl phosphate and phosphotyrosine as substrates (Pallen, C.J. and Wang, J.H. (1983) J. Biol. Chem. 258, 8550-8553). We have surveyed a wide range of nonprotein phosphocompounds and found that several synthetic aryl phosphocompounds serve as calcineurin substrates. Among more than 20 naturally occurring phosphocompounds tested, only phosphoenol pyruvate possesses significant calcineurin substrate activity. The phosphoenol pyruvate phosphatase activity is dependent on Ni2+ and Mn2+, is stimulated by calmodulin, and is inhibited by a monoclonal antibody to calcineurin, thus indicating that it is an intrinsic property of calcineurin. The results suggest that functional roles of calcineurin may include actions of the enzyme toward nonprotein phosphocompounds.  相似文献   

10.
A phosphoprotein phosphatase which is active against chemically phosphorylated protamine has been purified about 500-fold from bovine adrenal cortex. The enzyme has a pH optimum between 7.5 and 8.0, and has an apparent Km for phosphoprotamine of about 50 muM. The hydrolysis of phosphoprotamine is stimulated by salt, and by Mn2+. Hydrolysis of phosphoprotamine is inhibited by ATP, ADP, AMP, and Pi, but is not affected by AMP or cyclic GMP. The purified phosphoprotein phosphatase preparation also dephosphorylates p-nitrophenyl phosphate and phosphohistone, and catalyzes the inactivation of liver phosphorylase, the inactivation of muscle phosphorylase a (and its conversion to phosphorylase b), and the inactivation of muscle phosphorylase b kinase. Phosphatase activities against phosphoprotamine and muscle phosphorylase a copurify over the last three stages of purification. Phosphoprotamine inhibits phosphorylase phosphatase activity, and muscle phosphorylase a inhibits the dephosphorylation of phosphoprotamine. These results suggest that one enzyme possesses both phosphoprotamine phosphatase and phosphorylase phosphatase activities. The stimulation of phosphorylase phosphatase activity, but not of phosphoprotamine phosphatase activity, by caffeine and by glucose, suggests that the different activities of this phosphoprotein phosphatase may be regulated separately.  相似文献   

11.
A synergistic activation of phosphorylase kinase by Ca2+ plus Mg2+ was found to be the primary cause of the hysteresis, or lag, in the phosphorylase kinase reaction. Preincubation of the enzyme for short times with Ca2+ plus Mg2+ resulted in an approximately 7-fold increase in the kinase activity in subsequent assays with phosphorylase b or phosphorylase kinase as substrates, whereas preincubation with each metal ion by itself had no effect. Maximal activation through preincubation with Ca2+ plus Mg2+ occurred in 1 min 45 s and was readily reversed by chelation of both metal ions. As a result of the activation, the progress curve of phosphorylase b conversion at pH 6.8 was found to be nearly linear. Activation by Ca2+ plus Mg2+ was not apparent when subsequent assays were carried out at pH 8.2, or when previously autophosphorylated enzyme was used. Furthermore, the synergistic activation was found to occur significantly slower and/or to decrease in the presence of ATP, phosphorylase b, beta-glycerophosphate, and inorganic phosphate. How the synergistic activation by Ca2+ plus Mg2+ relates to autophosphorylation and the lag in the phosphorylase kinase reaction is discussed.  相似文献   

12.
A phosphoprotein phosphatase which has an apparent molecular weight of 240,000 was partially purified (500-fold) from the glycogen-protein complex of rabbit skeletal muscle. The enzyme exhibited broad substrate specificity as it dephosphorylated phosphorylase, phosphohistones, glycogen synthase, phosphorylase kinase, regulatory subunit of cAMP-dependent protein kinase, and phosphatase inhibitor 1. The phosphatase showed high specificity towards dephosphorylation of the beta-subunit of phosphorylase kinase and site 2 of glycogen synthase. With the latter substrate, the presence of phosphate in sites 1a and 1b decreased the apparent Vmax, perhaps by inhibiting the dephosphorylation of site 2. The phosphorylated form of inhibitor 1 did not significantly inhibit this high-molecular-weight phosphatase. However, an inhibitor 1-sensitive phosphatase activity could be derived from this preparation by limited trypsinization. Furthermore, greater than 70% of the phosphatase activity in skeletal muscle extracts and in the glycogen-protein complex was insensitive to inhibitor 1. Limited trypsinization of each fraction obtained from the phosphatase purification increased the total activity (1.5- to 2-fold) and converted the enzyme into a form which was inhibited by inhibitor 1. The results suggest that inhibitor 1-sensitive phosphatase may be a proteolyzed enzyme.  相似文献   

13.
The phosphorylase phosphatases in rat and rabbit liver cytosol that are markedly stimulated by histone H1, protamine and polylysine were identified as protein phosphatases-2A0, 2A1 and 2A2 by anion-exchange chromatography, gel-filtration and immunotitration experiments. Histone H1 and protamine also stimulated the dephosphorylation of phosphorylase kinase, glycogen synthase, fructose-1,6-bisphosphatase, pyruvate kinase, acetyl-CoA carboxylase and phenylalanine hydroxylase by phosphatases-2A1 and 2A2, and with several of these substrates activation was even more striking (20-100-fold) than that observed with phosphorylase (approximately 5-fold). Activation by basic polypeptides did not involve dissociation of these phosphatases to the free catalytic subunit. The dephosphorylation of phosphorylase by protein phosphatase-1 was suppressed by basic polypeptides, protamine and polylysine being the most potent inhibitors. However, the dephosphorylation of glycogen synthase, pyruvate kinase and acetyl-CoA carboxylase were markedly stimulated by histone H1 and protamine (2-13-fold). Consequently, with the appropriate substrates, protein phosphatase-1 can also be regarded as a basic-polypeptide-activated protein phosphatase. Heparin stimulated (1.5-2-fold) the dephosphorylation of phosphorylase by phosphatases-2A0 and 2A1, provided that Mn2+ was present, but phosphatase-2A2 and the free catalytic subunit of phosphatase-2A were unaffected. Heparin, in conjunction with Mn2+, also stimulated (1.5-fold) the dephosphorylation of glycogen synthase (labelled in sites 3 abc), phosphorylase kinase and phenylalanine hydroxylase by phosphatase-2A1, but not by phosphatase-2A2. By contrast, the dephosphorylation of phosphorylase and phosphorylase kinase by protein phosphatase-1 was inhibited by heparin. However, dephosphorylation of glycogen synthase and pyruvate kinase by phosphatase-1 was stimulated by this mucopolysaccharide. The studies demonstrate that basic proteins can be used to distinguish protein phosphatase-1 from protein phosphatase-2A, but only if phosphorylase is employed as substrate. Optimal differentiation of the two phosphatases is observed at 30 micrograms/ml protamine or at heparin concentrations greater than 150 microM.  相似文献   

14.
A microsomal fraction rich in Na+, K+-ATPase (sodium-plus-potassium ion-dependent adenosine triphosphatase) and the corresponding K+-dependent p-nitrophenyl phosphatase from the rectal salt gland of the spiny dogfish was solubilized by treatment with deoxycholate at high ionic strength. On gel filtration through Sepharose 6B, the ATPase apoenzyme could be separated, in apparently soluble form, from the tissue-fraction phospholipids and was almost free of enzymic activity (2% of the p-nitrophenyl phosphatase activity and 0.2% of the ATPase activity being recovered). On mixing the apoenzyme with an activator consisting of cooked ox brain, a large proportion of the original enzymic activity was obtained. Specific activities of the re-activated enzyme were somewhat higher than in the material before gel filtration: values of 1300-1450 mumol and 250-290 mumol/h per mg of protein were obtained for the hydrolysis of ATP and of p-nitrophenyl phosphate respectively. The activity was inhibitible by ouabain.  相似文献   

15.
We have previously described a phosphotyrosylprotein phosphatase in membrane vesicles from human epidermoid carcinoma A431 cells which is inhibited by micromolar concentration of Zn2+ and is insensitive to ethylenediaminetetraacetic acid (EDTA) and NaF [Brautigan, D. L., Bornstein, P., & Gallis, B. (1981) J. Biol. Chem. 256, 6519-6522]. Here we present the identification and partial purification of a similar enzyme from lysates of Ehrlich ascites tumor cells. the enzyme was purified by using diethylaminoethyl-Sephadex, Zn2+ affinity, and Sephadex G-75 chromatography. During purification, the phosphatase was separated into at least three fractions, all of which exhibited very similar properties and an apparent molecular weight of 40 000 upon gel filtration. The enzyme dephosphorylated phosphotyrosine (P-Tyr)-containing carboxymethylated and succinylated (CM-SC) phosphorylase with an apparent Km of 0.8 microM, as well as P-Tyr containing casein and epidermal growth factor (EGF) receptor kinase, but did not dephosphorylate P-Ser-phosphorylase. The phosphatase was inhibited by Zn2+ at micromolar concentrations (K0.5 with EGF receptor kinase = 5 X 10(-6) M; with CM-SC phosphorylase = 3.3 X 10(-5) M) but not by millimolar concentrations of EDTA and NaF. No inhibition was seen with 1 mM tetramisole, a specific inhibitor of alkaline phosphatases. P-Tyr inhibited the enzyme by 50% at 0.4 X 10(-3) M, while Tyr, Pi, PPi, and p-nitrophenyl phosphate, an excellent substrate for alkaline phosphatases and structurally very similar to P-Tyr, exerted partial inhibition at concentrations above 10(-3) M. The pH optimum was found to be 6.5-7, depending on the substrate used. Very little activity was seen below pH 5 and above pH 8.5. These properties clearly distinguish this enzyme from alkaline phosphatases, as well as the neutral and acidic protein phosphatases so far described, and therefore define it as a new enzyme of the phosphatase family--a phosphotyrosyl-protein phosphatase.  相似文献   

16.
The presence of alkaline phosphatase (EC 3.1.3.1) activity has been demonstrated in nuclei of rat ventral prostate. This enzyme activity remained after washing of isolated nuclei with 0.5% Triton X-100; an acid phosphatase initially present with the nuclear fraction was removed by this treatment. The nuclear alkaline phosphatase, examined by utilizing p-nitrophenyl phosphate as substrate, had a pH optimum of 9.5-10.3, and a broad substrate specificity: p-nitrophenyl phosphate greater than phosphothreonine greater than beta-glycerophosphate greater than phosphoserine. The nuclear phosphatase was sensitive to denaturation by heat or urea treatments and was also inhibited by Pi, L-phenylalanine, homoarginine, dithiothreitol, and EDTA. The EDTA-inhibited enzyme was maximally reactivated by Zn2+, although Mg2+, or Ca2+ were also effective at somewhat higher concentrations. Orchiectomy of adult rats resulted in an increase in the nuclear alkaline phosphatase activity (2-3-fold at 24 or 48 h postorchiectomy). A decline in the protein: DNA ratio also occurred following orchiectomy, but the increase in phosphatase specific activity was evident whether expressed per unit of protein or per unit of DNA. Testosterone replacement following orchiectomy abolished the increase in nuclear phosphatase activity. The results suggest that the prostatic nuclear alkaline phosphatase may be involved in events related to inactivation of the prostate nucleus following androgen deprivation.  相似文献   

17.
Several putative plasma-membrane-associated components of the T-lymphocyte signal-transduction pathway are phosphorylated during the initial events of cellular activation. Little is known about the control of dephosphorylation of these components. We have shown by immunoblotting that the type 1 phosphatase, the type 2A phosphatase and type 2B phosphatase (calcineurin) are associated with the plasma membrane of normal human T lymphoblasts and the human T leukaemic cell line Jurkat 6. The type 1 phosphorylase phosphatase activity is present in a latent form which can be stimulated synergistically by deinhibitor and p-nitrophenyl phosphate. The PCSH form of the type 2A phosphatase appears to be the predominant oligomer in the plasma-membrane fraction. All three phosphatases can be extracted from membranes with Nonidet P40, but whereas the type 1c and type 2Ac phosphatases separate into the detergent-poor phase of Triton X-114, calcineurin separates into both detergent-rich and -poor phases. It is probable that one or more of these three plasma-membrane-associated phosphatases play regulatory roles in determining the phosphorylation state of membrane-bound proteins involved in human T-cell activation.  相似文献   

18.
A new Zn2+-stimulated sphingomyelinase in fetal bovine serum   总被引:1,自引:0,他引:1  
Fetal bovine serum contains a Zn2+-dependent sphingomyelinase with optimal activity at pH 5.5 in vitro. Activity could be demonstrated with a liposomal sphingomyelin substrate suspension but was stimulated up to 15-fold by Triton X-100. Under a variety of conditions tested, phosphatidylcholine, lysophosphatidylcholine, glycerophosphocholine, and p-nitrophenyl phosphate were not substrates for this activity. Several inhibitors of serum alkaline and acid phosphatases had no effect on the activity. The enzyme resembles the acid lysosomal sphingomyelinase in pH optimum and inhibition by AMP but differs in inhibition by EDTA, stimulation by Zn2+, and heat lability at 55 degrees C. It resembles the neutral, Mg2+-stimulated enzyme in inhibition by EDTA and heat lability but differs in metal ion requirement and pH optima. Of the sera tested, activity was highest in fetal bovine serum, with fetal bovine greater than newborn bovine greater than horse greater than human; more than 95% of the activity is in the lipoprotein-free infranatant of serum (d greater than 1.21). This activity appears to be a hitherto undescribed sphingomyelinase. Its biological functions are not known but may subserve a special role in sphingomyelin catabolism in the circulation, in blood vessel walls, or in the tissue(s) of origin.  相似文献   

19.
We have used liposomes with incorporated pig kidney Na+,K(+)-ATPase to study vanadate sensitive K(+)-K+ exchange and net K+ uptake under conditions of acetyl- and p-nitrophenyl phosphatase activities. The experiments were performed at 20 degrees C. Cytoplasmic phosphate contamination was minimized with a phosphate trapping system based on glycogen, phosphorylase a and glucose-6-phosphate dehydrogenase. In the absence of Mg2+ (no phosphatase activity) 5-10 mM p-nitrophenyl phosphate slightly stimulated K(+)-K+ exchange whereas 5-10 mM acetyl phosphate did not. In the presence of 3 mM MgCl2 (high rate of phosphatase activity) acetyl phosphate did not affect K(+)-K+ exchange whereas p-nitrophenyl phosphate induced a greater stimulation than in the absence of Mg2+; a further addition of 1 mM ADP resulted in a 35-65% inhibition of phosphatase activity with an increase in K(+)-K+ exchange, which sometimes reached the levels seen with 5 mM phosphate and 1 mM ADP. The net K+ uptake in the presence of 3 mM MgCl2 was not affected by acetyl phosphate or p-nitrophenyl phosphate, whereas it was inhibited by 5 mM phosphate (with and without 1 mM ADP). The results of this work suggest that the phosphatase reaction is not by itself associated to K+ translocation. The ADP-dependent stimulation of K(+)-K+ exchange in the presence of phosphatase activity could be explained by the overlapping of one or more step/s of the reversible phosphorylation from phosphate with the phosphatase cycle.  相似文献   

20.
A cytosolic phosphoprotein phosphatase of Mr = 95,000 purified from bovine cardiac muscle, which contains a catalytic subunit of Mr = 35,000, is known to be associated with a Mg2+-activated p-nitrophenyl phosphatase activity. We have found that the enzyme preparation is also active toward phosphotyrosyl-IgG and -casein phosphorylated by pp60v-src, the transforming gene product of Rous sarcoma virus. The properties of this phosphotyrosyl protein phosphatase activity closely resemble those of the p-nitrophenyl phosphatase activity but sharply differ from those of the phosphorylase phosphatase activity. Comparative studies of the activities of the Mr = 95,000 phosphatase, bovine kidney alkaline phosphatase, and ATP X Mg-dependent phosphatase toward phosphoseryl, phosphothreonyl, and phosphotyrosyl proteins and p-nitrophenyl phosphate under various conditions have been carried out. The results indicate that the Mr = 95,000 enzyme exhibits higher activity toward phosphoseryl and phosphothreonyl proteins than toward phosphotyrosyl proteins, while the kidney alkaline phosphatase preferentially dephosphorylates phosphotyrosyl proteins. ATP X Mg-dependent phosphatase is inactive toward phosphotyrosyl proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号