共查询到20条相似文献,搜索用时 0 毫秒
1.
Anderka O Loenze P Klabunde T Dreyer MK Defossa E Wendt KU Schmoll D 《Biochemistry》2008,47(16):4683-4691
Glycogen phosphorylase (GP) is a validated target for the treatment of type 2 diabetes. Here we describe highly potent GP inhibitors, AVE5688, AVE2865, and AVE9423. The first two compounds are optimized members of the acyl urea series. The latter represents a novel quinolone class of GP inhibitors, which is introduced in this study. In the enzyme assay, both inhibitor types compete with the physiological activator AMP and act synergistically with glucose. Isothermal titration calorimetry (ITC) shows that the compounds strongly bind to nonphosphorylated, inactive GP (GPb). Binding to phosphorylated, active GP (GPa) is substantially weaker, and the thermodynamic profile reflects a coupled transition to the inactive (tense) conformation. Crystal structures confirm that the three inhibitors bind to the AMP site of tense state GP. These data provide the first direct evidence that acyl urea and quinolone compounds are allosteric inhibitors that selectively bind to and stabilize the inactive conformation of the enzyme. Furthermore, ITC reveals markedly different thermodynamic contributions to inhibitor potency that can be related to the binding modes observed in the cocrystal structures. For AVE5688, which occupies only the lower part of the bifurcated AMP site, binding to GPb (Kd = 170 nM) is exclusively enthalpic (Delta H = -9.0 kcal/mol, TDelta S = 0.3 kcal/mol). The inhibitors AVE2865 (Kd = 9 nM, Delta H = -6.8 kcal/mol, TDelta S = 4.2 kcal/mol) and AVE9423 (Kd = 24 nM, Delta H = -5.9 kcal/mol, TDelta S = 4.6 kcal/mol) fully exploit the volume of the binding pocket. Their pronounced binding entropy can be attributed to the extensive displacement of solvent molecules as well as to ionic interactions with the phosphate recognition site. 相似文献
2.
3.
W S Coats M F Browner R J Fletterick C B Newgard 《The Journal of biological chemistry》1991,266(24):16113-16119
Liver and muscle glycogen phosphorylases, which are products of distinct genes, are both activated by covalent phosphorylation, but in the unphosphorylated (b) state, only the muscle isozyme is efficiently activated by the allosteric activator AMP. The different responsiveness of the phosphorylase isozymes to allosteric ligands is important for the maintenance of tissue and whole body glucose homeostasis. In an attempt to understand the structural determinants of differential sensitivity of the muscle and liver isozymes to AMP, we have developed a bacterial expression system for the liver enzyme, allowing native and engineered proteins to be expressed and characterized. Engineering of the single amino acid substitutions Thr48Pro, Met197Thr and the double mutant Thr48Pro, Met197Thr in liver phosphorylase, and Pro48Thr in muscle phosphorylase, did not qualitatively change the response of the two isozymes to AMP. These sites had previously been implicated in the configuration of the AMP binding site. However, when nine amino acids among the first 48 in liver phosphorylase were replaced with the corresponding muscle phosphorylase residues (L1M2-48L49-846), the engineered liver enzyme was activated by AMP to a higher maximal activity than native liver phosphorylase. Interestingly, the homotropic cooperativity of AMP binding was unchanged in the engineered phosphorylase b protein, and heterotropic cooperativity between the glucose-1-phosphate and AMP sites was only slightly enhanced. The native liver, native muscle and L1M2-48L49-846 phosphorylases were converted to the a form by treatment with purified phosphorylase kinase; the maximal activity of the chimeric a enzyme was greater than the native liver a enzyme and approached that of muscle phosphorylase a. From these results we suggest that tissue-specific phosphorylase isozymes have evolved a complex mechanism in which the N-terminal 48 amino acids modulate intrinsic activity (Vmax), probably by affecting subunit interactions, and other, as yet undefined regions specify the allosteric interactions with ligands and substrates. 相似文献
4.
Jakobsen P Lundbeck JM Kristiansen M Breinholt J Demuth H Pawlas J Candela MP Andersen B Westergaard N Lundgren K Asano N 《Bioorganic & medicinal chemistry》2001,9(3):733-744
The first synthesis of the single isomers (3R,4R,5R); (3S,4S,5S): (3R,4R,5S) and (3S,4S,5R) of 5-hydroxymethyl-piperidine-3,4-diol from Arecolin is reported, including the synthesis of a series of N-substituted derivatives of the (3R,4R,5R)-isomer (Isofagomine). The inhibitory effect of these isomers as well as of a series of N-substituted derivatives of the (3R,4R,5R)-isomer and selected hydroxypiperidine analogues on liver glycogen phosphorylase (GP) showed that the (3R,4R,5R) configuration was essential for obtaining an inhibitory effect at submicromolar concentration. The results also showed that all three hydroxy groups should be present and could not be substituted, nor were extra OH groups allowed if sub-micromolar inhibition should be obtained. Some inhibitory effect was retained for N-substituted derivatives of Isofagomine; however, N-substitution always resulted in a loss of activity compared to the parent compound, IC50 values ranging from 1 to 100 microM were obtained for simple alkyl, arylalkyl and benzoylmethyl substituents. Furthermore, we found that it was not enough to assure inhibitory effect to have the (R,R,R) configuration. Fagomine, the (2R,3R,4R)-2-hydroxymethylpiperidine-3,4-diol analogue, showed an IC50 value of 200 microM compared to 0.7 microM for Isofagomine. In addition, Isofagomine was able to prevent basal and glucagon stimulated glycogen degradation in cultured hepatocytes with IC50 values of 2-3 microM. 相似文献
5.
We have applied the residual dipolar coupling (RDC) method to investigate the solution quaternary structures of (2)H- and (15)N-labeled human normal adult recombinant hemoglobin (rHb A) and a low-oxygen-affinity mutant recombinant hemoglobin, rHb(alpha96Val-->Trp), both in the carbonmonoxy form, in the absence and presence of an allosteric effector, inositol hexaphosphate (IHP), using a stretched polyacrylamide gel as the alignment medium. Our recent RDC results [Lukin, J. A., Kontaxis, G., Simplaceanu, V., Yuan, Y., Bax, A., and Ho, C. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 517-520] indicate that the quaternary structure of HbCO A in solution is a dynamic ensemble between two previously determined crystal structures, R (crystals grown under high-salt conditions) and R2 (crystals grown under low-salt conditions). On the basis of a comparison of the geometric coordinates of the T, R, and R2 structures, it has been suggested that the oxygenation of Hb A follows the transition pathway from T to R and then to R2, with R being the intermediate structure [Srinivasan, R., and Rose, G. D. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 11113-11117]. The results presented here suggest that IHP can shift the solution quaternary structure of HbCO A slightly toward the R structure. The solution quaternary structure of rHbCO(alpha96Val-->Trp) in the absence of IHP is similar to that of HbCO A in the presence of IHP, consistent with rHbCO(alpha96Val-->Trp) having an affinity for oxygen lower than that of Hb A. Moreover, IHP has a much stronger effect in shifting the solution quaternary structure of rHbCO(alpha96Val-->Trp) toward the R structure and toward the T structure, consistent with IHP causing a more pronounced decrease in its oxygen affinity. The results presented in this work, as well as other results recently reported in the literature, clearly indicate that there are multiple quaternary structures for the ligated form of hemoglobin. These results also provide new insights regarding the roles of allosteric effectors in regulating the structure and function of hemoglobin. The classical two-state/two-structure allosteric mechanism for the cooperative oxygenation of hemoglobin cannot account for the structural and functional properties of this protein and needs to be revised. 相似文献
6.
The catalytic role of the cofactor phosphate moiety at the active site of glycogen phosphorylase has been the subject of many investigations including solution-state high-resolution 31P-NMR studies. In this study the pyridoxal phosphate moiety in both the inactive and active forms of microcrystalline phosphorylase b has been investigated by high-resolution 31P magic-angle spinning NMR. The symmetry of the shielding tensor in model compounds at varying degrees of ionization is investigated and the results indicate a marked difference between the dianionic and monoanionic model compounds. Consequently the observed similarity in the principal tensor components describing the shielding tensor of the phosphorus nuclei present at the active site of both the R- and T-state conformations suggests that there is no change in ionization site upon activation in contrast to suggestions based upon isotropic shifts. Since previous relaxation measurements have pointed to the need to consider motional influences in such systems, several plausible models are considered. Subject to the assumption of congruency between the principal axis system describing the shielding interaction and molecular frame determined by the molecular symmetry axes, we conclude that the phosphate cofactor is dianionic in both forms. 相似文献
7.
Oikonomakos NG Skamnaki VT Tsitsanou KE Gavalas NG Johnson LN 《Structure (London, England : 1993)》2000,8(6):575-584
BACKGROUND: In muscle and liver, glycogen concentrations are regulated by the coordinated activities of glycogen phosphorylase (GP) and glycogen synthase. GP exists in two forms: the dephosphorylated low-activity form GPb and the phosphorylated high-activity form GPa. In both forms, allosteric effectors can promote equilibrium between a less active T state and a more active R state. GP is a possible target for drugs that aim to prevent unwanted glycogen breakdown and to stimulate glycogen synthesis in non-insulin-dependent diabetes. As a result of a data bank search, 5-chloro-1H-indole-2-carboxylic acid (1-(4-fluorobenzyl)-2-(4-hydroxypiperidin-1-yl)-2-oxoethy l)amide, CP320626, was identified as a potent inhibitor of human liver GP. Structural studies have been carried out in order to establish the mechanism of this unusual inhibitor. RESULTS: The structure of the cocrystallised GPb-CP320626 complex has been determined to 2.3 A resolution. CP320626 binds at a site located at the subunit interface in the region of the central cavity of the dimeric structure. The site has not previously been observed to bind ligands and is some 15 A from the AMP allosteric site and 33 A from the catalytic site. The contacts between GPb and CP320626 comprise six hydrogen bonds and extensive van der Waals interactions that create a tight binding site in the T-state conformation of GPb. In the R-state conformation of GPa these interactions are significantly diminished. CONCLUSIONS: CP320626 inhibits GPb by binding at a new allosteric site. Although over 30 A from the catalytic site, the inhibitor exerts its effects by stabilising the T state at the expense of the R state and thereby shifting the allosteric equilibrium between the two states. The new allosteric binding site offers a further recognition site in the search for improved GP inhibitors. 相似文献
8.
Loughlin WA Pierens GK Petersson MJ Henderson LC Healy PC 《Bioorganic & medicinal chemistry》2008,16(11):6172-6178
The lipophilicity, permeability, solubility, polar surface area and 'rule-of-five' properties were assessed, using QikProp v2.5 (Schr?dinger, Inc.) and ALOGPS 2.1 calculations, for 25 Hyphodermin derivatives. These compounds obeyed the 'rule-of-five', and the calculated physicochemical values were generally within desired limits. All compounds were tested against Glycogen Phosphorylase a (GPa). Four phenyl and benzyl substituted 2-oxo-hexahydro and tetrahydrobenzo[cd]indole carboxylic acids were identified as novel inhibitors of GPa with estimated IC(50) values in the range 0.8-1.3mM. Molecular modelling of these novel inhibitors was used to obtain the main structural features of this class of molecule for future structure-activity relationship studies. 相似文献
9.
10.
Anagnostou E Kosmopoulou MN Chrysina ED Leonidas DD Hadjiloi T Tiraidis C Zographos SE Györgydeák Z Somsák L Docsa T Gergely P Kolisis FN Oikonomakos NG 《Bioorganic & medicinal chemistry》2006,14(1):181-189
Structure-based inhibitor design has led to the discovery of a number of potent inhibitors of glycogen phosphorylase b (GPb), N-acyl derivatives of beta-D-glucopyranosylamine, that bind at the catalytic site of the enzyme. The first good inhibitor in this class of compounds, N-acetyl-beta-D-glucopyranosylamine (NAG) (K(i) = 32 microM), has been previously characterized by biochemical, biological and crystallographic experiments at 2.3 angstroms resolution. Bioisosteric replacement of the acetyl group by trifluoroacetyl group resulted in an inhibitor, N-trifluoroacetyl-beta-D-glucopyranosylamine (NFAG), with a K(i) = 75 microM. To elucidate the structural basis of its reduced potency, we determined the ligand structure in complex with GPb at 1.8 angstroms resolution. To compare the binding mode of N-trifluoroacetyl derivative with that of the lead molecule, we also determined the structure of GPb-NAG complex at a higher resolution (1.9 angstroms). NFAG can be accommodated in the catalytic site of T-state GPb at approximately the same position as that of NAG and stabilize the T-state conformation of the 280 s loop by making several favourable contacts to Asn284 of this loop. The difference observed in the K(i) values of the two analogues can be interpreted in terms of subtle conformational changes of protein residues and shifts of water molecules in the vicinity of the catalytic site, variations in van der Waals interaction, and desolvation effects. 相似文献
11.
12.
Phosphorylase b and a were covalently modified on essentially one -- SH group per subunit by a spin label 4-(2-iodoacetamido)2,2,6,6-tetramethyl piperidinyloxyl. The labelled enzyme is fully active and exhibits all the characteristics of the native molecule. The electron spin resonance spectrum of the label depends on the nature of the ligand that is bound to the enzyme. This property of the spin label is used to study the interaction between the enzyme (both in the b and a forms) and activators (AMP, IMP, CMP), inhibitors (ADP, ATP, UDPG, glucose 6-phosphate), substrates (phosphate and glucose 1-phosphate) and other ligands (adenosine, beta-glycerol-2-phosphate). The interactions are analysed in terms of the apparent ligand dissociation constants and the multiplicity of conformations that this regulatory enzyme exhibits. 相似文献
13.
Mahmoud Benltifa Joseph M. Hayes Sébastien Vidal David Gueyrard Peter G. Goekjian Jean-Pierre Praly Gregory Kizilis Costas Tiraidis Kyra-Melinda Alexacou Evangelia D. Chrysina Spyros E. Zographos Demetres D. Leonidas Georgios Archontis Nikos G. Oikonomakos 《Bioorganic & medicinal chemistry》2009,17(20):7368-7380
A series of glucopyranosylidene-spiro-isoxazolines was prepared through regio- and stereoselective [3+2]-cycloaddition between the methylene acetylated exo-glucal and aromatic nitrile oxides. The deprotected cycloadducts were evaluated as inhibitors of muscle glycogen phosphorylase b. The carbohydrate-based family of five inhibitors displays Ki values ranging from 0.63 to 92.5 μM. The X-ray structures of the enzyme–ligand complexes show that the inhibitors bind preferentially at the catalytic site of the enzyme retaining the less active T-state conformation. Docking calculations with GLIDE in extra-precision (XP) mode yielded excellent agreement with experiment, as judged by comparison of the predicted binding modes of the five ligands with the crystallographic conformations and the good correlation between the docking scores and the experimental free binding energies. Use of docking constraints on the well-defined positions of the glucopyranose moiety in the catalytic site and redocking of GLIDE-XP poses using electrostatic potential fit-determined ligand partial charges in quantum polarized ligand docking (QPLD) produced the best results in this regard. 相似文献
14.
S Feuillastre AS Chajistamatiou C Potamitis M Zervou P Zoumpoulakis ED Chrysina JP Praly S Vidal 《Bioorganic & medicinal chemistry》2012,20(18):5592-5599
Glycogen utilization involves glycogen phosphorylase, an enzyme which appears to be a potential target for the regulation of glycaemia, as the liver isoform is a major player for hepatic glucose output. A single C-glucosylated malonitrile allowed for the synthesis of three glucose-based derivatives namely bis-oxadiazoles, bis-amides and a C-glucosylated tetrahydropyrimidin-2-one. When evaluated as glycogen phosphorylase inhibitors, two of the synthesized compounds displayed inhibition in the sub-millimolar range. In silico studies revealed that only one out of the bis-amides obtained and the C-glucosylated tetrahydropyrimidin-2-one may bind at the catalytic site. 相似文献
15.
Stuart N.L. Bennett Andrew D. Campbell Andrew Hancock Craig Johnstone Peter W. Kenny Adrian Pickup Alleyn T. Plowright Nidhal Selmi Iain Simpson Andy Stocker David P. Whalley Paul R.O. Whittamore 《Bioorganic & medicinal chemistry letters》2010,20(12):3511-3514
A series of carboxylic acid glycogen phosphorylase inhibitors, which have potential as oral antidiabetic agents, is described. Defining and applying simple physicochemical design criteria was used to assess the opportunity and to focus synthetic efforts on compounds with the greatest probability of success. The study led to compound 17, which exhibits a good balance of properties including potent inhibition of recombinant human liver glycogen phosphorylase in vitro, a good DMPK profile including excellent bioavailability and low clearance and good in vivo activity in a glucagon challenge model of diabetes in Zucker rats. 相似文献
16.
17.
18.
19.
Stimulation of glycogen phosphorylase kinase by phospholipids 总被引:1,自引:0,他引:1
The acidic phospholipids phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-biphosphate (PIP2) and the neutral phospholipid lysophosphatidylcholine (LPC) were found to stimulate (3 to 8-fold) the activity of nonactivated rabbit skeletal muscle phosphorylase kinase at pH 6.8, without significantly affecting the activity at pH 8.2. In this respect, phosphatidylcholine and phosphatidylethanolamine were ineffective, while the anionic detergent sodium dodecyl sulfate (SDS) and the anionic steroid dehydroisoandrosterone sulfate (DIAS) were able to mimic the action of phospholipids. SDS was also found to be a very efficient activator of the autophosphorylation of phosphorylase kinase (20-fold activation at 200 microM). The activating effect of phospholipids largely depends on the size of lipid vesicles, which is connected with the procedure of their preparation. These results suggest that phosphorylase kinase belongs to the class of Ca2+-dependent enzymes, which are sensitive to stimulation by calmodulin, limited proteolysis and anionic amphiphiles. 相似文献