首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the partitioning of ovomucoid from egg white, in aqueous two-phase systems (ATPS) composed of PEG 1500 and inorganic salt (lithium sulfate, sodium sulfate, magnesium sulfate, sodium carbonate or sodium citrate) at 25 °C. The results showed a great effect of the electrolyte nature on the partition coefficient. The partition coefficient value ranges from 0.02 to 6.0. The highest partition coefficients were obtained from systems composed of sodium carbonate and the lowest in systems composed of magnesium sulfate. In the system containing magnesium sulfate, a recovery percentage greater than 90% was obtained.  相似文献   

2.
Soluble recombinant Vitreoscilla hemoglobin was purified from E. coli lysate by sequential two-phase extraction techniques. Extraction of lysate containing VHb in PEG/dextran gave a 3.6-fold increase in VHb purity in the PEG-rich phase via a size exclusion mechanism. Further extraction of the recovered PEG phase in PEG/sodium sulfate gave an additional 2.0-fold increase in purity in the PEG-rich phase due to an electrostatic mechanism. Final extraction of the PEG phase in PEG/magnesium sulfate gave an additional 1.3-fold increase in VHb purity in the magnesium sulfate-rich phase. The final yield from the extractive purification was 47% with purity of VHb estimated to be greater than 95%. Yields from the sulfate salt extractions are essentially quantitative due to the extreme partitioning behavior of VHb in these systems. VHb partition coefficients as large as 46 in PEG/sodium sulfate and as small as 0.06 in PEG/magnesium sulfate were observed. Similar small partition coefficients were obtained with PEG/manganese sulfate extractions. This dramatic effect of divalent cation content on the partition coefficient of VHb in PEG/sulfate salt systems was investigated by pH and magnesium ion titration experiments. Results show the effect to be largest and nearly constant for pH values greater than 6.0 and diminished at lower pH values. A model based on magnesium ion binding to negatively charged amino acids is shown to correlate with the data well. Based on model formulation and the partitioning behavior of contaminant proteins, the observed effect is expected to be applicable to other proteins.  相似文献   

3.
The partition behaviour of cutinase on poly(ethylene glycol) (PEG)–hydroxypropyl starch aqueous two-phase systems was characterized. The effect of molecular mass of PEG, the pH of the system and tie-line length on cutinase partition coefficient and cutinase yield to the top phase was investigated for systems prepared with a purified hydroxypropyl starch (Reppal PES 100) and a crude one (HPS). The effect of the presence of different salts, such as sodium chloride, sodium sulphate and ammonium sulphate, on cutinase partition was also studied. The results lead to the conclusion that aqueous two-phase systems composed of PEG and hydroxypropyl starch are not efficient in the purification of cutinase. In the majority of cases, the partition coefficients were very close to 1, with pH being the factor which affects most cutinase partition. Partition coefficients were significantly improved when salts were added to the systems. For PEG 4000–Reppal PES 100 [at pH 4.0; 0.5 M (NH4)2SO4], the partition coefficient for cutinase was 3.7, while a value of 12 was obtained for PEG 4000–HPS (at pH 4.0; 1 M NaCl). An isoelectric point (pI) of 7.8 was confirmed for cutinase by constructing a cross partition graphic from the results obtained in the experiments with different salts.  相似文献   

4.
This study evaluates the influence of type of salt and temperature on the partition coefficient of caseinomacropetide (CMP) to determine the best conditions for the recovery of CMP in aqueous two-phase systems (ATPS) composed by poly(ethylene glycol) (PEG) 1500 and an inorganic salt (potassium phosphate, sodium citrate, lithium sulfate or sodium sulfate). In all systems, CMP presented affinity for the PEG-rich phase. The PEG1500+lithium sulfate showed the highest values of partitioning coefficient. In addition, thermodynamic parameters (DeltaH degrees , DeltaS degrees , DeltaG degrees) as a function of temperature, were calculated for the system PEG1500-sodium citrate at different PEG concentrations and the results imply thermodynamic differences between partitioning of CMP in this system.  相似文献   

5.
Gündüz U 《Bioseparation》2000,9(5):277-281
Partitioning of proteins in aqueous two-phase systems has been shown to provide a powerful method for separating and purifying mixtures of biomolecules by extraction. These systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. There are many factors which influence the partition coefficient K, the ratio of biomolecule concentration in the top phase to that in the bottom phase, in aqueous two-phase systems. The value of the partition coefficient relies on the physico-chemical properties of the target biomolecule and other molecules and their interactions with those of the chosen system. In this work, the partition behavior of pure bovine serum albumin in aqueous two-phase systems was investigated in order to see the effects of changes in phase properties on the partition coefficient K. The concentration of NaCl and pH were considered to be the factors having influence on K. Optimal conditions of these factors were obtained using the Box-Wilson experimental design. The optimum value of K was found as 0.0126 when NaCl concentration and pH were 0.14 M and 9.8, respectively, for a phase system composed of 8% (w/w) polyethylene glycol 3,350 - 9 (% w/w) dextran 37,500 - 0.05 M phosphate at 20 °C.  相似文献   

6.
《Process Biochemistry》2014,49(12):2305-2312
The partitioning of proteases expressed by Penicillium restrictum from Brazilian Savanna in an inexpensive aqueous two-phase system composed of poly (ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied. The effects of PEG molecular weight and concentration, as well as NaPA concentration and the concentration of fermented broth on protease partitioning were studied. Partitioning into the top PEG-rich phase was increased in systems with smaller PEG-molecular weight, higher NaPA concentration and lower PEG concentration. For most systems studied, purification has been achieved by directing the biomolecule partition to the opposite phase of the other proteins, providing the enzyme purification. The highest partition coefficient was obtained using 20 wt% NaPA, 4 wt% PEG 2000 g mol−1 and 45 wt% fermented broth, leading to a purification factor of 1.98 and partition coefficient of 37.73. The system showed high mass balances and yield, indicating enzyme stability and applicability for industrial processes. The partitioning results using the PEG/NaPA/NaCl system show that this method could be used to purify or concentrate protease from fermented broth.  相似文献   

7.
Values have been calculated for apparent mobilities and partition coefficients in the outer non-aqueous layer of the protoplasm of Nitella. Among the alkali metals (with the exception of cesium) the order of mobilities resembles that in water and the partition coefficients (except for cesium) follow the rule of Shedlovsky and Uhlig, according to which the partition coefficient increases with the ionic radius. Taking the mobility of the chloride ion as unity, we obtain the following: lithium 2.04, sodium 2.33, potassium 8.76, rubidium 8.76, cesium 1.72, ammonium 4.05, ½ magnesium 20.7, and ½ calcium 7.52. After exposure to guaiacol these values become: lithium 5.83, sodium 7.30, potassium 8.76, rubidium 8,76, cesium 3.38, ammonium 4.91, ½ magnesium 20.7, and ½ calcium 14.46. The partition coefficients of the chlorides are as follows, when that of potassium chloride is taken as unity: lithium 0.0133, sodium 0.0263, rubidium 1.0, cesium 0.0152, ammonium 0.0182, magnesium 0.0017, and calcium 0.02. These are raised by guaiacol to the following: lithium 0.149, sodium 0.426, rubidium 1.0, cesium 0.82, ammonium 0.935, magnesium 0.0263, and calcium 0.323 (that of potassium is not changed). The effect of guaiacol on the mobilities of the sodium and potassium ions resembles that seen in Halicystis but differs from that found in Valonia where guaiacol increases the mobility of the sodium ion but decreases that of the potassium ion.  相似文献   

8.
《Process Biochemistry》2010,45(5):731-737
Separation of 2,3-butanediol from the fermentation broth is a difficult task that has become a bottleneck in industrial production. Aqueous two-phase systems composed of hydrophilic solvents and inorganic salts could be used to extract 2,3-butanediol from fermentation broth. The ethanol/ammonium sulfate system was investigated in detail, including phase diagram, effect of phase composition on partition, removal of cells and biomacromolecules from the broths and recycling of ammonium sulfate. The highest partition coefficient (7.10) and recovery of 2,3-butanediol (91.7%) were obtained by a system composed of 32% (w/w) ethanol and 16% (w/w) ammonium sulfate. The maximum selective coefficient of 2,3-butanediol to glucose was 30.74 in the experimental range. In addition, cells and proteins could be simultaneously removed from the fermentation broth. The removal ratio of cells and proteins reached 99.7% and 91.2%, respectively. The recovery of ammonium sulfate in the bottom phase reached 97.14% when two volumes of methanol were added to the salt-rich phase.  相似文献   

9.
The partitioning of vancomycin in polyethylene glycol (PEG)-dextran and PEG-phosphate aqueous two-phase systems was studied at different pHs, at varying concentrations of neutral salts, and with an affinity ligand attached to methoxy polyethylene glycol (MPEG). Vancomycin is found to partition preferentially into the PEG-rich top phase, and its partition coefficient increases nearly exponentially with the addition of water structure-making salts, such as sodium sulfate and sodium chloride, but is independent of sodium phosphate concentration. In the PEG-dextran system the vancomycin partition coefficient increases 3-fold in acidic and neutral solutions, while in the PEG-phosphate system it increases about 30-fold on the addition of the same amount of sodium chloride (1. 5 mol/kg). In basic solution, above its isoelectric point, the vancomycin partition coefficient increases slightly with NaCI concentration in the PEG-dextran system. We also examined the use of the dipeptide D-ala-D-ala as an affinity ligand on MPEG to extract vancomycin into the PEG-rich phase. The vancomycin partition coefficient increased almost 7-fold upon adding the MPEG-ligand in an amount equal to approximately 3% of the total PEG in the system. Finally, fractionation of the polydisperse phase-forming polymers in the two-phase PEG-dextran system was observed. The effect of this polymer fractionation on the partition coefficient of vancomycin is discussed.  相似文献   

10.
The partitioning of model proteins (bovine serum albumin, ovalbumin, trypsin and lysozyme) was assayed in aqueous two-phase systems formed by a salt (potassium phosphate, sodium sulfate and ammonium sulfate) and a mixture of two polyethyleneglycols of different molecular mass. The ratio between the PEG masses in the mixtures was changed in order to obtain different polymer average molecular mass. The effect of polymer molecular mass and polydispersivity on the protein partition coefficient was studied. The relationship between the logarithm of the protein partition coefficient and the average molecular mass of the phase-forming polymer was found to depend on the polyethyleneglycol molecular mass, the salt type in the bottom phase and the molecular weight of the partitioned protein. The polymer polydispersivity proved to be a very useful tool to increase the separation between two proteins having similar isoelectrical point.  相似文献   

11.
Antimicrobial peptide P34 is a promising biopreservative for utilization in the food industry. In this work, aqueous biphasic systems (ABS) and aqueous biphasic micellar systems (ABMS) were studied as prestep for purification of peptide P34. The ABS was prepared with polyethylene glycol (PEG) and inorganic salts and the ABMS with Triton X-114 was chosen as the phase-forming surfactant. Results indicate that peptide P34 partitions preferentially to PEG-rich phase and extraction with ammonium sulfate [(NH4)2SO4], yielding a 75% recovery of the antimicrobial activity, specific activity of 1,530 antimicrobial units per mg of protein, and purification fold of 2.48. Protein partition coefficient and partition coefficient for the biological activity with (NH4)2SO4 system were 0.48 and 64, respectively. Addition of sodium chloride did not affect recovery, but decreased protein amount in the PEG-rich phase, indicating a higher partition of biomolecules. ABMS did not yield good recovery of antimicrobial activity. Purification fold using PEG–(NH4)2SO4 and 1.0?mol l?1 sodium chloride was twice higher than that obtained by conventional protocol, indicating a successful utilization of ABS as a step for purification of peptide P34.  相似文献   

12.
The partition of the amphiphile sodium dodecyl sulfate (SDS) between an aqueous solution and a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer was followed by isothermal titration calorimetry (ITC) as a function of the total concentration of SDS. It was found that the obtained partition coefficient is strongly affected by the ligand concentration, even after correction for the charge imposed in the bilayer by the bound SDS. The partition coefficient decreased as the total concentration of SDS increased, with this effect being significant for local concentrations of SDS in the lipid bilayer above 5 molar%. At those high local concentrations, the properties of the lipid bilayer are strongly affected, leading to nonideal behavior and concentration-dependent apparent partition coefficients. It is shown that with the modern ITC instruments available, the concentrations of SDS can be drastically reduced while maintaining a good signal-to-noise ratio. The intrinsic parameters of the interaction with unperturbed membranes can be obtained from the asymptotic behavior of the apparent parameters as a function of the ligand concentration for both nonionic and ionic solutes. A detailed analysis is performed, and a spreadsheet is provided to obtain the interaction parameters with and without correction for electrostatics.  相似文献   

13.
The partitioning of bovine serum albumin (BSA) in a polyethylene glycol 3350 (8% w/w)–dextran 37 500 (6% w/w)–0.05 M phosphate aqueous two-phase was investigated at different pHs, at varying concentrations of sodium chloride at 20°C. The effect of NaCl concentration on the partition coefficient of BSA was studied for the PEG–dx systems with initial pH values of 4.2, 5.0, 7.0, 9.0, and 9.8. The NaCl concentrations in the phase systems with constant pH value were 0.06, 0.1, 0.2, 0.3, and 0.34 M. It was observed that the BSA partition coefficient decreased at concentrations smaller than 0.2 M NaCl and increased at concentrations greater than 0.2 M NaCl for all systems with initial pHs of 4.2, 5.0, 7.0, 9.0, and 9.8. It was also seen that the partition coefficient of BSA decreased as the pH of the aqueous two-phase systems increased at any NaCl salt concentration studied.  相似文献   

14.
《Process Biochemistry》2014,49(3):506-511
In this study, salting-out extraction (SOE) and crystallization were combined to recover succinic acid from fermentation broths. Of the different SOE systems investigated, the system consisting of organic solvents and acidic salts appeared to be more favorable. A system using acetone and ammonium sulfate was investigated to determine the effect of phase composition and pH. The highest partition coefficient (8.64) and yield of succinic acid (90.05%) were obtained by a system composed of 30% (w/w) acetone and 20% (w/w) ammonium sulfate at a pH of 3.0. Additionally, 99.03% of cells, 90.82% of soluble proteins, and 94.89% of glucose could be simultaneously removed from the fermentation broths. Interestingly, nearly 40% of the pigment was removed using the single-step salting-out extraction process. The analysis of the effect of pH on salting-out extraction indicates that a pH lower than the pK of succinic acid is beneficial for the recovery of succinic acid in an SOE system. Crystallization was performed for the purification of succinic acid at 4 °C and pH 2.0. By combining salting-out extraction with crystallization, an identical total yield (65%) and a higher purity (97%) of succinic acid were obtained using a synthetic fermentation broth compared with the actual fermentation broth (65% and 91%, respectively).  相似文献   

15.
The characteristics of an aqueous two-phase system for the overproduction of extracellular enzyme through α-amylase fermentation by Bacillus amyloliquefaciens were investigated. With higher molecular weight of polyethylene glycol (PEG) or lower molecular weight of dextran, the partition coefficient of α-amylase was increased. α-Amylase biosynthesis was increased when PEG 6000 was included in the medium compared to the medium without PEG. Phosphate addition to the PEG-dextran system improved the partition coefficient of α-amylase, but deactivated α-amylase severely. By using sodium sulfate instead of phosphate, α-amylase deactivation was negligible, and high partitioning of the enzyme in the top phase was obtained.  相似文献   

16.
中微量元素和有益元素对水稻生长和吸收镉的影响   总被引:11,自引:0,他引:11  
采用盆栽试验,研究了中微量元素和有益元素对水稻生长和吸收镉的影响。结果表明,在所有测试的元素和施用方法中,硅酸钠叶面喷施显著增加稻谷产量,而碳酸钙、硼酸、硅酸钠土施和亚硒酸钠显著降低了稻谷产量。镁、锌、铁的盐酸盐形态对水稻籽粒的增产效果优于硫酸盐形态,而钙、铜的硫酸盐形态增产效果略高于盐酸盐形态。在钙、镁、硫三种中量元素中,钙增加了水稻籽粒中的Cd浓度和吸收量,而镁和硫则降低了籽粒中的Cd浓度和吸收量,以硫磺粉处理为最低。稻草中的Cd浓度和总量均以氯化镁处理为最高,硫磺粉处理最低。镁能有效抑制Cd从秸秆向籽粒的转移,其盐酸盐优于硫酸盐。在微量元素中,锌对水稻Cd的吸收抑制作用最为显著,其次是铜,而有益元素肥料硅酸钠叶面喷施则显著增加了稻谷中的Cd浓度和吸收量。硫酸亚铁、氯化锰、氯化铜、硼酸和硼砂处理都能有效地抑制Cd从秸秆向籽粒的转移,而硅酸钠叶面喷施和锌处理则促进了Cd的转移,表明硅酸钠抑制水稻吸收Cd的机制很可能发生在土壤中,而非在植株体内或地上部分。在Cd污染土壤上选用适宜的中微量和有益元素肥料及其施用方法,能有效降低水稻对镉的吸收和稻米中的Cd含量。  相似文献   

17.
A study was made to find out maximum partitioning of Bacillus licheniformis alkaline phosphatase in different ATPSs composed of different molecular weight of PEG X (X = 2000, 4000, 6000) with salts (magnesium sulphate, sodium sulphate, sodium citrate) and polymers (dextran 40, dextran T500). Physicochemical factors such as effect of system pH, system temperature and production media were evaluated for partitioning of alkaline phosphatase. PEG 4000 [9.0% (w/v)] and dextran T500 [9.6% (w/v)] were selected as most suitable system components for alkaline phosphatase production by B. licheniformis based on greater partition coefficient (k = 5.23). The two-phase system produced fewer enzymes than the homogeneous fermentation (control) in early stage of fermentation, but after 72 h the enzyme produced in the control system was less than that in the ATPS. Total alkaline phosphatase yield in ATPS fermentation was 3907.01 U/ml and in homogeneous fermentation 2856.50 U/ml.  相似文献   

18.
Summary We have determined the partition coefficient of the fluorescent molecule perylene between liquid crystalline and crystalline regions of vesicle membranes formed from binary mixtures of several lipids. We measured the fluorescence intensity of perylene in these vesicles as a function of temperature and used the intensity profiles, together with a theory developed in a previous paper, to determine the partition coefficient defined as the ratio of the concentration of perylene in the liquid-crystalline (fluid) regions of the membrane to the concentration in the crystalline (solid) phase. In vesicles composed of dipalmitoyl phosphatidylcholine/distearoyl phosphatidylcholine (dppc/dspc) mixtures and of dipalmitoyl phosphatidylcholine/dipalmitoyl phosphatidylethanolamine (dppc/dppe) mixtures, the partition coefficient is close to unity. Its value is 1.04±0.18 for dppc/dsp mixtures and 1.10±0.26 for dppc/dppe mixtures. In vesicles composed of dimyristoyl phosphatidylcholine/distearoyl phosphatidylcholine mixtures, the partition coefficient was more difficult to determine and its value ranged from 0.3 to 7.  相似文献   

19.
The absorbance maximum, lambda max, of a local anesthetic, benzyl alcohol, is shifted to longer wavelengths when solvent polarity is decreased. The shift was approximately a linear function of the dielectric constant of the solvent. This transition in electronic spectra according to the microenvironmental polarity is used to analyze benzyl alcohol binding to surfactant micelles. A facile method is devised to estimate the micelle/water partition coefficient from the dependence of lambda max of benzyl alcohol on surfactant concentrations. The effective dielectric constants of the sodium decyl sulfate, dodecyl sulfate and tetradecyl sulfate micelles were 29, 31 and 33, respectively. The partition coefficient of benzyl alcohol between the micelles and the aqueous phase was 417, 610 and 1089, respectively, in the mole fraction unit. The pressure dependence of the partition coefficient was estimated from the depression of the critical micelle concentration of sodium dodecyl sulfate by benzyl alcohol under high pressure up to 200 MPa. High pressure squeezed out benzyl alcohol molecules from the micelle until about 120 MPa, then started to squeeze in when the pressure was further increased. The volume change of benzyl alcohol by transfer from the aqueous to the micellar phase was calculated from the pressure dependence of the partition coefficient. The volume change, estimated from the thermodynamic argument, was 3.5 +/- 1.1 cm3.mol-1 at 298.15 K, which was in reasonable agreement with the partial molal volume change determined directly from the solution density measurements, 3.1 +/- 0.2 cm3.mol-1. Benzyl alcohol apparently solvates into the micelles close to surface without losing contact with the aqueous phase.  相似文献   

20.
Correlations to describe the effect of surface hydrophobicity and charge of proteins with their partition coefficient in aqueous two-phase systems were investigated. Polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate, and dextran systems in the presence of low (0.6% w/w) and high (8.8% w/w) levels of NaCl were selected for a systematic study of 12 proteins. The surface hydrophobicity of the proteins was measured by ammonium sulfate precipitation as the inverse of their solubility. The hydrophobicity values measured correlated well with the partition coefficients, K, obtained in the PEG/salt systems at high concentration of NaCl (r = 0.92-0.93). In PEG/citrate systems the partition coefficient correlated well with protein hydrophobicity at low and high concentrations of NaCl (r = 0.81 and 0.93, respectively). The PEG/citrate system also had a higher hydrophobic resolution than other systems to exploit differences in the protein's hydrophobicity. The surface charge and charge density of the proteins was determined over a range of pH (3-9) by electrophoretic titration curves; PEG/salt systems did not discriminate well between proteins of different charge or charge density. In the absence of NaCl, K decreased slightly with increased positive charge. At high NaCl concentration, K increased as a function of positive charge. This suggested that the PEG-rich top phase became more negative as the concentration of NaCl in the systems increased and, therefore, attracted the positively charged proteins. The effect of charge was more important in PEG/dextran systems at low concentrations of NaCl. In the PEG/dextran systems at lower concentration of NaCl, molecular weight appeared to be the prime determinant of partition, whereas no clear effect of molecular weight could be found in PEG/salt systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号