首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations in global and regional precipitation patterns are expected to affect plant and ecosystem productivity, especially in water‐limited ecosystems. This study examined the effects of natural and supplemental (25% increase) seasonal precipitation on a sotol grassland ecosystem in Big Bend National Park in the Chihuahuan Desert. Physiological responses – leaf photosynthesis at saturating light (Asat), stomatal conductance (gs), and leaf nitrogen [N] – of two species differing in their life form and physiological strategies (Dasylirion leiophyllum, a C3 shrub; Bouteloua curtipendula, a C4 grass) were measured over 3 years (2004–2006) that differed greatly in their annual and seasonal precipitation patterns (2004: wet, 2005: average, 2006: dry). Precipitation inputs are likely to affect leaf‐level physiology through the direct effects of altered soil water and soil nitrogen. Thus, the effects of precipitation, watering treatment, soil moisture, and nitrogen were quantified via multivariate hierarchical Bayesian models that explicitly linked the leaf and soil responses. The two species differed in their physiological responses to precipitation and were differentially controlled by soil water vs. soil nitrogen. In the relatively deeply rooted C3 shrub, D. leiophyllum, Asat was highest in moist periods and was primarily regulated by deep (16–30 cm) soil water. In the shallow‐rooted C4 grass, B. curtipendula, Asat was only coupled to leaf [N], both of which increased in dry periods when soil [N] was highest. Supplemental watering during the wet year generally decreased Asat and leaf [N] in D. leiophyllum, perhaps due to nutrient limitation, and physiological responses in this species were influenced by the cumulative effects of 5 years of supplemental watering. Both species are common in this ecosystem and responded strongly, yet differently, to soil moisture and nitrogen, suggesting that changes in the timing and magnitude of precipitation may have consequences for plant carbon gain, with the potential to alter community composition.  相似文献   

2.
Abstract. Our overall objective was to use a soil water model to predict spatial patterns in germination and establishment of two important perennial C4-bunchgrasses across the North American shortgrass steppe and desert grassland regions. We also predicted changes in establishment patterns under climate change scenarios. Bouteloua gracilis dominates the shortgrass steppe from northeastern Colorado to southeastern New Mexico. Bouteloua eriopoda dominates desert grasslands in central and southern New Mexico. Germination and establishment for each species were predicted at 16 sites along the gradient using a daily time step, multi-layer soil water model (SOILWAT) to determine the percentage of years that temperature and soil water criteria for germination and establishment were met. Percentage of years with predicted establishment decreased from north to south for B. gracilis, but increased from north to south for B. eriopoda, comparable to observed dominance patterns. The 95 % confidence interval around the point at which simulated establishment were equal for the two species was near the location of the shortgrass steppe-desert grassland ecotone where both species are abundant. The intersection in percentage of years with establishment for the two species was predicted to move further north when climate was scaled using three Global Circulation Models (GCMs), indicating a possible northward expansion of B. eriopoda. Our results suggest that recruitment by seed may be an important process in determining, at least in part, the geographic distribution of these two species. Changes in climate that affect establishment constraints could result in shifts of species dominance that may or may not be accompanied by changes in species composition.  相似文献   

3.
4.
5.
Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. How communities of mites and nematodes may respond to changes in moisture availability is not well known, yet these organisms play important roles in decomposition and nutrient cycling processes. We determined how communities of these organisms respond to changes in moisture availability and whether common patterns occur along fine‐scale gradients of soil moisture within four individual ecosystem types (mesic, xeric and arid grasslands and a polar desert) located in the western United States and Antarctica, as well as across a cross‐ecosystem moisture gradient (CEMG) of all four ecosystems considered together. An elevation transect of three sampling plots was monitored within each ecosystem and soil samples were collected from these plots and from existing experimental precipitation manipulations within each ecosystem once in fall of 2009 and three times each in 2010 and 2011. Mites and nematodes were sorted to trophic groups and analyzed to determine community responses to changes in soil moisture availability. We found that while both mites and nematodes increased with available soil moisture across the CEMG, within individual ecosystems, increases in soil moisture resulted in decreases to nematode communities at all but the arid grassland ecosystem; mites showed no responses at any ecosystem. In addition, we found changes in proportional abundances of mite and nematode trophic groups as soil moisture increased within individual ecosystems, which may result in shifts within soil food webs with important consequences for ecosystem functioning. We suggest that communities of soil animals at local scales may respond predictably to changes in moisture availability regardless of ecosystem type but that additional factors, such as climate variability, vegetation composition, and soil properties may influence this relationship over larger scales.  相似文献   

6.
Summary

In the light of all that has been discovered about the mechanism of evolution it has become tempting to follow Darwin's lead and to “see no limit to this power“. Yet a careful examination of situations in which evolution is known to be occurring in some species, shows complete absence of evolution in others. This not because these species have not had the opportunity; in many situations there may even be uncolonised bare space.

The explanation must lie in the supply of appropriate variation. A tacit assumption of evolution by natural selection is that the necessary variation is always available. Yet there is no a priori justification for this. Evidence from populations in nature, particularly of species which are potential colonists of old metal mine workings and similar metal contaminated habitats, shows that the species that successfully colonise these habitats, by the evolution of metal tolerant populations, possess within their normal populations the necessary variation. But those species which fail to colonise these habitats, despite the opportunity, do not possess this variation. This applies also at the level of the population, in the replicated evolutionary situations occurring under electricity pylons.

Such evidence, together with arguments from theory, suggests that the failures of evolution have been as important as its successes in moulding the living world as we see it today, and that the reasons for failure must be sought at the molecular level in limitations to the origin of new variation.  相似文献   

7.
How plants respond to climatic perturbations, which are forecasted to increase in frequency and intensity, is difficult to predict because of the buffering effects of plasticity. Compensatory adjustments may maintain fecundity and recruitment, or delay negative changes that are inevitable but not immediately evident. We imposed a climate perturbation of warming and drought on a mixed-mating perennial violet, testing for adjustments in growth, reproduction and mortality. We observed several plasticity-based buffering responses, such that the climatic perturbation did not alter population structure. The most substantial reproductive adjustments, however, involved selfing, with a 45% increase in self-pollination by chasmogamous flowers, a 61% increase in the number of cleistogamous flowers that produced at least one fruit and an overall 15% increase in fruit production from selfed cleistogamous flowers. Reproductive assurance thus compensated for environmental change, including low pollinator visitation that occurred independently of our climate treatment. There was also no immediate evidence for inbreeding depression. Our work indicates that plants with vegetative and reproductive flexibility may not be immediately and negatively affected by a climatic perturbation. The stabilizing effects of these reproductive responses in the long term, however, may depend on the implications of significantly elevated levels of selfing.  相似文献   

8.
Temporal advancement of resource availability by warming in seasonal environments can reduce reproductive success of vertebrates if their own reproductive phenology does not also advance with warming. Indirect evidence from large-scale analyses suggests, however, that migratory vertebrates might compensate for this by tracking phenological variation across landscapes. Results from our two-year warming experiment combined with seven years of observations of plant phenology and offspring production by caribou (Rangifer tarandus) in Greenland, however, contradict evidence from large-scale analyses. At spatial scales relevant to the foraging horizon of individual herbivores, spatial variability in plant phenology was reduced--not increased--by both experimental and observed warming. Concurrently, offspring production by female caribou declined with reductions in spatial variability in plant phenology. By highlighting the spatial dimension of trophic mismatch, these results reveal heretofore unexpected adverse consequences of climatic warming for herbivore population ecology.  相似文献   

9.
10.
Differences in thermal tolerance during embryonic development in Fraser River sockeye salmon Oncorhynchus nerka were examined among nine populations in a controlled common‐garden incubation experiment. Forcing embryonic development at an extreme temperature (relative to current values) of 16° C, representing a future climate change scenario, significantly reduced survival compared to the more ecologically moderate temperature of 10° C (55% v. 93%). Survival at 14° C was intermediate between the other two temperatures (85%). More importantly, this survival response varied by provenance within and between temperature treatments. Thermal reaction norms showed an interacting response of genotype and environment (temperature), suggesting that populations of O. nerka may have adapted differentially to elevated temperatures during incubation and early development. Moreover, populations that historically experience warmer incubation temperatures at early development displayed a higher tolerance for warm temperatures. In contrast, thermal tolerance does not appear to transcend life stages as adult migration temperatures were not related to embryo thermal tolerance. The intra‐population variation implies potential for thermal tolerance at the species level. The differential inter‐population variation in thermal tolerance that was observed suggests, however, limited adaptive potential to thermal shifts for some populations. This infers that the intergenerational effects of increasing water temperatures may affect populations differentially, and that such thermally mediated adaptive selection may drive population, and therefore species, persistence.  相似文献   

11.
SUMMARY 1. Mathematical functions developed in long‐term laboratory experiments at different constant temperatures were combined with daily water temperatures for 1991–93 in eight Austrian streams and rivers to simulate the complex life histories and reproductive capacities of two freshwater amphipods: Gammarus fossarum and G. roeseli. The functions describe brood development times, hatching success, times taken to reach sexual maturity, growth, and fecundity. The sex ratio was assumed to be 0.5 and an autumn–winter reproductive resting period was based on observations of six river populations. Simulations included summer‐cold mountain streams, summer‐warm lowland rivers, watercourses fed by groundwater or influenced by heated effluents, and varying amplitudes of change within each year. 2. A fortran 77 computer program calculated growth from birth to sexual maturity of first‐generation females born on the first day of each calendar month in 1991, and the numbers of offspring successfully released from the maternal broodpouch in successive broods. At the 1991–93 regimes of temperature, individual G. fossarum released 127–208 offspring and G. roeseli released 120–169 in seven or eight successive broods during life spans of less than 2 years in six rivers. Life spans extended into a third year in the relatively cool River Salzach (mean temperature 7.5 °C). They were not completed in the very cold River Steyr (mean 5.6, range 2.5–7.9 °C), where G. fossarum produced five broods (totalling 120 offspring) and G. roeseli only two broods (totalling 28 offspring) in the 3‐year period. Except in the Steyr, some offspring grew rapidly to maturity and produced several second‐generation broods during the simulation period; in the warmest rivers some third‐generation broods were also produced. Birth dates, early or late in the year, influenced the subsequent production of broods and young, depending on temperature regimes in particular rivers. Total numbers of offspring produced by the second and third generations represent the theoretical reproductive capacities of G. fossarum and G. roeseli. Minimum and maximum estimates mostly ranged from 100 to 17 300, were larger for G. fossarum except in the warmest river (March), where temperatures rose above 20 °C for 56–78 days in summer, and largest (maximum 37 600) in the River Voeckla heated by discharge from a power‐station (mean 11.5 °C). Results from the simulations agree with preliminary assessments of relative abundances for G. fossarum and G. roeseli in several of the study rivers, but in some one or both species appear to be absent. On a wider scale, the present study confirms that G. fossarum is potentially more successful than G. roeseli in cool rivers but indicates that neither species is likely to maintain viable populations in cold rivers strongly influenced by snow and ice‐melt. 3. The potential impacts of future river warming by increases of 1, 2 and 3 °C, due to climate change, vary according to river site, date of fertilisation, the extent of temperature increase, and the species of Gammarus. For Austrian rivers with mean temperatures in the range c. 7–10 °C, future warming would result in modest changes in the life histories and reproductive capacities of both G. fossarum and G. roeseli; the former would find improved temperature conditions in watercourses that are currently very cold throughout the year, and both would find warm rivers less tolerable. 4. The high potential reproductive capacity of gammarids, with rapid production of numerous successive broods when sexual maturity is finally achieved, indicates adaptation to high mortality during the relatively long period of growth to sexual maturity, and provides scope for an opportunistic strategy of emigration from centres of population abundance to colonise new territory when conditions are favourable. Rapid expansion of populations is desirable to combat the effects of environmental catastrophes, both frequent and short‐term floods and droughts, and more long‐term climatic changes that have occurred several times in glacial–interglacial periods during the current Ice Age.  相似文献   

12.
Climate change has had numerous ecological effects, including species range shifts and altered phenology. Altering flowering phenology often affects plant reproduction, but the mechanisms behind these changes are not well‐understood. To investigate why altering flowering phenology affects plant reproduction, we manipulated flowering phenology of the spring herb Claytonia lanceolata (Portulacaceae) using two methods: in 2011–2013 by altering snow pack (snow‐removal vs. control treatments), and in 2013 by inducing flowering in a greenhouse before placing plants in experimental outdoor arrays (early, control, and late treatments). We measured flowering phenology, pollinator visitation, plant reproduction (fruit and seed set), and pollen limitation. Flowering occurred approx. 10 days earlier in snow‐removal than control plots during all years of snow manipulation. Pollinator visitation patterns and strength of pollen limitation varied with snow treatments, and among years. Plants in the snow removal treatment were more likely to experience frost damage, and frost‐damaged plants suffered low reproduction despite lack of pollen limitation. Plants in the snow removal treatment that escaped frost damage had higher pollinator visitation rates and reproduction than controls. The results of the array experiment supported the results of the snow manipulations. Plants in the early and late treatments suffered very low reproduction due either to severe frost damage (early treatment) or low pollinator visitation (late treatment) relative to control plants. Thus, plants face tradeoffs with advanced flowering time. While early‐flowering plants can reap the benefits of enhanced pollination services, they do so at the cost of increased susceptibility to frost damage that can overwhelm any benefit of flowering early. In contrast, delayed flowering results in dramatic reductions in plant reproduction through reduced pollination. Our results suggest that climate change may constrain the success of early‐flowering plants not through plant‐pollinator mismatch but through the direct impacts of extreme environmental conditions.  相似文献   

13.

Aim

Studies of species' range shifts have become increasingly relevant for understanding ecology and biogeography in the face of accelerated global change. The combination of limited mobility and imperilled status places some species at a potentially greater risk of range loss, extirpation or extinction due to climate change. To assess the ability of organisms with limited movement and dispersal capabilities to track shifts associated with climate change, we evaluated reproductive and dispersal traits of freshwater mussels (Unionida), sessile invertebrates that require species‐specific fish for larval dispersal.

Location

North American Atlantic Slope rivers.

Methods

To understand how unionid mussels may cope with and adapt to current and future warming trends, we identified mechanisms that facilitated their colonization of the northern Atlantic Slope river basins in North America after the Last Glacial Maximum. We compiled species occurrence and life history trait information for each of 55 species, and then selected life history traits for which ample data were available (larval brooding duration, host fish specificity, host infection strategy, and body size) and analysed whether the trait state for each was related to mussel distribution in Atlantic Slope rivers.

Results

Brooding duration (p < .01) and host fish specificity (p = .02) were significantly related to mussel species distribution. Long‐term brooders were more likely than short‐term brooders to colonize formerly glaciated rivers, as were host generalists compared to specialists. Body size and host infection strategy were not predictive of movement into formerly glaciated rivers (p > .10).

Main conclusions

Our results are potentially applicable to many species for which life history traits have not been well‐documented, because reproductive and dispersal traits in unionid mussels typically follow phylogenetic relationships. These findings may help resource managers prioritize species according to climate change vulnerability and predict which species might become further imperilled with climate warming. Finally, we suggest that similar trait‐based decision support frameworks may be applicable for other movement limited taxa.
  相似文献   

14.
Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1-3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.  相似文献   

15.
Extreme weather events are expected to increase in frequency and magnitude due to climate change. Their effects on vegetation are widely unknown. Here, experimental grassland and heath communities in Central Europe were exposed either to a simulated single drought or to a prolonged heavy rainfall event. The magnitude of manipulations imitated the local 100-year weather extreme according to extreme value statistics. Overall productivity of both plant communities remained stable in the face of drought and heavy rainfall, despite significant effects on tissue die-back. Grassland communities were more resistant against the extreme weather events than heath communities. Furthermore, effects of extreme weather events on community tissue die-back were modified by functional diversity, even though conclusiveness in this part is limited by the fact that only one species composition was available per diversity level within this case study. More diverse grassland communities exhibited less tissue die-back than less complex grassland communities. On the other side, more diverse heath communities were more vulnerable to extreme weather events compared to less complex heath communities. Furthermore, legumes did not effectively contribute to the buffering against extreme weather events in both vegetation types. Tissue die-back proved a strong stress response in plant communities exposed to 100-year extreme weather events, even though one important ecosystem function, namely productivity, remained surprisingly stable in this experiment. Theories and concepts on biodiversity and ecosystem functioning (insurance hypothesis, redundancy hypothesis) may have to be revisited when extreme weather conditions are considered.  相似文献   

16.
17.
Seed dormancy and size are two important life‐history traits that interplay as adaptation to varying environmental settings. As evolution of both traits involves correlated selective pressures, it is of interest to comparatively investigate the evolution of the two traits jointly as well as independently. We explore evolutionary trajectories of seed dormancy and size using adaptive dynamics in scenarios of deterministic or stochastic temperature variations. Ecological dynamics usually result in unbalanced population structures, and temperature shifts or fluctuations of high magnitude give rise to more balanced ecological structures. When only seed dormancy evolves, it is counter‐selected and temperature shifts hasten this evolution. Evolution of seed size results in the fixation of a given strategy and evolved seed size decreases when seed dormancy is lowered. When coevolution is allowed, evolutionary variations are reduced while the speed of evolution becomes faster given temperature shifts. Such coevolution scenarios systematically result in reduced seed dormancy and size and similar unbalanced population structures. We discuss how this may be linked to the system stability. Dormancy is counter‐selected because population dynamics lead to stable equilibrium, while small seeds are selected as the outcome of size‐number trade‐offs. Our results suggest that unlike random temperature variation between generations, temperature shifts with high magnitude can considerably alter population structures and accelerate life‐history evolution. This study increases our understanding of plant evolution and persistence in the context of climate changes.  相似文献   

18.
19.
20.
Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non‐target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non‐target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non‐target effect magnitude and increase non‐target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号