首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinetoplast DNA (kDNA) of trypanosomes is comprised of thousands of DNA minicircles and 20-50 maxicircles catenated into a single network. We show that kinetoplasts isolated from the trypanosomatid species Crithidia fasciculata incorporate labeled nucleotides and support minicircle DNA replication in a manner which mimics two characteristics of minicircle replication in vivo: 1) the minicircles are replicated as free molecules and subsequently reattached to the kDNA network, and 2) a replication intermediate having a structure consistent with a highly gapped minicircle species is generated. In addition, a class of minicircle DNA replication intermediates is observed containing discontinuities at specific sites within each of the newly synthesized DNA strands. By using a strain of C. fasciculata possessing nearly homogenous minicircles, we were able to map the discontinuities to two small regions situated 180 degrees apart on the minicircle. Each region has two sites at which a discontinuity can occur, one on each strand and separated by approximately 100 base pairs. These sites may represent origins of minicircle DNA replication.  相似文献   

2.
Free minicircles of kinetoplast DNA in Crithidia fasciculata.   总被引:8,自引:0,他引:8  
The major form of kinetoplast DNA in Crithidia fasciculata is a network which contains thousands of minicircles linked together in a two-dimensional array. This paper reports the existence of free minicircles in Crithidia which by several criteria are identical to those in networks. They are the same size (about 2500 base pairs), and they yield the same products upon digestion with restriction enzymes. About 0.4% of the minicircles in exponentially growing nonsynchronized cells are free and the remainder are in networks. After a 5-min pulse with [3H]thymidine, above 10% of all of the incorporated radioactivity in the cell is in free minicircles, and the minicircles have a higher specific radioactivity than the average of other DNAs in the cell. Three-branched structures, which resemble Cairns-type replication intermediates, are occasionally observed by electron microscopy. Kinetic studies of the incorporation of [3H]thymidine into free minicircles indicate that they turn over, and this turnover was confirmed by a pulse-chase experiment. These properties of free minicircles suggest that they may be intermediates in the replication of network minicircles.  相似文献   

3.
The mitochondrial DNA (kinetoplast DNA) of the trypanosomatid Crithidia fasciculata consists of minicircles and maxicircles topologically interlocked in a single network per cell. Individual minicircles replicate unidirectionally from either of two replication origins located 180 degrees apart on the minicircle DNA. Initiation of minicircle leading-strand synthesis involves the synthesis of an RNA primer which is removed in the last stage of replication. We report here the purification to near homogeneity of a structure-specific DNA endo-nuclease based on the RNase H activity of the enzyme on a poly(rA).poly(dT) substrate. RNase H activity gel analysis of whole cell and kinetoplast extracts shows that the enzyme is enriched in kinetoplast fractions. The DNA endonuclease activity of the enzyme is specific for DNA primers annealed to a template strand and requires an unannealed 5' tail. The enzyme cleaves 3' of the first base paired nucleotide releasing the intact tail. The purified enzyme migrates as a 32 kDa protein on SDS gels and has a Stoke's radius of 21.5 A and a sedimentation coefficient of 3.7 s, indicating that the protein is a monomer in solution with a native molecular mass of 32.4 kDa. These results suggest that the enzyme may be involved in RNA primer removal during minicircle replication.  相似文献   

4.
5.
6.
The mitochondrial DNA polymerase from Crithidia fasciculata has been purified to near homogeneity. SDS-PAGE analysis of the purified enzyme reveals a single polypeptide with a molecular weight of approximately 43,000. The protein is basic, with an isoelectric point between 7.6-8.0. Its Stokes radius of 22 A and its sedimentation coefficient of 4.1 S suggest a native molecular weight of 38,000, indicating that the protein is a monomer under our experimental conditions. Western blots and immunoprecipitations of crude extracts reveal a cross-reacting protein of 48 kDa, suggesting that the purified enzyme may be an enzymatically active proteolytic product. The mitochondrial origin of the polymerase was confirmed by cell fractionation. Our results indicate that the C. fasciculata enzyme may be among the smallest known mitochondrial polymerases.  相似文献   

7.
Kinetoplast DNA (kDNA) is a novel form of mitochondrial DNA consisting of thousands of interlocked minicircles and 20–30 maxicircles. The minicircles replicate free of the kDNA network but nicks and gaps in the newly synthesized strands remain at the time of reattachment to the kDNA network. We show here that the steady-state population of replicated, network-associated minicircles only becomes repaired to the point of having nicks with a 3′OH and 5′deoxyribonucleoside monophosphate during S phase. These nicks represent the origin/terminus of the strand and occur within the replication origins (oriA and oriB) located 180° apart on the minicircle. Minicircles containing a new L strand have a single nick within either oriA or oriB but not in both origins in the same molecule. The discontinuously synthesized H strand contains single nicks within both oriA and oriB in the same molecule implying that discontinuities between the H-strand Okazaki fragments become repaired except for the fragments initiated within the two origins. Nicks in L and H strands at the origins persist throughout S phase and only become ligated as a prelude to network division. The failure to ligate these nicks until just prior to network division is not due to inappropriate termini for ligation.  相似文献   

8.
Although the mitochondrial uridine insertion/deletion, guide RNA (gRNA)-mediated type of RNA editing has been described in Crithidia fasciculata, no evidence for the encoding of gRNAs in the kinetoplast minicircle DNA has been presented. There has also been a question as to the capacity of the minicircle DNA in this species to encode the required variety of gRNAs, because the kinetoplast DNA from the C1 strain has been reported as essentially containing a single minicircle sequence class. To address this problem, the genomic and mature edited sequences of the MURF4 and RPS12 cryptogenes were determined and a gRNA library was constructed from mitochondrial RNA. Five specific gRNAs were identified, two of which edit blocks within the MURF4 mRNA, and three of which edit blocks within the RPS12 mRNA. The genes for these gRNAs are all localized with identical polarity within one of the two variable regions of specific minicircle molecules, approximately 60 bp from the "bend" region. These minicircles were found to represent minor sequence classes representing approximately 2% of the minicircle DNA population in the network. The major minicircle sequence class also encodes a gRNA at the same relative genomic location, but the editing role of this gRNA was not determined. These results confirm that kinetoplast minicircle DNA molecules in this species encode gRNAs, as is the case in other trypanosomatids, and suggest that the copy number of specific minicircle sequence classes can vary dramatically without an overall effect on the RNA editing system.  相似文献   

9.
Crithidia fasciculata nicking enzyme (Shlomai, J., and Linial, M. (1986) J. Biol. Chem. 261, 16219-16225) interrupts a single phosphodiester bond in duplex DNA circles from various sources, only in their supercoiled form, but not following their relaxation by DNA topoisomerases. However, this requirement for DNA substrate supercoiling was not observed using the natural kinetoplast DNA as a substrate. Relaxed kinetoplast DNA minicircles, either free or topologically linked, were efficiently nicked by the enzyme. Furthermore, bacterial plasmids, containing a unit length kinetoplast DNA minicircle insert, were used as substrates for nicking in their relaxed form. This capacity to activate a relaxed DNA topoisomer as a substrate for nicking is an intrinsic property of the sequence-directed bend, naturally present in kinetoplast DNA. The 211-base pair fragment of the bent region from C. fasciculata kinetoplast DNA could support the nicking of a relaxed DNA substrate in a reaction dependent upon the DNA helix curvature.  相似文献   

10.
The nucleotide sequence of 1.4 kbp SmaI-fragment of minicircle DNA from kinetoplasts of Crithidia fasciculata has been determined and some sequence elements characterized. The sequence contains several oligo(dT)blocks located on the same strand in phase with a period of DNA helix turn, thus representing a "bent helix". Both sides of the bent helix region are flanked by sequences capable of forming a cloverleaf structure. There are also two direct 150 bp repeats located 180 degrees apart on the circular map of the molecule. Each repeat contains the sites of H-strand and L-strand replication origin. The specific stem-loop secondary structure may be folded by the nucleotide sequence within the origins region. The alignment of the sequence determined with two other C. fasciculata minicircle sequences spanning over the bent helix and the adjacent regions has indicated the presence of several conserved sequence blocks, one of them representing the sequence of the bend. The divergence of three sequences occurred mainly by small insertions-deletions. Several open reading frames were found, the largest of which being capable of coding for the approximately 200 amino acids polypeptide.  相似文献   

11.
A DNA ligase has been purified approximately 5000-fold, to near homogeneity, from the trypanosomatid Crithidia fasciculata. The purified enzyme contains polypeptides with molecular masses of 84 and 80 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both polypeptides formed enzyme-adenylate complexes in the absence of DNA, contained an epitope that is highly conserved between human and bovine DNA ligase I and yeast and vaccinia virus DNA ligases, and were identified in fresh lysates of C. fasciculata by antibodies raised against the purified protein. Hydrodynamic measurements indicate that the enzyme is an asymmetric protein of approximately 80 kDa. The purified DNA ligase can join oligo(dT) annealed to poly(dA), but not oligo(dT) annealed to poly(rA), and can ligate blunt-ended DNA fragments. The enzyme has a low Km for ATP of 0.3 microM. The DNA ligase absolutely requires ATP and Mg2+, and is inhibited by N-ethylmaleimide and by KCI. Substrate specificity, Km for ATP, and the conserved epitope all suggest that the purified enzyme is the trypanosome homologue of DNA ligase I.  相似文献   

12.
C J Li  K Y Hwa    P T Englund 《Nucleic acids research》1995,23(21):4426-4433
We have purified to homogeneity a DNase from a Crithidia fasciculata crude mitochondrial lysate. The enzyme is present in two forms, either as a 32 kDa polypeptide or as a multimer containing the 32 kDa polypeptide in association with a 56 kDa polypeptide. Native molecular weight measurements indicate that these forms are a monomer and possibly an alpha 2 beta 2 tetramer, respectively. The monomeric and multimeric forms of the enzyme are similar in their catalytic activities. Both digest double-stranded DNA about twice as efficiently as single-stranded DNA. They introduce single-strand breaks into a supercoiled plasmid but do not efficiently make double-strand breaks. They degrade a linearized plasmid more efficiently than a nickel plasmid. Both enzymes degrade a 5'-32P-labeled double-stranded oligonucleotide to completion, with the 5'-terminal nucleotide ultimately being released as a 5'-mononucleotide. One difference between the monomeric and multimeric forms of the enzyme, demonstrated by a band shift assay, is that the multimeric form binds tightly to double-stranded DNA, possibly aggregating it.  相似文献   

13.
Kinetoplast DNA, the mitochondrial DNA of trypanosomatids, is composed of several thousand minicircles and a few dozen maxicircles, all of which are topologically interlocked in a giant network. We have studied the replication of maxicircle DNA, using electron microscopy to analyze replication intermediates from both Crithidia fasciculata and Trypanosoma brucei. Replication intermediates were stabilized against branch migration by introducing DNA interstrand cross-links in vivo with 4,5',8-trimethylpsoralen and UV radiation. Electron microscopy of individual maxicircles resulting from a topoisomerase II decatenation of kinetoplast DNA networks revealed intact maxicircle theta structures. Analysis of maxicircle DNA linearized by restriction enzyme cleavage revealed branched replication intermediates derived from theta structures. Measurements of the linearized branched molecules in both parasites indicate that replication initiates in the variable region (a noncoding segment characterized by repetitive sequences) and proceeds unidirectionally, clockwise on the standard map.  相似文献   

14.
Paul T. Englund 《Cell》1978,14(1):157-168
Kinetoplast DNA from the mitochondria of Crithidia is in the form of a two-dimensional network of thousands of minicircles each containing about 2.5 kb, and a small number of maxicircles each containing about 40 kb. Fractionation of kinetoplast DNA by equilibrium centrifugation in a CsCl-propidium dilodide gradient resolves it into three types of networks. Form I networks band at high density and contain minicircles which are covalently closed; form II networks band at low density and contain minicircles which are nicked or gapped; and replicating networks band at intermediate density and contain some minicircles of each type. Form I networks contain about 5000 minicircles; form II networks contain about 11,000; and replicating networks contain an intermediate number. When cells are pulse-labeled with 3H-thymidine, radioactivity in mitochondrial DNA is preferentially incorporated into replicating networks, but after a chase it appears first in form II networks and finally in form I. Examination of replicating networks by electron microscopy in the presence of ethidium bromide reveals that minicircles in the central region of the network are twisted and therefore covalently closed, whereas those in the peripheral region are not twisted and therefore must be nicked or gapped. The pulse-label is incorporated into the nicked or gapped minicircles of the replicating networks. These results indicate that replication of form I networks begins in peripheral minicircles and that progeny minicircles remain nicked or gapped. As replication proceeds, the size of the network increases, and the peripheral zone of nicked or gapped minicircles enlarges. Finally, when all minicircles have replicated, the network, now form II, is double the size of form I and contains only nicked or gapped minicircles. The final step in replication presumably includes both the cleavage of the network into two form I species and the covalent closure of all the minicircles.  相似文献   

15.
Replication of the kinetoplast DNA minicircle light strand initiates at a highly conserved 12-nucleotide sequence, termed the universal minicircle sequence. A Crithidia fasciculata single-stranded DNA-binding protein interacts specifically with the guanine-rich heavy strand of this origin-associated sequence (Y. Tzfati, H. Abeliovich, I. Kapeller, and J. Shlomai, Proc. Natl. Acad. Sci. USA 89:6891-6895, 1992). Using the universal minicircle sequence heavy-strand probe to screen a C. fasciculata cDNA expression library, we have isolated two overlapping cDNA clones encoding the trypanosomatid universal minicircle sequence-binding protein. The complete cDNA sequence defines an open reading frame encoding a 116-amino-acid polypeptide chain consisting of five repetitions of a CCHC zinc finger motif. A significant similarity is found between this universal minicircle sequence-binding protein and two other single-stranded DNA-binding proteins identified in humans and in Leishmania major. All three proteins bind specifically to single-stranded guanine-rich DNA ligands. Partial amino acid sequence of the endogenous protein, purified to homogeneity from C. fasciculata, was identical to that deduced from the cDNA nucleotide sequence. DNA-binding characteristics of the cDNA-encoded fusion protein expressed in bacteria were identical to those of the endogenous C. fasciculata protein. Hybridization analyses reveal that the gene encoding the minicircle origin-binding protein is nuclear and may occur in the C. fasciculata chromosome as a cluster of several structural genes.  相似文献   

16.
17.
A new endonuclease activity has been identified in whole cell lysates of the trypanosomatid Crithidia fasciculata. This activity, termed endonuclease A (Endo A), introduces single-strand breaks at highly preferred sites in double stranded DNA substrates Physical analysis of this enzyme indicates that it has a sedimentation coefficient S20,W of 4.9 and a Stokes radius of 59A and thus, a native molecular weight of 125,000 and a frictional coefficient of 1.8. A monomeric structure is suggested for the enzyme based on the recovery of Endo A activity associated with a polypeptide with a molecular weight of 116,000-120,000, following electrophoresis on sodium dodecyl sulfate polyacrylamide gels. Endo A shows an absolute requirement for Mg2+ or Mn2+ and exhibits activity over a broad pH and temperature range, with optimal conditions for activity at pH 8.0 and 30 degrees C.  相似文献   

18.
D S Ray  J C Hines    M Anderson 《Nucleic acids research》1992,20(13):3353-3356
The mitochondrial DNA of the trypanosomatid Crithidia fasciculata consists of thousands of copies of a 2.5 kb minicircle and a small number of 37kb maxicircles catenated into a single enormous network. Treatment of C. fasciculata with the type II DNA topoisomerase inhibitor VP16 produces cleavable complexes of a type II DNA topiosomerase with both minicircles and maxicircles. A combined Southern and Western blot analysis of the cleaved DNA species released from the network by SDS treatment has identified topollmt, the kinetoplast-associated topisomerase, in covalent complexes with linear forms of minicircle and maxicircle DNAs. These results directly implicate topollmt in the topological reactions required for the duplication of the kinetoplast network.  相似文献   

19.
Tryparedoxin-I is a recently discovered thiol-disulfide oxidoreductase involved in the regulation of oxidative stress in parasitic trypanosomatids. The crystal structure of recombinant Crithidia fasciculata tryparedoxin-I in the oxidized state has been determined using multi-wavelength anomalous dispersion methods applied to a selenomethionyl derivative. The model comprises residues 3 to 145 with 236 water molecules and has been refined using all data between a 19- and 1.4-A resolution to an R-factor and R-free of 19.1 and 22.3%, respectively. Despite sharing only about 20% sequence identity, tryparedoxin-I presents a five-stranded twisted beta-sheet and two elements of helical structure in the same type of fold as displayed by thioredoxin, the archetypal thiol-disulfide oxidoreductase. However, the relationship of secondary structure with the linear amino acid sequences is different for each protein, producing a distinctive topology. The beta-sheet core is extended in the trypanosomatid protein with an N-terminal beta-hairpin. There are also differences in the content and orientation of helical elements of secondary structure positioned at the surface of the proteins, which leads to different shapes and charge distributions between human thioredoxin and tryparedoxin-I. A right-handed redox-active disulfide is formed between Cys-40 and Cys-43 at the N-terminal region of a distorted alpha-helix (alpha1). Cys-40 is solvent-accessible, and Cys-43 is positioned in a hydrophilic cavity. Three C-H...O hydrogen bonds donated from two proline residues serve to stabilize the disulfide-carrying helix and support the correct alignment of active site residues. The accurate model for tryparedoxin-I allows for comparisons with the family of thiol-disulfide oxidoreductases and provides a template for the discovery or design of selective inhibitors of hydroperoxide metabolism in trypanosomes. Such inhibitors are sought as potential therapies against a range of human pathogens.  相似文献   

20.
Crithidia fasciculata: characterization of polysaccharide   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号