首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mice deficient in scavenger receptor class B type I (SR-BI) and apolipoprotein E (apoE) [double knockout (DKO) mice] develop dyslipidemia, accelerated atherosclerosis, and myocardial infarction, and die prematurely. We examined effects of apoE and SR-BI deficiency on macrophage cholesterol homeostasis. DKO macrophages had increased total cholesterol (TC) stores (220-380 microg/mg protein) compared with apoE-/- cells (40 microg/mg), showed significant lysosomal lipid engorgement, and increased their TC by 34% after exposure to HDL. DKO macrophages from apoE-/- mice reconstituted with DKO bone marrow showed less cholesterol accumulation (89 microg/mg), suggesting that the dyslipidemia of DKO mice explains part of the cellular cholesterol defect. However, analyses of DKO and apoE-/- macrophages from transplanted apoE-/- mice revealed a role for macrophage SR-BI, inasmuch as the TC in DKO macrophages increased by 10% in the presence of HDL, whereas apoE-/- macrophage TC decreased by 33%. After incubation with HDL, the free cholesterol (FC) increased by 29% in DKO macrophages, and decreased by 8% in apoE-/- cells, and only DKO cells had FC in large peri-nuclear pools. Similar trends were observed with apoA-I as an acceptor. Thus, the abnormal cholesterol homeostasis of DKO macrophages is due to the plasma lipid environment of DKO mice and to altered trafficking of macrophage cholesterol. Both factors are likely to contribute to the accelerated atherosclerosis in DKO mice.  相似文献   

2.
Kypreos KE 《Biochemistry》2008,47(39):10491-10502
In this study, the ability of the lipid transporter ABCA1 and apolipoprotein CIII (apoCIII) to promote the de novo biogenesis of apoCIII-containing HDL in vivo and the role of this HDL in apoCIII-induced hypertriglyceridemia were investigated, using adenovirus-mediated gene transfer in apoE (-/-) x apoA-I (-/-) mice or ABCA1 (-/-) mice. Injection of apoE (-/-) x apoA-I (-/-) mice with 8 x 10 (8) pfu of an adenovirus expressing the wild-type human apoCIII (AdGFP-CIII g) generated HDL-like particles and triggered only a modest increase in plasma cholesterol and triglyceride levels of these mice, 3-5 days postinfection. Plasma human apoCIII was distributed among HDL, VLDL/IDL, and LDL in these mice. In contrast, ABCA1 (-/-) mice treated similarly failed to form HDL particles and developed severe hypertriglyceridemia which could be alleviated by coinfection with an adenovirus expressing human LpL, while their plasma cholesterol levels remained unchanged 3-5 days postinfection with AdGFP-CIII g. Human apoCIII in these mice accumulated exclusively on VLDL. Control experiments confirmed that the differences between apoE (-/-) x apoA-I (-/-) and ABCA1 (-/-) mice expressing human apoCIII were not due to differences in apoCIII expression. Overall, these data show that ABCA1 and human apoCIII promote the formation of apoCIII-containing HDL-like particles that are distinct from classical apoE- or apoA-I-containing HDL. Formation of apoCIII-containing HDL prevents excess accumulation of plasma apoCIII on VLDL and allows for the efficient lipolysis of VLDL triglycerides by LpL. Furthermore, the data establish that ABCA1 and apoCIII-containing HDL play key roles in the prevention of apoCIII-induced hypertriglyceridemia in mice.  相似文献   

3.
The effects of in vivo modulation of HDL phospholipid (PL) on scavenger receptor class BI (SR-BI)- and ATP binding cassette transporter 1 (ABCA1)-mediated efflux were examined by overexpressing either endothelial lipase (EL) or phosphatidylserine phospholipase (PS-PLA1) in human apolipoprotein A-I (apoA-I) transgenic mice. Overexpression of EL led to large reductions in the serum PL/apoA-I ratio (-60%), total cholesterol (TC; -89%), and HDL cholesterol (-91%). Relative to the serum before overexpression of EL, the efflux potential of the serum via SR-BI decreased by 90% and ABCA1-mediated efflux increased by 63%. In contrast to overexpression of EL, overexpression of PS-PLA1 led to increases in the PL/apoA-I ratio (88%), TC (78%), HDL cholesterol (57%), and HDL size. The efflux potential of the serum increased by 60% via SR-BI and decreased by 57% via ABCA1. There were significant positive correlations between SR-BI-mediated efflux and a number of serum parameters, including PL/apoA-I ratio, PL, TC, free cholesterol (FC), and HDL cholesterol. In striking contrast, the same correlations were seen with ABCA1-mediated efflux, but the relationships were inverse. In summary, in vivo modulation of HDL PL content affects ABCA1- and SR-BI-mediated efflux in a reciprocal manner. These findings indicate that the type of lipase acting on HDL in vivo will determine which FC efflux pathway the HDL serves. Additionally, the extent of lipolysis will determine the efficiency of FC removal via this pathway.  相似文献   

4.
The objective of this study was to establish the role of apoA-IV, ABCA1, and LCAT in the biogenesis of apoA-IV-containing HDL (HDL-A-IV) using different mouse models. Adenovirus-mediated gene transfer of apoA-IV in apoA-I−/− mice did not change plasma lipid levels. ApoA-IV floated in the HDL2/HDL3 region, promoted the formation of spherical HDL particles as determined by electron microscopy, and generated mostly α- and a few pre-β-like HDL subpopulations. Gene transfer of apoA-IV in apoA-I−/− × apoE−/− mice increased plasma cholesterol and triglyceride levels, and 80% of the protein was distributed in the VLDL/IDL/LDL region. This treatment likewise generated α- and pre-β-like HDL subpopulations. Spherical and α-migrating HDL particles were not detectable following gene transfer of apoA-IV in ABCA1−/− or LCAT−/− mice. Coexpression of apoA-IV and LCAT in apoA-I−/− mice restored the formation of HDL-A-IV. Lipid-free apoA-IV and reconstituted HDL-A-IV promoted ABCA1 and scavenger receptor BI (SR-BI)-mediated cholesterol efflux, respectively, as efficiently as apoA-I and apoE. Our findings are consistent with a novel function of apoA-IV in the biogenesis of discrete HDL-A-IV particles with the participation of ABCA1 and LCAT, and may explain previously reported anti-inflammatory and atheroprotective properties of apoA-IV.  相似文献   

5.
The distribution of apolipoproteins (apo) A-I, A-IV, and E in sera of fed and fasted rats was studied using various methods for the isolation of lipoproteins. Serum concentrations of apoA-I and apoA-IV decreased significantly during fasting (16 and 31%, respectively), while apoE concentrations remained essentially the same. Chromatography of sera on 6% agarose columns showed that apoA-IV is present on HDL and as so-called "free" apoA-IV. The concentration of "free" apoA-IV decreased six- to seven-fold during fasting, explaining the decrease in total serum apoA-IV. Serum apoA-I and apoE are almost exclusively associated with HDL-sized particles. When sera are centrifuged at a density of 1.21 g/ml, marked quantities of apoA-I (8-9%) and apoE (11-22%) are recovered in the "lipoprotein-deficient" infranatant, suggesting that ultracentrifugation affects the integrity of serum HDL. The nature of the chromatographically separated carriers of serum apoA-IV was investigated by quantitative immunoprecipitation. From these studies, it is concluded that apoA-IV in rat serum is present in at least three fractions: 1) particles with the size and composition of HDL, containing both apoA-I and apoA-IV and possibly minor quantities of apoE; 2) HDL-sized particles containing apoA-IV, but no apoA-I or apoE; 3) "free" apoA-IV probably containing small amounts of bound cholesterol and phospholipid.  相似文献   

6.
In the present study we have used adenovirus-mediated gene transfer of apoA-I (apolipoprotein A-I) mutants in apoA-I-/- mice to investigate how structural mutations in apoA-I affect the biogenesis and the plasma levels of HDL (high-density lipoprotein). The natural mutants apoA-I(R151C)Paris, apoA-I(R160L)Oslo and the bioengineered mutant apoA-I(R149A) were secreted efficiently from cells in culture. Their capacity to activate LCAT (lecithin:cholesterol acyltransferase) in vitro was greatly reduced, and their ability to promote ABCA1 (ATP-binding cassette transporter A1)-mediated cholesterol efflux was similar to that of WT (wild-type) apoA-I. Gene transfer of the three mutants in apoA-I-/- mice generated aberrant HDL phenotypes. The total plasma cholesterol of mice expressing the apoA-I(R160L)Oslo, apoA-I(R149A) and apoA-I(R151C)Paris mutants was reduced by 78, 59 and 61% and the apoA-I levels were reduced by 68, 64 and 55% respectively, as compared with mice expressing the WT apoA-I. The CE (cholesteryl ester)/TC (total cholesterol) ratio of HDL was decreased and the apoA-I was distributed in the HDL3 region. apoA-I(R160L)Oslo and apoA-I(R149A) promoted the formation of prebeta1 and alpha4-HDL subpopulations and gave a mixture of discoidal and spherical particles. apoA-I(R151C)Paris generated subpopulations of different sizes that migrate between prebeta and alpha-HDL and formed mostly spherical and a few discoidal particles. Simultaneous treatment of mice with adenovirus expressing any of the three mutants and human LCAT normalized plasma apoA-I, HDL cholesterol levels and the CE/TC ratio. It also led to the formation of spherical HDL particles consisting mostly of alpha-HDL subpopulations of larger size. The correction of the aberrant HDL phenotypes by treatment with LCAT suggests a potential therapeutic intervention for HDL abnormalities that result from specific mutations in apoA-I.  相似文献   

7.
The current model for reverse cholesterol transport proposes that HDL transports excess cholesterol derived primarily from peripheral cells to the liver for removal. However, recent studies in ABCA1 transgenic mice suggest that the liver itself may be a major source of HDL cholesterol (HDL-C). To directly investigate the hepatic contribution to plasma HDL-C levels, we generated an adenovirus (rABCA1-GFP-AdV) that targets expression of mouse ABCA1-GFP in vivo to the liver. Compared with mice injected with control AdV, infusion of rABCA1-GFP-AdV into C57Bl/6 mice resulted in increased expression of mouse ABCA1 mRNA and protein in the liver. ApoA-I-dependent cholesterol efflux was increased 2.6-fold in primary hepatocytes isolated 1 day after rABCA1-GFP-AdV infusion. Hepatic ABCA1 expression in C57Bl/6 mice (n = 15) raised baseline levels of TC, PL, FC, HDL-C, apoE, and apoA-I by 150-300% (P < 0.05 all). ABCA1 expression led to significant compensatory changes in expression of genes that increase hepatic cholesterol, including HMG-CoA reductase (3.5-fold), LDLr (2.1-fold), and LRP (5-fold) in the liver. These combined results demonstrate that ABCA1 plays a key role in hepatic cholesterol efflux, inducing pathways that modulate cholesterol homeostasis in the liver, and establish the liver as a major source of plasma HDL-C.  相似文献   

8.
Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain   总被引:1,自引:0,他引:1  
ABCA1 is a cholesterol transporter that is widely expressed throughout the body. Outside the central nervous system (CNS), ABCA1 functions in the biogenesis of high-density lipoprotein (HDL), where it mediates the efflux of cholesterol and phospholipids to apolipoprotein (apo) A-I. Deficiency of ABCA1 results in lack of circulating HDL and greatly reduced levels of apoA-I. ABCA1 is also expressed in cells within the CNS, but its roles in brain lipid metabolism are not yet fully understood. In the brain, glia synthesize the apolipoproteins involved in CNS lipid metabolism. Here we demonstrate that glial ABCA1 is required for cholesterol efflux to apoA-I and plays a key role in facilitating cholesterol efflux to apoE, which is the major apolipoprotein in the brain. In both astrocytes and microglia, ABCA1 deficiency reduces lipid efflux to exogenous apoE. The impaired ability to efflux lipids in ABCA1-/- glia results in lipid accumulation in both astrocytes and microglia under normal culture conditions. Additionally, apoE secretion is compromised in ABCA1-/- astrocytes and microglia. In vivo, deficiency of ABCA1 results in a 65% decrease in apoE levels in whole brain, and a 75-80% decrease in apoE levels in hippocampus and striatum. Additionally, the effect of ABCA1 on apoE is selective, as apoJ levels are unchanged in brains of ABCA1-/- mice. Taken together, these results show that glial ABCA1 is a key influence on apoE metabolism in the CNS.  相似文献   

9.
Apolipoprotein A-I (apoA-I)-mediated cholesterol efflux involves the binding of apoA-I to the plasma membrane via its C terminus and requires cellular ATP-binding cassette transporter (ABCA1) activity. ApoA-I also stimulates secretion of apolipoprotein E (apoE) from macrophage foam cells, although the mechanism of this process is not understood. In this study, we demonstrate that apoA-I stimulates secretion of apoE independently of both ABCA1-mediated cholesterol efflux and of lipid binding by its C terminus. Pulse-chase experiments using (35)S-labeled cellular apoE demonstrate that macrophage apoE exists in both relatively mobile (E(m)) and stable (E(s)) pools, that apoA-I diverts apoE from degradation to secretion, and that only a small proportion of apoA-I-mobilized apoE is derived from the cell surface. The structural requirements for induction of apoE secretion and cholesterol efflux are clearly dissociated, as C-terminal deletions in recombinant apoA-I reduce cholesterol efflux but increase apoE secretion, and deletion of central helices 5 and 6 decreases apoE secretion without perturbing cholesterol efflux. Moreover, a range of 11- and 22-mer alpha-helical peptides representing amphipathic alpha-helical segments of apoA-I stimulate apoE secretion whereas only the C-terminal alpha-helix (domains 220-241) stimulates cholesterol efflux. Other alpha-helix-containing apolipoproteins (apoA-II, apoA-IV, apoE2, apoE3, apoE4) also stimulate apoE secretion, implying a positive feedback autocrine loop for apoE secretion, although apoE4 is less effective. Finally, apoA-I stimulates apoE secretion normally from macrophages of two unrelated subjects with genetically confirmed Tangier Disease (mutations C733R and c.5220-5222delTCT; and mutations A1046D and c.4629-4630insA), despite severely inhibited cholesterol efflux. We conclude that apoA-I stimulates secretion of apoE independently of cholesterol efflux, and that this represents a novel, ABCA-1-independent, positive feedback pathway for stimulation of potentially anti-atherogenic apoE secretion by alpha-helix-containing molecules including apoA-I and apoE.  相似文献   

10.
Chroni A  Koukos G  Duka A  Zannis VI 《Biochemistry》2007,46(19):5697-5708
ATP-binding cassette transporter A-1 (ABCA1)-mediated lipid efflux to lipid-poor apolipoprotein A-I (apoA-I) results in the gradual lipidation of apoA-I. This leads to the formation of discoidal high-density lipoproteins (HDL), which are subsequently converted to spherical HDL by the action of lecithin:cholesterol acyltransferase (LCAT). We have investigated the effect of point mutations and deletions in the carboxy-terminal region of apoA-I on the biogenesis of HDL using adenovirus-mediated gene transfer in apoA-I-deficient mice. It was found that the plasma HDL levels were greatly reduced in mice expressing the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)], shown previously to diminish the ABCA1-mediated lipid efflux. The HDL levels were normal in mice expressing the WT apoA-I, the apoA-I[Delta(232-243)] deletion mutant, or the apoA-I[E191A/H193A/K195A] point mutant, which promote normal ABCA1-mediated lipid efflux. Electron microscopy and two-dimensional gel electrophoresis showed that the apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] mutants formed mainly prebeta-HDL particles and few spherical particles enriched in apoE, while WT apoA-I, apoA-I[Delta(232-243)], and apoA-I[E191A/H193A/K195A] formed spherical alpha-HDL particles. The findings establish that (a) deletions that eliminate the 220-231 region of apoA-I prevent the synthesis of alpha-HDL but allow the synthesis of prebeta-HDL particles in vivo, (b) the amino-terminal segment 1-184 of apoA-I can promote synthesis of prebeta-HDL-type particles in an ABCA1-independent process, and (c) the charged residues in the 191-195 region of apoA-I do not influence the biogenesis of HDL.  相似文献   

11.
The main antiatherogenic function of HDL is to promote the efflux of cholesterol from peripheral cells and transport it to the liver for excretion in a process termed reverse cholesterol transport. The aim of this study was to evaluate the cholesterol efflux capacity in low- and high-HDL subjects by utilizing monocytes and serum from 18 low-HDL and 15 high-HDL subjects. Low and high HDL levels were defined, respectively, as HDL < or =10(th) and HDL > or =90(th) Finnish age/sex-specific percentile. Cholesterol efflux from [(3)H]cholesterol-oleate-acetyl-LDL-loaded monocyte-derived macrophages to standard apolipoprotein A-I (apoA-I), HDL(2), and serum was measured. In addition, cholesterol efflux from acetyl-LDL-loaded human THP-1 macrophages to individual sera (0.5%) derived from the study subjects was evaluated. Cholesterol efflux to apoA-I, HDL(2), and serum from macrophage foam cells derived from low- and high-HDL subjects was similar. The relative ABCA1 and ABCG1 mRNA expression levels in unloaded macrophages, as well as their protein levels in loaded macrophage foam cells, were similar in the two study groups. Cholesterol efflux from THP-1 foam cells to serum recovered from high-HDL subjects was slightly higher than that to serum from low-HDL subjects (P = 0.046). Cholesterol efflux from THP-1 macrophages to serum from study subjects correlated with serum apoB (P = 0.033), apoA-I (P = 0.004), apoA-II (P < 0.0001), and the percentage of apoA-I present in the form of prebeta-HDL (P = 0.0001). Our data reveal that macrophages isolated from either low- or high-HDL subjects display similar cholesterol efflux capacity to exogenous acceptors. However, sera from low-HDL subjects have poorer cholesterol acceptor ability as compared with sera from high-HDL subjects.  相似文献   

12.
Hypertriglyceridemia is a common pathological condition in humans of mostly unknown etiology. Here we report induction of dyslipidemia characterized by severe hypertriglyceridemia as a result of point mutations in human apolipoprotein A-I (apoA-I). Adenovirus-mediated gene transfer in apoA-I-deficient (apoA-I(-)(/)(-)) mice showed that mice expressing an apoA-I[E110A/E111A] mutant had comparable hepatic mRNA levels with WT controls but greatly increased plasma triglyceride and elevated plasma cholesterol levels. In addition, they had decreased apoE and apoCII levels and increased apoB48 levels in very low-density lipoprotein (VLDL)/intermediate-density lipoprotein (IDL). Fast protein liquid chromatography (FPLC) analysis of plasma showed that most of cholesterol and approximately 15% of the mutant apoA-I were distributed in the VLDL and IDL regions and all the triglycerides in the VLDL region. Hypertriglyceridemia was corrected by coinfection of mice with recombinant adenoviruses expressing the mutant apoA-I and human lipoprotein lipase. Physicochemical studies indicated that the apoA-I mutation decreased the alpha-helical content, the stability, and the unfolding cooperativity of both lipid-free and lipid-bound apoA-I. In vitro functional analyses showed that reconstituted HDL (rHDL) particles containing the mutant apoA-I had 53% of scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux capacity and 37% capacity to activate lecithin:cholesterol acyltransferase (LCAT) as compared to the WT control. The mutant lipid-free apoA-I had normal capacity to promote ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux. The findings indicate that subtle structural alterations in apoA-I may alter the stability and functions of apoA-I and high-density lipoprotein (HDL) and may cause hypertriglyceridemia.  相似文献   

13.
14.
The purpose of the present study was to test the hypothesis that lecithin:cholesterol acyltransferase (LCAT) deficiency would accelerate atherosclerosis development in low density lipoprotein (LDL) receptor (LDLr-/-) and apoE (apoE-/-) knockout mice. After 16 weeks of atherogenic diet (0.1% cholesterol, 10% calories from palm oil) consumption, LDLr-/- LCAT-/- double knockout mice, compared with LDLr-/- mice, had similar plasma concentrations of free (FC), esterified (EC), and apoB lipoprotein cholesterol, increased plasma concentrations of phospholipid and triglyceride, decreased HDL cholesterol, and 2-fold more aortic FC (142 +/- 28 versus 61 +/- 20 mg/g protein) and EC (102 +/- 27 versus 61+/- 27 mg/g). ApoE-/- LCAT-/- mice fed the atherogenic diet, compared with apoE-/- mice, had higher concentrations of plasma FC, EC, apoB lipoprotein cholesterol, and phospholipid, and significantly more aortic FC (149 +/- 62 versus 109 +/- 33 mg/g) and EC (101 +/- 23 versus 69 +/- 20 mg/g) than did the apoE-/- mice. LCAT deficiency resulted in a 12-fold increase in the ratio of saturated + monounsaturated to polyunsaturated cholesteryl esters in apoB lipoproteins in LDLr-/- mice and a 3-fold increase in the apoE-/- mice compared with their counterparts with active LCAT. We conclude that LCAT deficiency in LDLr-/- and apoE-/- mice fed an atherogenic diet resulted in increased aortic cholesterol deposition, likely due to a reduction in plasma HDL, an increased saturation of cholesteryl esters in apoB lipoproteins and, in the apoE-/- background, an increased plasma concentration of apoB lipoproteins.  相似文献   

15.
ABCA1, a member of the ATP-binding cassette family, mediates the efflux of cellular lipids to free apolipoproteins, mainly apoA-I. The role of the C-terminal domain of apoA-I in this process has been evaluated by measuring the efflux capacity of a truncated form (apoA-I-(1-192)) versus intact apoA-I in different cellular models. In stimulated J774 macrophages, cholesterol efflux to apoA-I-(1-192) was remarkably lower than that to the intact apoA-I. The truncated apoA-I, lacking an important lipid-binding domain, was also significantly less efficient in removing phospholipids from stimulated macrophages. No difference was detected with stimulated Tangier fibroblasts that do not express functional ABCA1. The C-terminal domain of apoA-I is clearly involved in ABCA1-driven lipid efflux. Independent of the interaction with the cell surface, it may be the decreased ability of the truncated apoA-I to recruit membrane phospholipids that impairs its capacity to promote cell cholesterol efflux.  相似文献   

16.
Drosatos K  Kypreos KE  Zannis VI 《Biochemistry》2007,46(33):9645-9653
Overexpression of apolipoprotein E (apoE) induces hypertriglyceridemia in apoE-deficient mice, which is abrogated by deletion of the carboxy-terminal segment of residues 260-299. We have used adenovirus-mediated gene transfer in apoE-/- and apoA-I-/- mice to test the effect of three sets of apoE mutations within the region of residues 261-265 on the induction of hypertriglyceridemia, the esterification of cholesterol of very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL), and the formation of spherical or discoidal apoE-containing HDL. A single-amino acid substitution (apoE4[Phe265Ala]) induced hypertriglyceridemia in apoE-/- or apoA-I-/- mice, promoted the accumulation of free cholesterol in the very low-density lipoprotein (VLDL) and HDL region, and decreased HDL cholesterol levels. A double substitution (apoE4[Leu261Ala/Trp264Ala]) induced milder hypertriglyceridemia and increased HDL cholesterol levels. A triple substitution (apoE4[Leu261Ala/Trp264Ala/Phe265Ala] or apoE2[Leu261Ala/Trp264Ala/Phe265Ala]) did not induce hypertriglyceridemia and increased greatly the HDL cholesterol levels. Electron microscopy (EM) analysis of the HDL fractions showed that apoE4[Leu261Ala/Trp264Ala/Phe265Ala] and apoE2[Leu261Ala/Trp264Ala/Phe265Ala] contained spherical HDL, apoE4[Leu261Ala/Trp264Ala] contained mostly spherical and few discoidal HDL particles, and apoE4[Phe265Ala] contained discoidal HDL. We conclude that residues Leu261, Trp264, and Phe265 play an important role in apoE-induced hypertriglyceridemia, the accumulation of free cholesterol in VLDL and HDL, and the formation of discoidal HDL. Substitution of these residues with Ala improves the apoE functions by preventing hypertriglyceridemia and promoting formation of spherical apoE-containing HDL.  相似文献   

17.
Macrophage-specific overexpression of cholesteryl ester hydrolysis in hormone-sensitive lipase transgenic (HSL Tg) female mice paradoxically increases cholesterol esterification and cholesteryl ester accumulation in macrophages, and thus susceptibility to diet-induced atherosclerosis compared to nontransgenic C57BL/6 mice. The current studies suggest that whereas increased cholesterol uptake could contribute to transgenic foam cell formation, there are no differences in cholesterol synthesis and the expression of cholesterol efflux mediators (ABCA1, ABCG1, apoE, PPARgamma, and LXRalpha) compared to wild-type macrophages. HSL Tg macrophages exhibit twofold greater efflux of cholesterol to apoA-I in vitro, suggesting the potential rate-limiting role of cholesteryl ester hydrolysis in efflux. However, macrophage cholesteryl ester levels appear to depend on the relative efficacy of alternate pathways for free cholesterol in either efflux or re-esterification. Thus, increased atherosclerosis in HSL Tg mice appears to be due to the coupling of the efficient re-esterification of excess free cholesterol to its limited removal mediated by the cholesterol acceptors in these mice. The overexpression of cholesterol acceptors in HSL-apoA-IV double-transgenic mice increases plasma HDL levels and decreases diet-induced atherosclerosis compared to HSL Tg mice, with aortic lesions reduced to sizes in nontransgenic littermates. The results in vivo are consistent with the effective efflux from HSL Tg macrophages supplemented with HDL and apoA-I in vitro, and highlight the importance of cholesterol acceptors in inhibiting atherosclerosis caused by imbalances in the cholesteryl ester cycle.  相似文献   

18.
ABCA1 is an ATP-binding cassette protein that transports cellular cholesterol and phospholipids onto high density lipoproteins (HDL) in plasma. Lack of ABCA1 in humans and mice causes abnormal lipidation and increased catabolism of HDL, resulting in very low plasma apoA-I, apoA-II, and HDL. Herein, we have used Abca1-/- mice to ask whether ABCA1 is involved in lipidation of HDL in the central nervous system (CNS). ApoE is the most abundant CNS apolipoprotein and is present in HDL-like lipoproteins in CSF. We found that Abca1-/- mice have greatly decreased apoE levels in both the cortex (80% reduction) and the CSF (98% reduction). CSF from Abca1-/- mice had significantly reduced cholesterol as well as small apoE-containing lipoproteins, suggesting abnormal lipidation of apoE. Astrocytes, the primary producer of CNS apoE, were cultured from Abca1+/+, +/-, and -/- mice, and nascent lipoprotein particles were collected. Abca1-/- astrocytes secreted lipoprotein particles that had markedly decreased cholesterol and apoE and had smaller apoE-containing particles than particles from Abca1+/+ astrocytes. These findings demonstrate that ABCA1 plays a critical role in CNS apoE metabolism. Since apoE isoforms and levels strongly influence Alzheimer's disease pathology and risk, these data suggest that ABCA1 may be a novel therapeutic target.  相似文献   

19.
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is abundant in serum and associates with high density lipoproteins (HDL). We have characterized the distribution of GPI-PLD among lipoproteins in human plasma. Apolipoprotein (apo)-specific lipoproteins containing apoB (Lp[B]), apoA-I and A-II (Lp[A-I, A-II]), or apoA-I only (Lp[A-I]) were isolated using dextran sulfate and immunoaffinity chromatography. In six human plasma samples with HDL cholesterol ranging from 39 to 129 mg/dl, 79 +/- 14% (mean +/- SD) of the total plasma GPI-PLD activity was associated with Lp[A-I], 9 +/- 12% with Lp[A-I, A-II], and 1 +/- 1% with Lp[B]; and 11 +/- 10% was present in plasma devoid of these lipoproteins. Further characterization of the GPI-PLD-containing lipoproteins by gel-filtration chromatography and nondenaturing polyacrylamide and agarose gel electrophoresis revealed that these apoA-I-containing particles/complexes were small (8 nm) and migrated with pre-beta particles on agarose electrophoresis. Immunoprecipitation of GPI-PLD with a monoclonal antibody to GPI-PLD co-precipitated apoA-I and apoA-IV but little or no apoA-II, apoC-II, apoC-III, apoD, or apoE. In vitro, apoA-I but not apoA-IV or bovine serum albumin interacted directly with GPI-PLD, but did not stimulate GPI-PLD-mediated cleavage of a cell surface GPI-anchored protein. Thus, the majority of plasma GPI-PLD appears to be specifically associated with a small, discrete, and minor fraction of lipoproteins containing apoA-I and apoA-IV. -- Deeg, M. A., E. L. Bierman, and M. C. Cheung. GPI-specific phospholipase D associates with an apoA-I- and apoA-IV-containing complex. J. Lipid Res. 2001. 42: 442--451.  相似文献   

20.
During the acute-phase reaction, SAA (serum amyloid A) replaces apoA-I (apolipoprotein A-I) as the major HDL (high-density lipoprotein)-associated apolipoprotein. A remarkable portion of SAA exists in a lipid-free/lipid-poor form and promotes ABCA1 (ATP-binding cassette transporter A1)-dependent cellular cholesterol efflux. In contrast with lipid-free apoA-I and apoE, lipid-free SAA was recently reported to mobilize SR-BI (scavenger receptor class B, type I)-dependent cellular cholesterol efflux [Van der Westhuyzen, Cai, de Beer and de Beer (2005) J. Biol. Chem. 280, 35890-35895]. This unique property could strongly affect cellular cholesterol mobilization during inflammation. However, in the present study, we show that overexpression of SR-BI in HEK-293 cells (human embryonic kidney cells) (devoid of ABCA1) failed to mobilize cholesterol to lipid-free or lipid-poor SAA. Only reconstituted vesicles containing phospholipids and SAA promoted SR-BI-mediated cholesterol efflux. Cholesterol efflux from HEK-293 and HEK-293[SR-BI] cells to lipid-free and lipid-poor SAA was minimal, while efficient efflux was observed from fibroblasts and CHO cells (Chinese-hamster ovary cells) both expressing functional ABCA1. Overexpression of SR-BI in CHO cells strongly attenuated cholesterol efflux to lipid-free SAA even in the presence of an SR-BI-blocking IgG. This implies that SR-BI attenuates ABCA1-mediated cholesterol efflux in a way that is not dependent on SR-BI-mediated re-uptake of cholesterol. The present in vitro experiments demonstrate that the lipidation status of SAA is a critical factor governing cholesterol acceptor properties of this amphipathic apolipoprotein. In addition, we demonstrate that SAA mediates cellular cholesterol efflux via the ABCA1 and/or SR-BI pathway in a similar way to apoA-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号