首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymic digestion of Simian virus 40 (SV40) DNA with Haemophilus aegyptius restriction endonuclease Hae III results in 10 major and eight minor fragments. These were resolved by electrophoresis on graduated polyacrylamide slab gels. All fragments have been characterized with respect to the size relative to the Haemophilus influenzae Rd fragments (Hind). They were ordered on the SV40 DNA map by means of overlap analysis of the double cleavage products derived from sequential digestion of Hind fragments with Hae III endonuclease and Hae fragments with Hind II + III enzyme, as well as by other reciprocal cleavage experiments, including those involving Haemophilus para-influenzae fragments. In this way the 18 Hae III cleavage sites and the 13 Hind sites have been localized on the circular SV40 DNA map.  相似文献   

2.
Physical maps of the genome of Moloney murine leukemia virus (M-MLV) DNA were constructed by using bacterial restriction endonucleases. The in vitro-synthesized M-MLV double-stranded DNA was used as the source of the viral DNA. Restriction endonucleases Sal I and Hind III cleave viral DNA at only one site and, thus, generate two DNA fragments. The two DNA fragments generated by Sal I are Sal IA (molecular weight, 3.5 x 10(6)) and Sal IB (molecular weight, 2.4 x 10(6)) and by Hind III are Hind IIIA (molecular weight, 3.6 x 10(6) and Hind IIIB (molecular weight, 2.3 x 10(6)). Restriction endonuclease Bam I generates four fragments of molecular weights of 2.1 x 10(6) (Bam IA), 2 X 10(6) (Bam IB), 1.25 X 10(6) (Bam IC), and 0.24 x 10(6) (Bam ID), whereas restriction endonuclease Hpa I cleaves the M-MLV double-stranded DNA twice to give three fragments of molecular weights of 4.4 x 10(6) (Hpa IA), 0.84 X 10(6) (Hpa IB), and 0.74 x 10(6) (Hpa IC). Digestion of M-MLV double-stranded DNA with restriction endonuclease Sma I produces four fragments of molecular weights of 3.9 x 10(6) (Sma IA), 1.3 X 10(6) (Sma IB), 0.28 X 10(6) (Sma IC), and 0.21 x 10(6) (Sma ID). A mixture of restriction endonucleases Bgl I and Bgl II (Bgl I + II) cleaves the viral DNA at four sites generating five fragments of approximate molecular weights of 2 x 10(6) (Bgl + IIA), 1.75 X 10(6) (Bgl I + IIB), 1.25 X 10(6) (Bgl I + IIC), 0.40 X 10(6) (Bgl I + IID), and 0.31 x 10(6) (Bgl I + IIE). The order of the fragments in relation to the 5' end and 3' end of the genome was determined either by using fractional-length M-MLV double-stranded DNA for digestion by restriction endonucleases or by redigestion of Sal IA, Sal IB, Hind IIIA, and Hind IIIB fragments with other restriction endonucleases. In addition, a number of other restriction endonucleases that cleave in vitro-synthesized M-MLV double-stranded DNA have also been listed.  相似文献   

3.
A method for the fractionation of double-stranded DNA fragments from 150 to 22000 b.p. in size by liquid-liquid chromatography is described. The procedure makes use of the fact that the partitioning of DNA in a polyethylene glycol-dextran system is size dependent and can be altered by alkali metal cations. Cellulose or celite are used as supports for the stationary, dextran-rich phase. Examples show the fractionation of digests of T7 DNA produced by Dpn II and Hind II restriction endonulceases as well as lambda DNA digests produced by Hind III and Eco RI restriction endonucleases.  相似文献   

4.
Chromosomal DNA in 5 hereditary variants occurring in Photobacterium leiognathi population was subjected to restriction analysis. The variants differed in the levels and regulation of luminescence and colony morphology. Agarose electrophoresis of DNA fragments isolated after exposure to Hind II, Bam HI, Bgl I and Pst I restriction endonucleases revealed respectively 38, 28, 35 and 29 fragments equally distributed by their molecular weights. Electrophoregrams of the 5 strains were absolutely identical. After exposure of DNA of all the strains to PVu II, Xho II, Sal GI and Eco RI restriction endonucleases there were detected no fragments. The pleoiotropic genetic variation in these strains was not associated with large deletions or amplification of chromosomal DNA regions.  相似文献   

5.
Mitochondrial DNA from cultured C13/B4 hamster cells was cleaved by the restriction endonucleases Hpa II, Hind III, Eco RI and Bam HI into 7, 5, 3 and 2 unique fragments, respectively. The summed molecular weights of fragments obtained from electrophoretic mobilities in agarose-ethidium bromide gels (with Hpa I-cleaved T7 DNA as standard) and electron microscopic analysis of fragment classes isolated from gels (with SV40 DNA as standard) were in good agreement with the size of 10.37 +/- 0.22 x 10(6) daltons (15,700 +/- 330 nucleotide pairs) determined for the intact circular mitochondrial genome. Cyclization of all Hind III, Eco RI and Bam HI fragments was observed. A cleavage map containing the 17 restriction sites (+/- 1% s.d.) was constructed by electrophoretic analysis of 32P-labeled single- and double-enzyme digestion products and reciprocal redigestion of isolated fragments. The 7 Hpa II sites were located in one half of the genome. The total distribution of the 17 cleavages around the genome was relatively uniform. The position of the D-loop was determined from its location and expansion on 3 overlapping restriction fragments.  相似文献   

6.
7.
Summary Mitochondrial DNA was isolated from an oligomycin-resistant petite mutant of yeast, Saccharomyces cerevisiae. It had repeated sequences of 3600 base pairs. This segment was about one twentieth of the whole mtDNA of wild type yeast, which had a size of 74 kilo base pairs.This segment of mtDNA had one cleavage site for a restriction endonuclease, Hind II, which was more resistant to cleavage than the other Hind II sites in wild type mtDNA. It had two cleavage sites for Hha I and gave two Hha fragments, which were arranged alternatively. Digestion with Hae III gave four fragments and these fragments were mapped.Mitochondrial DNA of this mutant showed a loss of heterogeneity in a melting profile. It melted within a narrow range of temperature, which was similar to that of poly dA·poly dT. Its differential melting curve was significantly different from that of wild type mtDNA.Mapping of mtDNA of a wild type yeast was carried out with restriction endonucleases. Fragments of mtDNA, which were isolated from petites carrying oligomycin-erythromycin-chloramphenicol-resistance and erythromycin-chloramphenicol resistance were also mapped. Loci of oligomycin-resistance, erythromycin-resistance and chloramphenicol-resistance were investigated based on the maps of Eco R I fragments and Hind II fragments.  相似文献   

8.
9.
Using samples of human cellular DNA digested with restriction endonucleases Eco RI, Hind III, Hinc II, Bam HI, Alu I, or Hae III, we were able to localize globin gene fragments separated by agarose gel electrophoresis. The fragments were transferred to nitro-cellulose filters and identified by hybridization to [32P] cDNA for total adult globin mRNA. The α-globin gene fragments were specifically identified by their presence in normal controls and absence in DNA from homozygous α-thalassemia, a genetic disorder due to deletion of α-globin genes. In addition, the patterns with Hind III indicate a 4.1 kb distance between the centers of the normal duplicated α-globin gene loci.  相似文献   

10.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

11.
The five satellite DNAs of Drosophila melanogaster have been isolated by the combined use of different equilibrium density gradients and hydrolyzed by seven different restriction enzymes; Hae III, Hind II + Hind III, Hinf, Hpa II, EcoR I and EcoR II. The 1.705 satellite is not hydrolyzed by any of the enzymes tested. Hae III is the only restriction enzyme that cuts the 1.672 and 1.686 satellites. The cleavage products from either of these reactions has a heterogeneous size distribution. Part of the 1.688 satellite is cut by Hae III and by Hinf into three discrete fragments with M.W. that are multiples of 2.3 X 10(5) daltons (approximately 350 base pairs). In addition, two minor bands are detected in the 1.688-Hinf products. The mole ratios of the trimer, dimer and monomer are: 1:6.30 : 63.6 for 1.688-Hae III and 1 : 22.0 : 403 for 1.688-Hinf. Circular mitochondrial DNA (rho = 1.680) is cut into discrete fragments by all of the enzymes tested and molecular weights of these fragments have been determined.  相似文献   

12.
To obtain more information about the arrangement of Hind III restriction fragments in the tRNA-rRNA region of the Neurospora crassa mitochondrial (mt) DNA we have cleaved the mtDNA with Hpa I and Hind II. We could construct additional cleavage maps for these enzymes. Hybridization of rRNAs to Hind II fragments confirmed the existence of an intervening region of about 2,300 basepairs in the 24S rRNA (Hahn et al., Cell, in press). About seven tRNA genes, among which the genes for tRNA1Ser and tRNAMetM, are located in a segment of about 5,000 bp separating the 24S and 17S rRNA genes. Another cluster of 14 tRNA genes is found adjacent to the other end of the 24S gene. The genes for tRNALeu1 and tRNAMetF are located in this cluster.  相似文献   

13.
14.
15.
It is shown that distamycin A and actinomycin D protect the recognition sites of certain restriction endonucleases from the attack by these nucleases due to specific interaction of these antibiotics with double-stranded DNA. Distamycin A protects A-T containing sites and actinomycin G-C rich sites. Among Hind II recognition sites which have alternative structure (GTPyPuAC) distamycin A protects only Hpa I similar sites (GTTAAC). It is shown with several restriction endonucleases that antibiotic action depends on the nucleotide sequences in the recognition sites and in their closest environment. Proper concentrations of antibiotic give rise to larger fragments. Use of both distamycin A and actinomycin D allows to obtain a set of overlapping fragments. The data obtained with various DNAs and restriction endonucleases allow to conclude that these antibiotics may be useful for DNA mapping and for preparation of large functional fragments of DNA.  相似文献   

16.
Plasmid and λ DNA molecules of between 2.2 and 48.5 kb pairs can be solubilised in n-hexane containing the surfactant sodium dioctyl sulfosuccinate (AOT) and aqueous buffers. Linear λ phage DNA fragments (2.2-23.1 kb pairs) and intact λ bio 1 DNA (48.5 kb pairs) are efficiently cleaved by Bam HI and Em RI in systems containing 100 mM AOT. Under these conditions, λ bio 1 DNA undergoes regioselective restriction by Hind III at only one site but is completely cleaved when the surfactant concentration is lowered to 50 mM. Covalent closed circular plasmid DNA (pUC8, 2.73 kb pairs) is only partially linearised by Eco RI and Bam HI in reversed micelles; Hae II cleavage affords both complete and partial restriction fragments. The results suggest that the tertiary structures adopted by substrate DNA in reversed micelles influence the availability of restriction sites.  相似文献   

17.
P R Lehrbach  D J Jeenes  P Broda 《Plasmid》1983,9(2):112-125
A physical and genetic map of the Tol catabolic region of pWWO (TOL) was obtained by restriction endonuclease analysis of several DNA insertion mutants (xylA, xylA xylS, xylS, and xylR) of R plasmid--TOL derivatives. In two cases, the inserted DNA was shown from restriction, DNA hybridization, or heteroduplex analysis of cloned Hind III fragments to originate from within pWWO fragment Hind III-E. The effect of these DNA insertions on Tol catabolic activity and on structural alterations to the TOL plasmid is discussed.  相似文献   

18.
A restriction endonuclease from Haemophilus influenzae (Hind III) specifically cleaved vaccinia DNA into 14 fragments. The molecular weights of these fragments were determined by gel electrophoresis and ranged from 0.5 x 10(6) to 30 x 10(6). Hind III digestion of the DNA from the WR and CV-1 strains of vaccinia revealed a small molecular difference in one of the resulting fragments. The average molecular weight of the entire vaccinia genome was calculated to be 125 x 10(6).  相似文献   

19.
Summary A detailed map of the 32 kb mitochondrial genome of Aspergillus nidulans has been obtained by locating the cleavage sites for restriction endonucleases Pst I, Bam H I, Hha I, Pvu II, Hpa II and Hae III relative to the previously determined sites for Eco R I, Hind II and Hind III. The genes for the small and large ribosomal subunit RNAs were mapped by gel transfer hybridization of in vitro labelled rRNA to restriction fragments of mitochondrial DNA and its cloned Eco R I fragment E3, and by electron microscopy of RNA/DNA hybrids.The gene for the large rRNA (2.9 kb) is interrupted by a 1.8 kb insert, and the main segment of this gene (2.4 kb) is separated from the small rRNA gene (1.4 kb) by a spacer sequence of 2.8 kb length.This rRNA gene organization is very similar to that of the two-times larger mitochondrial genome of Neurospora crassa, except that in A. nidulans the spacer and intervening sequences are considerably shorter.  相似文献   

20.
A J Jeffreys 《Cell》1979,18(1):1-10
DNA prepared from 60 unrelated individuals was cleaved with one of eight different restriction endonucleases and the resulting DNA fragments were separated by agarose gel electrophoresis. DNA fragments containing G gamma-, A gamma-, delta- or beta-globin genes were detected by Southern blot hybridization, using as probe either a 32P-labeled cloned DNA copy of rabbit beta-globin messenger RNA or labeled human beta- and G gamma- globin cDNA plasmids. Three types of variant restriction enzyme patterns of globin DNA fragments were detected in otherwise normal individuals. One variant pattern, found in only one person, was caused by an additional restriction endonuclease Pst I cleavage site in the center of the delta- globin gene intervening sequence; the subject was heterozygous for the presence of this cleavage site and was shown to have inherited it from her mother. Another variant pattern resulted from the appearance of an endonuclease Hind III cleavage site in the intervening sequence of the A gamma-globin gene; this variant is polymorphic, with a gene frequency for the presence of the intragenic Hind III site of 0.23. This Hind III cleavage site polymorphism is also found in the G gamma-globin gene intervening sequence and thus the polymorphism itself appears to be duplicated over the pair of gamma-globin loci. These variants can be used to derive an approximate estimate of the total number of different DNA sequence variants in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号