首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A wasp venom, mastoparan, rapidly stimulated insulin release by rat pancreatic islets in a dose-related manner. The amount of insulin released in response to 58 microM mastoparan far exceeded that induced by 27.8 mM glucose. Mastoparan stimulated insulin release to similar degrees at ambient glucose concentrations of 1.7 mM and 5.6 mM. The islets obtained from pertussis toxin-treated rats showed unequivocally less response to mastoparan. Pretreatment of islets with bromophenacyl bromide, a phospholipase A2 inhibitor, abolished their responsiveness to mastoparan. Pretreatment of islets with nifedipine, a Ca2+ channel blocker, was without effect. Mastoparan is a unique stimulator of insulin release by the pancreatic islets, which acts through GTP-binding protein(s) and phospholipase A2.  相似文献   

2.
AIMS/HYPOTHESIS: Previous studies have shown that neuropeptide Y (NPY) gene expression and release are increased in hyperphagic ob/ob mice and diabetic rats. Therefore, we hypothesized that orexigenic agent, NPY, has the effect on the obesity and diabetes. To elucidate the relationship, we have studied the regulatory role of NPY on islet cells. METHODS: Isolated islets were incubated with NPY or NPY Y1 receptor specific antagonist, BIBP3226. Proliferation, apoptosis, and Y1 receptor expression were identified by immunohistochemistry. We studied that ERK1/2 mediates the NPY pathway with PD98059 (MAP kinase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), and BIM-1 (protein kinase C inhibitor). After NPY-treated islets were exposed to high glucose, insulin levels were detected. RESULTS: beta-Cell replication was enhanced in a dose-dependent manner, but without any changes on the other cells in islet. NPY Y1 receptors were expressed on islet and NPY induced phosphorylation of ERK1/2 rapidly and transiently. PD98059 (MAPK kinase inhibitor) and BIM-1 (protein kinase C inhibitor) inhibited activation of ERK1/2 by NPY, but wortmannin (phosphatidylinositol 3-kinase inhibitor) did not. Exposure of NPY-treated islets to high glucose showed the decreasing trend of insulin secretion. CONCLUSION/INTERPRETATION: Our data suggest that NPY promotes beta-cell replication via extracellular signal-regulated kinase activation and inhibits glucose-stimulated insulin secretion.  相似文献   

3.
The effects of KN-62, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II (CamPKII), on insulin secretion and protein phosphorylation were studied in rat pancreatic islets and RINm5F cells. KN-62 was found to dose-dependently inhibit autophosphorylation of CamPKII in subcellular preparations of RINm5F cells (K0.5 = 3.1 +/- 0.3 microM), but had no effect on protein kinase C or myosin light chain kinase activity. KN-62, but not the inactive analogue KN-04, dose-dependently inhibited glucose-induced insulin release (K0.5 = 1.5 +/- 0.5 microM) in a manner similar to the inhibition of CamPKII autophosphorylation. KN-62 (10 microM) inhibited carbachol (in the presence of 8 mM glucose) and potassium-stimulated insulin secretion from islets by 53% and 59%, respectively. These results support a role of CamPKII in glucose-sensitive insulin secretion.  相似文献   

4.
Rat pancreatic islet homogenates display protein kinase C activity. This phospholipid-dependent and calcium-sensitive enzyme is activated by diacylglycerol or the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). In the presence of TPA, the Ka for Ca2+ is close to 5 microM. TPA does not affect phosphoinositide turnover but stimulates [32P]- and [3H]choline-labelling of phosphatidylcholine in intact islets. Exogenous phospholipase C stimulates insulin release, in a sustained and glucose-independent fashion. The secretory response to phospholipase C persists in media deprived of CaCl2. It is proposed that protein kinase C participates in the coupling of stimulus recognition to insulin release evoked by TPA, phospholipase C and, possibly, those secretatogues causing phosphoinositide breakdown in pancreatic islets.  相似文献   

5.
The role of protein phosphatases in the regulation of insulin release from rat pancreatic islets was studied with protein phosphatase inhibitors, okadaic acid and calyculin A. Okadaic acid inhibited glucose- and glyceraldehyde-induced insulin release dose-dependently and also inhibited the potentiation of glucose-induced release either by adding forskolin, an activator of adenylate cyclase or by increasing K+ concentration to 25 mM. At a non-stimulatory concentration of 3 mM glucose, a high concentration (2 microM) of okadaic acid inhibited insulin release induced by high K+ or 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, but a low concentration (1 microM) of okadaic acid did not significantly inhibit TPA-induced insulin release. Calyculin A also inhibited glucose-induced insulin release, and the effect was greater than that of okadaic acid. The data suggest that protein phosphatases may play an important role in the regulation of insulin release.  相似文献   

6.
The membrane-accessible diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol (OAG, 5-500 microM) caused a dose-related activation of protein kinase C in rat islet homogenates. In islet cell membranes exposed to [gamma-32P]ATP, OAG (100 microM) stimulated the net production of labelled phosphatidate and inhibited that of labelled phosphatidylinositol 4-phosphate. In intact islets exposed to 5.6 mM D-glucose, OAG (100 microM) decreased the outflow of 86Rb, increased that of 45Ca and caused a rapid stimulation of insulin release. The secretory response to OAG was dose-related in the 50-500 microM range, being most marked, in relative terms, at a glucose concentration close to the threshold value for stimulation of insulin release by this hexose. It was decreased but not abolished in the absence of CaCl2 and presence of EGTA. At variance with tumor-promoting phorbol esters, OAG failed to potentiate insulin release stimulated by a hypoglycaemic sulphonylurea. Although these findings support the view that activation of protein kinase C by diacylglycerol represents an efficient modality for stimulation of insulin release, they suggest that the effect of OAG upon islet function may not be solely attributable to such an activation.  相似文献   

7.
The involvement of cyclic AMP-dependent protein kinase A (PKA) in the exocytotic release of insulin from rat pancreatic islets was investigated using the Rp isomer of adenosine 3',5'-cyclic phosphorothioate (Rp-cAMPS). Preincubation of electrically permeabilised islets with Rp-cAMPS (1 mM, 1 h, 4 degrees C) inhibited cAMP-induced phosphorylation of islet proteins of apparent molecular weights in the range 20-90 kDa, but did not affect basal (50 nM Ca2+) nor Ca2(+)-stimulated (10 microM) protein phosphorylation. Similarly, Rp-cAMPS (500 microM) inhibited both cAMP- (100 microM) and 8BrcAMP-induced (100 microM) insulin secretion from electrically permeabilised islets without affecting Ca2(+)-stimulated (10 microM) insulin release. In intact islets, Rp-cAMPS (500 microM) inhibited forskolin (1 microM, 10 microM) potentiation of insulin secretion, but did not significantly impair the insulin secretory response to a range of glucose concentrations (2-20 mM). These results suggest that cAMP-induced activation of PKA is not essential for either basal or glucose-stimulated insulin secretion from rat islets.  相似文献   

8.
The tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces insulin secretion from isolated pancreatic islets, and this suggests a potential role for protein kinase C in the regulation of stimulus-secretion coupling in islets. In the present study, the hypothesis that the insulinotropic effect of TPA is mediated by activation of protein kinase C in pancreatic islets has been examined. TPA induced a gradual translocation of protein kinase C from the cytosol to a membrane-associated state which correlated with the gradual onset of insulin secretion. The pharmacologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not mimic this effect. TPA also induced a rapid time-dependent decline of total protein kinase C activity in islets and the appearance of a Ca2+- and phospholipid-independent protein kinase activity. Insulin secretion induced by TPA was completely suppressed (IC50 approximately 10 nM) by staurosporine, a potent protein kinase C inhibitor. Staurosporine also inhibited islet cytosolic protein kinase C activity at similar concentrations (IC50 approximately 2 nM). In addition, staurosporine partially (approximately 60%) inhibited glucose-induced insulin secretion at concentrations (IC50 approximately 10 nM) similar to those required to inhibit TPA-induced insulin secretion, suggesting that staurosporine may act at a step common to both mechanisms, possibly the activation of protein kinase C. However, stimulatory concentrations of glucose did not induce down-regulation of translocation of protein kinase C, and the inhibition of glucose-induced insulin release by staurosporine was incomplete. Significant questions therefore remain unresolved as to the possible involvement of protein kinase C in glucose-induced insulin secretion.  相似文献   

9.
Glyceraldehyde-induced insulin release from rat islets of Langerhans was not affected following down-regulation of protein kinase C (PKC) by prolonged exposure to the tumour-promoting phorbol ester, 4 beta-phorbol myristate acetate (PMA). Glyceraldehyde did not cause translocation of islet PKC under conditions in which PMA stimulated redistribution of enzyme activity. These results indicate that activation of PKC is not required for glyceraldehyde stimulation of insulin secretion from normal rat islets.  相似文献   

10.
11.
A potential role of arachidonic acid in the modulation of insulin secretion was investigated by measuring its effects on calmodulin-dependent protein kinase and protein kinase C in islet subcellular fractions. The results were interpreted in the light of arachidonic acid effects on insulin secretion from intact islets. Arachidonic acid could replace phosphatidylserine in activation of cytosolic protein kinase C (K0.5 of 10 microM) and maximum activation was observed at 50 microM arachidonate. Arachidonic acid did not affect the Ca2+ requirement of the phosphatidylserine-stimulated activity. Arachidonic acid (200 microM) inhibited (greater than 90%) calmodulin-dependent protein kinase activity (K0.5 = 50-100 microM) but modestly increased basal phosphorylation activity (no added calcium or calmodulin). Arachidonic acid inhibited glucose-sensitive insulin secretion from islets (K0.5 = 24 microM) measured in static secretion assays. Maximum inhibition (approximately 70%) was achieved at 50-100 microM arachidonic acid. Basal insulin secretion (3 mM glucose) was modestly stimulated by 100 microM arachidonic acid but in a non-saturable manner. In perifusion secretion studies, arachidonic acid (20 microM) had no effect on the first phase of glucose-induced secretion but nearly completely suppressed second phase secretion. At basal glucose (4 mM), arachidonic acid induced a modest but reproducible biphasic insulin secretion response which mimicked glucose-sensitive secretion. However, phosphorylation of an 80 kD protein substrate of protein kinase C was not increased when intact islets were incubated with arachidonic acid, suggesting that the small increases in insulin secretion seen with arachidonic acid were not mediated by protein kinase C. These data suggest that arachidonic acid generated by exposure of islets to glucose may influence insulin secretion by inhibiting the activity of calmodulin-dependent protein kinase but probably has little effect on protein kinase C activity.  相似文献   

12.
The effect of cooling to 27 degrees C was studied in islets of Langerhans exposed to 5 and 50 mM potassium in the absence of glucose. Membrane potential and insulin release were measured simultaneously from microdissected mouse islets while 45Ca outflow and insulin release were measured from collagenase-isolated rat islets. Cooling inhibited potassium-induced insulin release in both preparations. However, calcium entry estimated from electrical records and from 45Ca outflow experiments was only slightly affected by decreasing the temperature to 27 degrees C. It is concluded that the inhibition of insulin release caused by cooling to 27 degrees C can, within limits, be dissociated from calcium influx.  相似文献   

13.
Inositol phospholipid degradation and release of phospholipid-bound arachidonic acid was induced in intact peritoneal macrophages by exposure to phorbol myristate acetate (PMA) or zymosan particles. PMA, known to activate protein kinase C, selectively enhanced the deacylation of phosphatidylinositol (i.e., degradation by phospholipase A), while zymosan particles enhanced degradation via both phospholipase A and inositol lipid phosphodiesterase (phospholipase C). The release of arachidonic acid was found to correlate with the degradation of phosphatidylinositol by the phospholipase A pathway and could be dissociated from the phospholipase C-catalyzed cleavage of inositol phospholipids in several experimental situations: (i) when PMA was the stimulus, (ii) by the difference in Ca2+ dependence between the two enzymatic processes when zymosan was the stimulus and (iii) by the parallel inhibition by chlorpromazine of the phospholipase A pathway and arachidonic acid release, but not inositol phospholipid phosphodiesterase. In addition, phloretin, a reported inhibitor of protein kinase C, was found to inhibit arachidonic acid release and the deacylation of phosphatidylinositol. The results are consistent with a model in which arachidonic acid release is mediated by phospholipase(s) A and in which PMA or the phosphodiesterase-catalyzed degradation of phosphoinositides causes activation of the phospholipase A pathway via protein kinase C.  相似文献   

14.
Islet responses of two different Mus geni, the laboratory mouse (Mus musculus) and a phylogenetically more ancient species (Mus caroli), were measured and compared with the responses of islets from rats (Rattus norvegicus). A minimal and flat second-phase response to 20 mM glucose was evoked from M. musculus islets, whereas a large rising second-phase response characterized rat islets. M. caroli responses were intermediate between these two extremes; a modest rising second-phase response to 20 mM glucose was observed. Prior, brief stimulation of rat islets with 20 mM glucose results in an amplified insulin secretory response to a subsequent 20 mM glucose challenge. No such potentiation or priming was observed from M. musculus islets. In contrast, M. caroli islets displayed a modest twofold potentiated first-phase response upon subsequent restimulation with 20 mM glucose. Inositol phosphate (IP) accumulation in response to 20 mM glucose stimulation in [(3)H]inositol-prelabeled rat or mouse islets paralleled the insulin secretory responses. The divergence in 20 mM glucose-induced insulin release between these species may be attributable to differences in phospholipase C-mediated IP accumulation in islets.  相似文献   

15.
Pentitols and insulin release by isolated rat islets of Langerhans   总被引:7,自引:13,他引:7       下载免费PDF全文
1. Insulin secretion was studied in isolated islets of Langerhans obtained by collagenase digestion of rat pancreas. In addition to responding to glucose and mannose as do whole pancreas and pancreas slices in vitro, isolated rat islets also secrete insulin in response to xylitol, ribitol and ribose, but not to sorbitol, mannitol, arabitol, xylose or arabinose. 2. Xylitol and ribitol readily reduce NAD(+) when added to a preparation of ultrasonically treated islets. 3. Adrenaline (1mum) inhibits the effects of glucose and xylitol on insulin release. Mannoheptulose and 2-deoxy-glucose, however, inhibit the response to glucose but not that to xylitol. 4. The intracellular concentration of glucose 6-phosphate is increased when islets are incubated with glucose but not with xylitol, suggesting that xylitol does not promote insulin release by conversion into glucose 6-phosphate. 5. Theophylline (5mm) potentiates the effect of 20mm-glucose on insulin release from isolated rat islets of Langerhans, but has no effect on xylitol-mediated release. These results indicate that xylitol does not stimulate insulin release by alterations in the intracellular concentrations of cyclic AMP. 6. A possible role for the metabolism of hexoses via the pentose phosphate pathway in the stimulation of insulin release is discussed.  相似文献   

16.
1. Protein kinase activity was measured in islets of Langerhans that had been incubated in the presence of agents known to affect insulin release. 2. Glucagon, theophylline, caffeine and 3-isobutyl-1-methylxanthine, agents that raise cyclic AMP concentrations in islet cells and stimulate insulin release, increased protein kinase activity. Adrenaline and diazoxide, agents that decrease cyclic AMP concentrations and inhibit insulin secretion, decreased the activity. 3. The increase in protein kinase activity produced by different concentrations of 3-isobutyl-1-methylxanthine was apparently related to the increase in intracellular concentrations of cyclic AMP. 4. The sulphonylureas, tolbutamide and glibenclamide, agents that increase insulin release, also increased the protein kinase activity; however, leucine, arginine and xylitol, which also stimulate insulin release, were without effect on the kinase activity. 5. Increasing the glucose concentration of the incubation medium from 2 to 20mm had no effect on protein kinase activity. Further, the ability of 3-isobutyl-1-methylxanthine to increase the protein kinase activity was not affected by the glucose concentration of the incubation medium. 6. These results suggest that agents which affect insulin secretion by altering cyclic AMP concentrations may exert their effects on hormone release by altering the activity of a cyclic AMP-dependent protein kinase in islet cells.  相似文献   

17.
Galanin is a neurotransmitter peptide that suppresses insulin secretion. The present study aimed at investigating how a non-peptide galanin receptor agonist, galnon, affects insulin secretion from isolated pancreatic islets of healthy Wistar and diabetic Goto-Kakizaki (GK) rats. Galnon stimulated insulin release potently in isolated Wistar rat islets; 100 microM of the compound increased the release 8.5 times (p<0.001) at 3.3 mM and 3.7 times (p<0.001) at 16.7 mM glucose. Also in islet perifusions, galnon augmented several-fold both acute and late phases of insulin response to glucose. Furthermore, galnon stimulated insulin release in GK rat islets. These effects were not inhibited by the presence of galanin or the galanin receptor antagonist M35. The stimulatory effects of galnon were partly inhibited by the PKA and PKC inhibitors, H-89 and calphostin C, respectively, at 16.7 but not 3.3 mM glucose. In both Wistar and GK rat islets, insulin release was stimulated by depolarization of 30 mM KCl, and 100 microM galnon further enhanced insulin release 1.5-2 times (p<0.05). Cytosolic calcium levels, determined by fura-2, were increased in parallel with insulin release, and the L-type Ca2+-channel blocker nimodipine suppressed insulin response to glucose and galnon. In conclusion, galnon stimulates insulin release in islets of healthy rats and diabetic GK rats. The mechanism of this stimulatory effect does not involve galanin receptors. Galnon-induced insulin release is not glucose-dependent and appears to involve opening of L-type Ca2+-channels, but the main effect of galnon seems to be exerted at a step distal to these channels, i.e., at B-cell exocytosis.  相似文献   

18.
BACKGROUND: This study was undertaken to examine putative mechanisms of calcium independent signal transduction pathway of cell swelling-induced insulin secretion. METHODS: The role of phospholipase A(2), G proteins, and soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) in insulin secretion induced by 30% hypotonic medium was studied using isolated rat pancreatic islets. RESULTS: In contrast to glucose stimulation, osmotically induced insulin secretion from pancreatic islets was not inhibited by 10 micromol/l bromoenol lactone, an iPLA(2) (Ca(2+) independent phospholipase) inhibitor. Similarly, preincubation of islets for 20 hours with 25 microg/ml mycophenolic acid to inhibit GTP synthesis fully abolished glucose-induced insulin secretion but was without effect on hypotonicity stimulated insulin release. Glucose-induced insulin secretion was prevented by preincubation with 20 nmol/l tetanus toxin (TeTx), a metalloprotease inactivating soluble SNARE. Cell swelling-induced insulin secretion was inhibited by TeTx in the presence of calcium ions but not in calcium depleted medium. The presence of N-ethylmaleimide (NEM, 5 mmol/l, another inhibitor of SNARE proteins) in the medium resulted in high basal insulin secretion and lacking response to glucose stimulation. In contrast, high basal insulin secretion from NEM treated islets further increased after hypotonic stimulation. CONCLUSION: G proteins and iPLA(2) - putative mediators of Ca(2+) independent signaling pathway participate in glucose but not in hypotonicity-induced insulin secretion. Hypotonicity-induced insulin secretion is sensitive to clostridial neurotoxin TeTx but is resistant to NEM.  相似文献   

19.
The effect of glucose and calcium on the activities of the phosphatidylinositol cycle enzymes, CDP-diglyceride inositol transferase, diacylglycerokinase, and lysophosphatidylcholine 2-acyltransferase in rat pancreatic islets was studied. Calcium inhibited the activity of CDP-diglyceride inositol transferase but had no effect on lysophosphatidylcholine 2-acyltransferase and diacylglycerokinase activities. Upon preincubation of islets in a concentration of glucose known to stimulate insulin release, the activity of lysophosphatidylcholine 2-acyltransferase, but not that of diacylglycerokinase or the CDP-diglyceride inositol transferase, was stimulated. Subcellular fractionation of pancreatic islets showed that secretory granule membranes were enriched in CDP-diglyceride inositol transferase, whereas lysophosphatidylcholine 2-acyltransferase activity was highest in the microsomal membranes. The activation of 2-acyltransferase by incubating islets in insulinotropic glucose, and the calcium sensitivity of CDP-diglyceride inositol transferase, suggest that these enzymes may have roles in regulation of insulin secretion.  相似文献   

20.
The metabolism of D-glucose is believed to initiate and regulate insulin secretion by islet beta-cells, although the identity of the metabolite which couples glucose metabolism to the cellular events involved in insulin secretion is unknown. An alternative hypothesis involves the presence of a glucoreceptor for which there has been no biochemical evidence. We have investigated whether glucose recognition by the beta-cell is coupled to phospholipase C. We have used digitonin-permeabilized, [3H]inositol-prelabeled islets to study glucose and carbachol activation of phospholipase C. In this model, carbachol recognition by its muscarinic receptor was coupled to phospholipase C activation. D-Glucose (but not L-glucose) also stimulated phospholipase C activity in these permeabilized islets. This effect was not due to glucose metabolism since glucose 6-phosphate did not affect phospholipase C activity and since phosphorylation of [3H]glucose was not detectable in digitonin-permeabilized islets. Glucose had no effect on the myo-inositol-1,4,5-trisphosphate-5-phosphatase or 3-kinase activities. In the absence of agonist, free Ca2+ concentrations between 0.1 and 1 microM (as determined with a Ca2+-specific electrode) did not influence phospholipase C activity. Stimulation of phospholipase C activity by either carbachol or glucose required Ca2+ in the submicromolar range and was optimal at 0.5 microM free Ca2+.myo-Inositol-1,3,4,5-tetrakisphosphate production from permeabilized islets was synergistically augmented by Ca2+ (0.5-10 microM) and glucose. Phospholipase C activity in islets is therefore not directly activated by free Ca2+ concentrations in the submicromolar range. Furthermore, glucose per se activates phospholipase C activity independently of glucose metabolism. A working hypothesis based on these findings is that glucose is recognized by a site which is coupled to phospholipase C in islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号