首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
De Wit replacement series were used to study competitive interactions between epiphytic Ice+Pseudomonas syringae strains and the biological frost control agents Ice-P. syringae TLP2del1 and Pseudomonas fluorescens A506. Mixtures containing two strains in different proportions but at a constant total population size were inoculated onto potato leaves. The population sizes of each strain and the total population size were determined when the community had reached equilibrium. A near-isogenic P. syringae strain pair exhibited an interaction similar to that expected for strains competing equally for limiting environmental resources. Replacement series with nonisogenic Ice+ and Ice-P. syringae strain pairs suggested that these strains competed for limiting resources according to their relative competitive abilities. There was no evidence of any niche differentiation between the Ice+P. syringae strains and the Ice-P. syringae strain. The growth responses of epiphytes following addition of nutrients to the phyllosphere indicated that the epiphytic P. syringae populations were nutrient limited and that, under growth chamber conditions, the populations were more limited by the availability of carbon than by the availability of nitrogen. Determination of in vitro carbon source utilization profiles provided further evidence for the lack of niche differentiation between the Ice+ and the Ice-P. syringae strains. Niche overlap indices calculated for the Ice+P. syringae strains with respect to Ice-P. syringae TLP2del1 were uniformly high, indicating ecological similarity, and were consistent with the observed low level of coexistence. The biological frost control agent P. fluorescens A506 replaced P. syringae. This was correlated with a high degree of niche overlap between these species.  相似文献   

2.
The growth and survival of pathogenic and nonpathogenic Pseudomonas syringae strains and of the nonpathogenic species Pantoea agglomerans, Stenotrophomonas maltophilia, and Methylobacterium organophilum were compared in the phyllosphere of bean. In general, the plant pathogens survived better than the nonpathogens on leaves under environmental stress. The sizes of the total leaf-associated populations of the pathogenic P. syringae strains were greater than the sizes of the total leaf-associated populations of the nonpathogens under dry conditions but not under moist conditions. In these studies the surface sterilants hydrogen peroxide and UV irradiation were used to differentiate cells that were fully exposed on the surface from nonexposed cells that were in “protected sites” that were inaccessible to these agents. In general, the population sizes in protected sites increased with time after inoculation of plants. The proportion of bacteria on leaves that were in protected sites was generally greater for pathogens than for nonpathogens and was greater under dry conditions than under moist conditions. When organisms were vacuum infiltrated into leaves, the sizes of the nonexposed “internal” populations were greater for pathogenic P. syringae strains than for nonpathogenic P. syringae strains. The sizes of the populations of the nonpathogenic species failed to increase or even decreased. The sizes of nonexposed populations following spray inoculation were correlated with the sizes of nonexposed, internal populations which developed after vacuum infiltration and incubation. While the sizes of the populations of the pathogenic P. syringae strains increased on leaves under dry conditions, the sizes of the populations of the nonpathogenic strains of P. syringae, P. agglomerans, and S. maltophilia decreased when the organisms were applied to plants. The sizes of the populations on dry leaves were also correlated with the sizes of the nonexposed populations that developed following vacuum infiltration. Although pathogenicity was not required for growth in the phyllosphere under high-relative-humidity conditions, pathogenicity apparently was involved in the ability to access and/or multiply in certain protected sites in the phyllosphere and in growth on dry leaves.  相似文献   

3.
The leaf colonization strategies of two bacterial strains were investigated. The foliar pathogen Pseudomonas syringae pv. syringae strain B728a and the nonpathogen Pantoea agglomerans strain BRT98 were marked with a green fluorescent protein, and surface (epiphytic) and subsurface (endophytic) sites of bean and maize leaves in the laboratory and the field were monitored to see if populations of these strains developed. The populations were monitored using both fluorescence microscopy and counts of culturable cells recovered from nonsterilized and surface-sterilized leaves. The P. agglomerans strain exclusively colonized epiphytic sites on the two plant species. Under favorable conditions, the P. agglomerans strain formed aggregates that often extended over multiple epidermal cells. The P. syringae pv. syringae strain established epiphytic and endophytic populations on asymptomatic leaves of the two plant species in the field, with most of the P. syringae pv. syringae B728a cells remaining in epiphytic sites of the maize leaves and an increasing number occupying endophytic sites of the bean leaves in the 15-day monitoring period. The epiphytic P. syringae pv. syringae B728a populations appeared to originate primarily from multiplication in surface sites rather than from the movement of cells from subsurface to surface sites. The endophytic P. syringae pv. syringae B728a populations appeared to originate primarily from inward movement through the stomata, with higher levels of multiplication occurring in bean than in maize. A rainstorm involving a high raindrop momentum was associated with rapid growth of the P. agglomerans strain on both plant species and with rapid growth of both the epiphytic and endophytic populations of the P. syringae pv. syringae strain on bean but not with growth of the P. syringae pv. syringae strain on maize. These results demonstrate that the two bacterial strains employed distinct colonization strategies and that the epiphytic and endophytic population dynamics of the pathogenic P. syringae pv. syringae strain were dependent on the plant species, whereas those of the nonpathogenic P. agglomerans strain were not.  相似文献   

4.
De Wit replacement series were used to study competitive interactions between epiphytic IcePseudomonas syringae strains and the biological frost control agents IceP. syringae TLP2del1 and Pseudomonas fluorescens A506. Mixtures containing two strains in different proportions but at a constant total population size were inoculated onto potato leaves. The population sizes of each strain and the total population size were determined when the community had reached equilibrium. A near-isogenic P. syringae strain pair exhibited an interaction similar to that expected for strains competing equally for limiting environmental resources. Replacement series with nonisogenic Ice and IceP. syringae strain pairs suggested that these strains competed for limiting resources according to their relative competitive abilities. There was no evidence of any niche differentiation between the IceP. syringae strains and the IceP. syringae strain. The growth responses of epiphytes following addition of nutrients to the phyllosphere indicated that the epiphytic P. syringae populations were nutrient limited and that, under growth chamber conditions, the populations were more limited by the availability of carbon than by the availability of nitrogen. Determination of in vitro carbon source utilization profiles provided further evidence for the lack of niche differentiation between the Ice and the IceP. syringae strains. Niche overlap indices calculated for the IceP. syringae strains with respect to IceP. syringae TLP2del1 were uniformly high, indicating ecological similarity, and were consistent with the observed low level of coexistence. The biological frost control agent P. fluorescens A506 replaced P. syringae. This was correlated with a high degree of niche overlap between these species.  相似文献   

5.
The production of peptide siderophores and the variation in siderophore production among strains of Pseudomonas syringae and Pseudomonas viridiflava were investigated. An antibiose test was used to select a free amino acid-containing agar medium favorable for production of fluorescent siderophores by two P. syringae strains. A culture technique in which both liquid and solid asparagine-containing culture media were used proved to be reproducible and highly effective for inducing production of siderophores in a liquid medium by the fluorescent Pseudomonas strains investigated. Using asparagine as a carbon source appeared to favor siderophore production, and relatively high levels of siderophores were produced when certain amino acids were used as the sole carbon and energy sources. Purified chelated siderophores of strains of P. syringae pv. syringae, P. syringae pv. aptata, P. syringae pv. morsprunorum, P. syringae pv. tomato, and P. viridiflava had the same amino acid composition and spectral characteristics and were indiscriminately used by these strains. In addition, nonfluorescent strains of P. syringae pv. aptata and P. syringae pv. morsprunorum were able to use the siderophores in biological tests. Our results confirmed the proximity of P. syringae and P. viridiflava; siderotyping between pathovars of P. syringae was not possible. We found that the spectral characteristics of the chelated peptide siderophores were different from the spectral characteristics of typical pyoverdins. Our results are discussed in relation to the ecology of the organisms and the conditions encountered on plant surfaces.  相似文献   

6.
The phyllosphere, which is defined as the parts of terrestrial plants above the ground, is a large habitat for different microorganisms that show a high extent of adaption to their environment. A number of hypotheses were generated by culture-independent functional genomics studies to explain the competitiveness of specialized bacteria in the phyllosphere. In contrast, in situ data at the metabolome level as a function of bacterial colonization are lacking. Here, we aimed to obtain new insights into the metabolic interplay between host and epiphytes upon colonization of Arabidopsis thaliana leaves in a controlled laboratory setting using environmental metabolomics approaches. Quantitative nuclear magnetic resonance (NMR) and imaging high-resolution mass spectrometry (IMS) methods were used to identify Arabidopsis leaf surface compounds and their possible involvement in the epiphytic lifestyle by relative changes in compound pools. The dominant carbohydrates on the leaf surfaces were sucrose, fructose and glucose. These sugars were significantly and specifically altered after epiphytic leaf colonization by the organoheterotroph Sphingomonas melonis or the phytopathogen Pseudomonas syringae pv. tomato, but only to a minor extent by the methylotroph Methylobacterium extorquens. In addition to carbohydrates, IMS revealed surprising alterations in arginine metabolism and phytoalexin biosynthesis that were dependent on the presence of bacteria, which might reflect the consequences of bacterial activity and the recognition of not only pathogens but also commensals by the plant. These results highlight the power of environmental metabolomics to aid in elucidating the molecular basis underlying plant–epiphyte interactions in situ.  相似文献   

7.
The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% ± 8.2%) than that in monospecific aggregates of these two strains (1.6% ± 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial interactions on leaf surfaces and the implications for biological control of pathogenic and other deleterious microorganisms is discussed.  相似文献   

8.
It has been demonstrated that for a nonpathogenic, leaf-associated bacterium, effectiveness in the control of bacterial speck of tomato is correlated with the similarity in the nutritional needs of the nonpathogenic bacterium and the pathogen Pseudomonas syringae pv. tomato. This relationship was investigated further in this study by using the pathogen Xanthomonas campestris pv. vesicatoria, the causal agent of bacterial spot of tomato, and a collection of nonpathogenic bacteria isolated from tomato foliage. The effects of inoculation of tomato plants with one of 34 nonpathogenic bacteria prior to inoculation with the pathogen X. campestris pv. vesicatoria were quantified by determining (i) the reduction in disease severity (number of lesions per square centimeter) in greenhouse assays and (ii) the reduction in leaf surface pathogen population size (log10 of the number of CFU per leaflet) in growth chamber assays. Nutritional similarity between the nonpathogenic bacteria and X. campestris pv. vesicatoria was quantified by using either niche overlap indices (NOI) or relatedness in cluster analyses based upon in vitro utilization of carbon or nitrogen sources reported to be present in tomato tissues or in Biolog GN plates. In contrast to studies with P. syringae pv. tomato, nutritional similarity between the nonpathogenic bacteria and the pathogen X. campestris pv. vesicatoria was not correlated with reductions in disease severity. Nutritional similarity was also not correlated with reductions in pathogen population size. Further, the percentage of reduction in leaf surface pathogen population size was not correlated with the percentage of reduction in disease severity, suggesting that the epiphytic population size of X. campestris pv. vesicatoria is not related to disease severity and that X. campestris pv. vesicatoria exhibits behavior in the phyllosphere prior to lesion formation that is different from that of P. syringae pv. tomato.  相似文献   

9.
Bromeliads can have terrestrial and epiphytic habits. Therefore, they have developed probably different mechanisms for the uptake of nutrients from distinct sources such as the pedosphere and the atmosphere. Many bromeliads, such as the epiphytes, absorb water and nutrients almost exclusively via their foliar trichomes. In contrast, terrestrial bromeliads essentially use their roots to withdraw the nutrients from the soil. The aim of this study was to compare nitrogen (N) nutrition between a terrestrial, Ananas comosus (L.) Merr., and an epiphytic, Vriesea gigantea Gaudich., bromeliad. The in vitro absorption of [3H]glycine and [3H]glutamine was investigated. Plants were also grown in vitro with NH4+, glutamine (Gln) or glycine (Gly) as N sources, and the amino acid profile was analyzed. Ammonium treatment had little effect upon the A. comosus amino acid profile, while asparagine was the main amino acid accumulated in V. gigantea after 3 d in a medium with this nitrogen source. This suggests that V. gigantea accumulate N in compounds with high N/C ratio, allowing it to store higher N level when it is available in epiphytic environment. The two species were able to take up amino acids in vitro, although V. gigantea had a higher rate of amino acid uptake than the terrestrial bromeliad, A. comosus. For both species, Gly was taken up in a higher rate than Gln. The data support the idea that V. gigantea has a luxury consumption when inorganic and organic N are available in the environment, which does not happen in the case of the terrestrial bromeliad A. comosus. It has a more stable source of nutrients, the soil. We can also suggest that amino acids such as Gly, Gln and others present in the bromeliad tank water may be important N sources for V. gigantea and other epiphytic bromeliads in natural habitats.  相似文献   

10.
The rulAB locus confers tolerance to UV radiation and is borne on plasmids of the pPT23A family in Pseudomonas syringae. We sequenced 14 rulA alleles from P. syringae strains representing seven pathovars and found sequence differences of 1 to 12% within pathovar syringae, and up to 15% differences between pathovars. Since the sequence variation within rulA was similar to that of P. syringae chromosomal alleles, we hypothesized that rulAB has evolved over a long time period in P. syringae. A phylogenetic analysis of the deduced amino acid sequences of rulA resulted in seven clusters. Strains from the same plant host grouped together in three cases; however, strains from different pathovars grouped together in two cases. In particular, the rulA alleles from P. syringae pv. lachrymans and P. syringae pv. pisi were grouped but were clearly distinct from the other sequenced alleles, suggesting the possibility of a recent interpathovar transfer. We constructed chimeric rulAB expression clones and found that the observed sequence differences resulted in significant differences in UV (wavelength) radiation sensitivity. Our results suggest that specific amino acid changes in RulA could alter UV radiation tolerance and the competitiveness of the P. syringae host in the phyllosphere.  相似文献   

11.
The epiphytic fitness of four Tn5 mutants of Pseudomonas syringae that exhibited reduced epiphytic fitness in the laboratory was evaluated under field conditions. The mutants differed more from the parental strain under field conditions than under laboratory conditions in their survival immediately following inoculation onto bean leaves and in the size of the epiphytic populations that they established, demonstrating that their fitness was reduced more under field conditions than in the laboratory. Under both conditions, the four mutants exhibited distinctive behaviors. One mutant exhibited particularly large population decreases and short half-lives following inoculation but grew epiphytically at near-wild-type rates, while the others exhibited reduced survival only in the warmest, driest conditions tested and grew epiphytically at reduced rates or, in the case of one mutant, not at all. The presence of the parental strain, B728a, did not influence the survival or growth of three of the mutants under field conditions; however, one mutant, an auxotroph, established larger populations in the presence of B728a than in its absence, possibly because of cross-feeding by B728a in planta. Experiments with B728a demonstrated that established epiphytic populations survived exposure of leaves to dry conditions better than newly inoculated cells did and that epiphytic survival was not dependent on the cell density in the inoculum. Three of the mutants behaved similarly to two nonpathogenic strains of P. syringae, suggesting that the mutants may be altered in traits that are missing or poorly expressed in naturally occurring nonpathogenic epiphytes.  相似文献   

12.
Blossoms are important sites of infection for Erwinia amylovora, the causal agent of fire blight of rosaceous plants. Before entering the tissue, the pathogen colonizes the stigmatic surface and has to compete for space and nutrient resources within the epiphytic community. Several epiphytes are capable of synthesizing antibiotics with which they antagonize phytopathogenic bacteria. Here, we report that a multidrug efflux transporter, designated NorM, of E. amylovora confers tolerance to the toxin(s) produced by epiphytic bacteria cocolonizing plant blossoms. According to sequence comparisons, the single-component efflux pump NorM is a member of the multidrug and toxic compound extrusion protein family. The corresponding gene is widely distributed among E. amylovora strains and related plant-associated bacteria. NorM mediated resistance to the hydrophobic cationic compounds norfloxacin, ethidium bromide, and berberine. A norM mutant was constructed and exhibited full virulence on apple rootstock MM 106. However, it was susceptible to antibiotics produced by epiphytes isolated from apple and quince blossoms. The epiphytes were identified as Pantoea agglomerans by 16S rRNA analysis and were isolated from one-third of all trees examined. The promoter activity of norM was twofold greater at 18°C than at 28°C. The lower temperature seems to be beneficial for host infection because of the availability of moisture necessary for movement of the pathogen to the infection sites. Thus, E. amylovora might employ NorM for successful competition with other epiphytic microbes to reach high population densities, particularly at a lower temperature.  相似文献   

13.
The epiphytic fitness of Salmonella enterica was assessed on cilantro plants by using a strain of S. enterica serovar Thompson that was linked to an outbreak resulting from cilantro. Salmonella serovar Thompson had the ability to colonize the surface of cilantro leaves, where it was detected by confocal laser scanning microscopy (CLSM) at high densities on the veins and in natural lesions. The population sizes of two common colonizers of plant surfaces, Pantoea agglomerans and Pseudomonas chlororaphis, were 10-fold higher than that of the human pathogen on cilantro incubated at 22°C. However, Salmonella serovar Thompson achieved significantly higher population levels and accounted for a higher proportion of the total culturable bacterial flora on cilantro leaves when the plants were incubated at warm temperatures, such as 30°C, after inoculation, indicating that the higher growth rates exhibited by Salmonella serovar Thompson at warm temperatures may increase the competitiveness of this organism in the phyllosphere. The tolerance of Salmonella serovar Thompson to dry conditions on plants at 60% relative humidity was at least equal to that of P. agglomerans and P. chlororaphis. Moreover, after exposure to low humidity on cilantro, Salmonella serovar Thompson recovered under high humidity to achieve its maximum population size in the cilantro phyllosphere. Visualization by CLSM of green fluorescent protein-tagged Salmonella serovar Thompson and dsRed-tagged P. agglomerans inoculated onto cilantro revealed that the human pathogen and the bacterial epiphyte formed large heterogeneous aggregates on the leaf surface. Our studies support the hypothesis that preharvest contamination of crops by S. enterica plays a role in outbreaks linked to fresh fruits and vegetables.  相似文献   

14.
A comprehensive view of the diazotrophic bacterial flora of plants requires that attention be paid to the appropriate carbon and oxygen requirements during isolation of the bacteria. Twenty compounds (monosaccharides, disaccharides, polyols, and organic acids) were therefore examined as carbon and energy sources for nitrogenase activity in semisolid stab cultures at pO2 values of 0.21, 0.02, and ≤0.002 with 12 strains of diazotrophic root-associated bacteria. With the facultatively anaerobic bacteria of the genera Klebsiella and Enterobacter, the best substrate was sucrose, followed by fructose and mannitol, whereas among the organic acids, only malic and fumaric acids supported any activity. With the obligately aerobic bacteria of the genera Azospirillum and Pseudomonas, disaccharides were not utilized for nitrogen fixation, but several organic acids were accepted in addition to monosaccharides and polyols; malate and glucose were the best substrates. The patterns of the carbon sources utilized for nitrogen fixation were coherent within the species, with the exception of one Klebsiella pneumoniae and one Enterobacter agglomerans strain, both isolated from the same individual grass plant, which were unable to utilize lactose. Anaerobic conditions (pO2 value of ≤0.002) were required for maximum nitrogenase activity with the facultatively anaerobic bacteria, with the exception of one strain of E. agglomerans, which required atmospheric oxygen (pO2 value of 0.21). Also, the obligately aerobic diazotrophs required atmospheric oxygen for maximum nitrogenase activity. The maximum specific nitrogenase activities (expressed as micromoles of C2H4 · milligram of bacterial protein−1 · hour−1) noted during the exponential growth phase of the bacteria were the following: 2.68 with Azospirillum lipoferum on malate, 2.41 with K. pneumoniae and 1.58 with E. agglomerans on sucrose, and 0.95 with Pseudomonas sp. on malate.  相似文献   

15.
A bacteriocin produced by Pseudomonas syringae pv. ciccaronei, used at different purification levels and concentrations in culture and in planta, inhibited the multiplication of P. syringae subsp. savastanoi, the causal agent of olive knot disease, and affected the epiphytic survival of the pathogen on the leaves and twigs of treated olive plants. Treatments with bacteriocin from P. syringae pv. ciccaronei inhibited the formation of overgrowths on olive plants caused by P. syringae subsp. savastanoi strains PVBa229 and PVBa304 inoculated on V-shaped slits and on leaf scars at concentrations of 105 and 108 CFU ml−1, respectively. In particular, the application of 6,000 arbitrary units (AU) of crude bacteriocin (dialyzed ammonium sulfate precipitate of culture supernatant) ml−1 at the inoculated V-shaped slits and leaf scars resulted in the formation of knots with weight values reduced by 81 and 51%, respectively, compared to the control, depending on the strains and inoculation method used. Crude bacteriocin (6,000 AU ml−1) was also effective in controlling the multiplication of epiphytic populations of the pathogen. In particular, the bacterial populations recovered after 30 days were at least 350 and 20 times lower than the control populations on twigs and on leaves, respectively. These results suggest that bacteriocin from P. syringae pv. ciccaronei can be used effectively to control the survival of the causal agent of olive knot disease and to prevent its multiplication at inoculation sites.  相似文献   

16.
The role of flagellar motility in determining the epiphytic fitness of an ice-nucleation-active strain of Pseudomonas syringae was examined. The loss of flagellar motility reduced the epiphytic fitness of a normally motile P. syringae strain as measured by its growth, survival, and competitive ability on bean leaf surfaces. Equal population sizes of motile parental or nonmotile mutant P. syringae strains were maintained on bean plants for at least 5 days following the inoculation of fully expanded primary leaves. However, when bean seedlings were inoculated before the primary leaves had expanded and bacterial populations on these leaves were quantified at full expansion, the population size of the nonmotile derivative strain reached only 0.9% that of either the motile parental or revertant strain. When fully expanded bean primary leaves were coinoculated with equal numbers of motile and nonmotile cells, the population size of a nonmotile derivative strain was one-third of that of the motile parental or revertant strain after 8 days. Motile and nonmotile cells were exposed in vitro and on plants to UV radiation and desiccating conditions. The motile and nonmotile strains exhibited equal resistance to both stresses in vitro. However, the population size of a nonmotile strain on leaves was less than 20% that of a motile revertant strain when sampled immediately after UV irradiation. Epiphytic populations of both motile and nonmotile P. syringae declined under desiccating conditions on plants, and after 8 days, the population size of a nonmotile strain was less than one-third that of the motile parental or revertant strain.  相似文献   

17.
Phyllosphere fungi on living and decomposing leaves of giant dogwood   总被引:3,自引:0,他引:3  
Phyllosphere fungi on living leaves and their succession on decomposing leaves were studied on giant dogwood (Swida controversa). A total of 12 and 34 fungal species were isolated from the interior and surface, respectively, of living leaves, and 15 frequent species were considered as phyllosphere fungi. Six of these 15 species were also frequent on decomposing litter. Characteristic successional trends were observed in the 6 phyllosphere fungi during decomposition. The sum of frequencies of endophytes decreased as decomposition progressed, and no endophytes were isolated from the litter at the 11th month of decomposition. The sum of frequencies of epiphytes increased as decomposition progressed. Endophytes and epiphytes showed different responses to litter mass loss and concentrations of nitrogen, lignin, and total carbohydrates during the decomposition process. These results suggested that epiphytes may survive on decomposing leaves as primary decomposers on the ground, thereby excluding endophytes by competition for available energy sources, and that epiphytes may have a greater contribution to decomposition than endophytes in dogwood leaves.  相似文献   

18.
Bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, was used to determine whether similarity in carbon source utilization between a preemptive biological control agent and the pathogen was significant in determining the ability of the bacterium to suppress disease. Similarity in carbon source utilization was quantified as the ratio of the number of tomato carbon sources utilized in vitro by the biological control agent to the number of tomato carbon sources utilized in vitro by the target pathogen (the niche overlap index [NOI]). Suppression of the disease was quantified as the percent reduction in disease severity compared to the pathogen-only control when nonpathogenic bacteria were applied to foliage 48 h prior to the pathogen. In the collection of 36 nonpathogenic bacterial strains, there was a significant (P < 0.01), but weak (r2 = 0.25), correlation between reduction in disease severity and similarity in carbon source utilization, suggesting that similarity in carbon source use was significant in determining ability to suppress disease. The relationship was investigated further using catabolic mutants of P. syringae strain TLP2, an effective biological control agent of speck. Catabolic mutants exhibited lower levels of similarity (NOI = 0.07 to 0.90) than did wild-type TLP2 (NOI = 0.93). With these catabolic mutants there was a significant (P < 0.01), and stronger (r2 = 0.42), correlation between reduction in disease severity and similarity in carbon source utilization. This suggests that similarity in carbon source utilization was a more important component of biological control ability for the catabolic mutants than for the nonpathogenic bacteria. Together, these studies indicate that suppression of bacterial speck of tomato was correlated with nutritional similarity between the pathogenic and nonpathogenic bacteria and suggest that preemptive utilization of carbon sources was probably involved in the biological control of the disease by both the naturally occurring nonpathogenic bacteria and the catabolic mutants.  相似文献   

19.
Nonfluorescent highly virulent strains of Pseudomonas syringae pv. aptata isolated in different European countries and in Uruguay produce a nonfluorescent peptide siderophore, the production of which is iron repressed and specific to these strains. The amino acid composition of this siderophore is identical to that of the dominant fluorescent peptide siderophore produced by fluorescent P. syringae strains, and the molecular masses of the respective Fe(III) chelates are 1,177 and 1,175 atomic mass units. The unchelated nonfluorescent siderophore is converted into the fluorescent siderophore at pH 10, and colors and spectral characteristics of the unchelated siderophores and of the Fe(III)-chelates in acidic conditions are similar to those of dihydropyoverdins and pyoverdins, respectively. The nonfluorescent siderophore is used by fluorescent and nonfluorescent P. syringae strains. These results and additional mass spectrometry data strongly suggest the presence of a pyoverdin chromophore in the fluorescent siderophore and a dihydropyoverdin chromophore in the nonfluorescent siderophore, which are both ligated to a succinamide residue. When chelated, the siderophores behave differently from typical pyoverdins and dihydropyoverdins in neutral and alkaline conditions, apparently because of the ionization occurring around pH 4.5 of carboxylic acids present in β-hydroxyaspartic acid residues of the peptide chains. These differences can be detected visually by pH-dependent changes of the chelate colors and spectrophotochemically. These characteristics and the electrophoretic behavior of the unchelated and chelated siderophores offer new tools to discriminate between saprophytic fluorescent Pseudomonas species and fluorescent P. syringae and P. viridiflava strains and to distinguish between the two siderovars in P. syringae pv. aptata.  相似文献   

20.
The epiphyte Pantoea agglomerans 48b/90, which has been isolated from soybean leaves, belongs to the Enterobacteriaceae, as does the plant pathogen Erwinia amylovora, which causes fire blight on rosaceous plants such as apples and leads to severe economic losses. Since P. agglomerans efficiently antagonizes phytopathogenic bacteria, the P. agglomerans strain C9-1 is used as a biocontrol agent (BlightBan C9-1). Here we describe the bioassay-guided isolation of a peptide antibiotic that is highly active against the plant pathogen E. amylovora and pathovars of Pseudomonas syringae, and we elucidate its structure. Bioassay-guided fractionation using anion-exchange chromatography followed by hydrophobic interaction liquid chromatography yielded the bioactive, highly polar antibiotic. The compound was identified as 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine by using high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance techniques. This peptide was found to be produced by three of the nine P. agglomerans strains analyzed. Notably, the biocontrol strain P. agglomerans C9-1 also produces 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine. Previously, 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine has been characterized only from Serratia plymuthica. 2-Amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine has been shown to inhibit the growth of the human pathogen Candida albicans efficiently, but its involvement in the defense of epiphytes against phytopathogenic bacteria has not been investigated so far.Microbial pathogens pose a major threat to many plants and can cause enormous losses in agriculture. Microorganisms that antagonize pathogens can offer a way to fight plant diseases that is more environmentally friendly than chemical treatment. Such diseases include fire blight, which is caused by Erwinia amylovora and affects many rosaceous plants, e.g., apple and pear (18, 25, 29, 38).Suitable strains for biocontrol agents are often plant-associated microorganisms that are forced to defend their ecological niches under natural conditions and are thus adapted to competition with plant pathogens (2, 3). The species Pantoea agglomerans (formerly Erwinia herbicola) comprises many strains that are promising sources for biocontrol agents (8, 15, 30, 32, 43). P. agglomerans strains are ubiquitous in nature, inhabiting plant surfaces, water, soil, animals, and humans (9, 11). Several Pantoea isolates are known to inhibit E. amylovora efficiently in planta (39, 42). In vitro experiments have revealed some antibiotics from P. agglomerans and uncovered how they act against E. amylovora (22, 43). The known antibiotics produced by P. agglomerans strains, which belong to diverse chemical classes and affect different molecular targets, exhibit both narrow- and broad-spectrum activities (21).For example, P. agglomerans Eh318, isolated from apple leaves, produces two peptide antibiotics, pantocin A and pantocin B; both interfere with amino acid biosynthesis. Pantocin A blocks l-histidinol phosphate aminotransferase (20), and pantocin B acts as an N-acetylornithine transaminase inhibitor (5). Consequently, their inhibitory effects can be compensated for by supplementation with l-histidine and l-arginine, respectively (43). Giddens et al. (2002) described a phenazine antibiotic and its precursors, which were produced by P. agglomerans Eh1087 (10). Andrimid, a hybrid nonribosomal peptide polyketide antibiotic from P. agglomerans Eh335, selectively blocks the carboxyl transfer reaction of prokaryotic acetyl coenzyme A carboxylase; this reaction catalyzes the first committed step of fatty acid biosynthesis (19, 26). P. agglomerans E325 sold as Bloomtime Biological (Northwest Agricultural Products, Pasco, WA) acidifies flower stigmata, thus reducing the growth of E. amylovora. Simultaneously, it produces an antibiotic that has high specificity against E. amylovora and is effective under low-phosphate and low-pH conditions (34).P. agglomerans C9-1, which is registered as the biocontrol agent BlightBan C9-1 (Nufarm Agricultural Inc.), produces two antibiotics, herbicolin O and herbicolin I (16). Like pantocin A, herbicolin O loses its activity in the presence of histidine. However, herbicolin I does not become ineffective in the presence of amino acids (17). Although C9-1 is registered as a biocontrol agent, the chemical nature of herbicolins has remained largely unknown (13, 14).P. agglomerans 48b/90 (Pa48b), an epiphyte from soybean leaves (40), attracted our attention because it strongly inhibits the growth of E. amylovora and Pseudomonas syringae pv. glycinea (27), the pathogen that causes the bacterial blight of soybean. Since the mode of action of Pa48b against plant pathogens, in particular E. amylovora, is elusive, we looked for the molecular basis for the biocontrol potential of Pa48b. Here we describe the isolation, structure elucidation, and bioactivity of a potent antibiotic against plant pathogens that is produced by several P. agglomerans strains. The properties of this antibiotic perfectly match those of the chemically unidentified herbicolin I from P. agglomerans C9-1 (BlightBan C9-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号