首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic solid wastes from urban environment as iron sources for sorghum   总被引:1,自引:0,他引:1  
Sorghum (Sorghum bicolor L. Moench) which is susceptible to Fe deficiency was grown in two different soils in a glasshouse with two different organic urban wastes (sewage sludge and dog manure) to ascertain their ability to supply Fe and other micronutrients to plants. One soil was calcareous with a history of Fe deficiency. Sewage sludge and dog manure at an application rate of 15,000 g/g to this soil effectively supplied Fe to plants. This effect was not present when the ash rather than the organic matter was used. Ferrous sulfate and Fe-EDDHA (Fe[ethylenediamine di-0-hydroxyphenylacetate]) likewise were not effective. Infrared spectra revealed differences in the fulvic acid for the two sources of solid wastes. The results imply that some sources of organic wastes may be useful in prevention or correction of Fe deficiency in calcareous soils.  相似文献   

2.
Overcoming Fe deficiency by a transgenic approach in rice   总被引:2,自引:0,他引:2  
Iron (Fe) is an essential microelement for plant growth. Fe availability is particularly limited on calcareous soils, which have high pH. Approximately 30% of the world's soils are considered calcareous with low Fe availability, which results in extensive areas of Fe deficiency in plants. Some graminaceous plants are known to secrete high amounts of mugineic acid family phytosiderophores (MAs) under Fe deficiency. This Fe acquisition system is called the Strategy-II mechanism. Tolerance to Fe deficiency in graminaceous plants is thought to depend on the quantity of MAs secreted by plants under Fe deficiency stress. This system was utilized to enhance the tolerance of rice to low Fe availability. Transgenic rice expressing the barley naat genes, one of the genes for the enzymes on the biosynthetic pathway of MAs, showed tolerance to low Fe availability when grown in a calcareous soil.  相似文献   

3.
Zhang  F. S. 《Plant and Soil》1993,155(1):111-114
Phytosiderophores released by roots of iron-deficient grasses mobilise Fe, Zn, Mn and Cu in calcareous soils. Mobilisation of Fe, Zn and Cu can be explained as the chelation of these metal cations by phytosiderophores. Mobilisation of Mn could not be so explained because phytosiderophores have a much smaller affinity for Mn than for Fe, Cu and Zn. Model experiments have been made with freshly precipitated Fe(OH)3 and different soils to study the mobilisation of iron and manganese by plant-borne chelating phytosiderophores, the synthetic metal chelators DTPA and the microbial metal chelator sulphonated ferrioxamine B (FOB). Compared with the synthetic chelator DTPA, the plant-borne chelating phytosiderophores mobilised Fe very efficiently, but no change was observed in the Mn mobilisation by phytosiderophores.Different phytosiderophores, as well as the microbial metal chelator FOB, were used to compare the mobilisation of iron and manganese in a calcareous soil.  相似文献   

4.
Collaborative experiments were conducted to determine whether microbial populations associated with plant roots may artifactually affect the rates of Fe uptake and translocation from microbial siderophores and phytosiderophores. Results showed nonaxenic maize to have 2 to 34-fold higher Fe-uptake rates than axenically grown plants when supplied with 1 μM Fe as either the microbial siderophore, ferrioxamine B (FOB), or the barley phytosiderophore, epi-hydroxymugineic acid (HMA). In experiments with nonsterile plants, inoculation of maize or oat seedlings with soil microorganisms and amendment of the hydroponic nutrient solutions with sucrose resulted in an 8-fold increase in FOB-mediated Fe-uptake rates by Fe-stressed maize and a 150-fold increase in FOB iron uptake rates by Fe-stressed oat, but had no effect on iron uptake by Fe-sufficient plants. Conversely, Fe-stressed maize and oat plants supplied with HMA showed decreased uptake and translocation in response to microbial inoculation and sucrose amendment. The ability of root-associated microorganisms to affect Fe-uptake rates from siderophores and phytosiderophores, even in short-term uptake experiments, indicates that microorganisms can be an unpredictable confounding factor in experiments examining mechanisms for utilization of microbial siderophores or phytosiderophores under nonsterile conditions.  相似文献   

5.

Aim

A mechanism of action for the performance of Fe chelates as soil-applied fertilizer has been hypothesized by Lindsay and Schwab (J Plant Nutr 5:821–840, 1982), in which the ligand participates in a cyclic process of delivering Fe at the root surface and mobilizing Fe from the soil. This “shuttle mechanism” seems appealing in view of fertilizer efficiency, but little is known about its performance. The chelate FeEDDHA is a commonly used Fe fertilizer on calcareous soils.

Methods

In this study, the performance of the shuttle mechanism has been examined for FeEDDHA chelates in soil interaction and pot trial experiments.

Results

The specificity of EDDHA ligands for chelating Fe from soils of low Fe availability is limited. Experimental support for a shuttle mechanism in soil-plant systems with FeEDDHA was found: specific metal mobilization only occurred upon FeEDDHA-facilitated Fe uptake. The mobilized metals originated at least in part from the root surface instead of the soil.

Conclusion

The results from this study support the existence of a shuttle mechanism with FeEDDHA in soil application. If the efficiency of the shuttle mechanism is however largely controlled by metal availability in the bulk soil, it is heavily compromised by complexation of competing cations: Al, Mn and particularly Cu.  相似文献   

6.
Brand  J.D.  Tang  C.T.  Graham  R.D. 《Plant and Soil》2000,224(2):207-215
Two glasshouse experiments were conducted to examine the effects of nutrient supply and rhizobial inoculation on the performance of Lupinus pilosus genotypes differing in tolerance to calcareous soils. In experiment 1, plants were grown for 84 days in a calcareous soil (50% CaCO3; soil water content 90% of field capacity) at four nutrient treatments (no-added nutrients, added nutrients without Fe, added nutrients with soil applied FeEDDHA, added nutrients with foliar applied FeSO4). In experiment 2, plants were grown for 28 days with supply of NH4NO3 without inoculation or inoculated with Bradyrhizobium sp. (Lupinus). Chlorosis in the youngest leaves was a good indicator of the relative tolerance of the genotypes to the calcareous soil in both experiments, except the treatment with FeEDDHA at 5 mg kg–1 soil which was toxic to all genotypes. Chlorosis scores correlated with chlorophyll meter readings and chlorophyll concentrations. The foliar application of FeSO4 did not fully alleviate chlorotic symptoms despite concentrations of active or total Fe in the youngest leaves being increased. Adding nutrients and chemical nitrogen did not change the severity of chlorosis or improve the growth of the plant. The nutrient supply did not alter the ranking of tolerance of genotypes to the calcareous soil. The results suggest that nutrient deficiency or poor nodulation was not a major cause of poor plant growth on calcareous soils and that bicarbonate may exert a direct effect on chlorophyll synthesis. The mechanism for tolerance is likely to be related to an ability to exclude bicarbonate or prevent its transport to the leaves.  相似文献   

7.
Summary Glasshouse experiments have shown that the application of an acidulating agent to a calcareous soil can increase growth and alleviate severe chlorosis in an acidic population ofE. obliqua. In contrast, a calcareous population showed only a slight response to this treatment and maintained adequate growth and a low frequency of chlorosis on both control and treated calcareous soils. Foliar analyses of seedlings of the acidic population showed that alleviation of chlorosis was concomitant with a reduction in the levels of P, Ca and K, and an increase in uptake of Fe. However, the total Fe content of foliage was poorly correlated with the occurrence of severe chlorosis. Although this evidence suggested that the differential susceptibility ofE. obliqua to lime-chlorosis can be reduced by increasing the availability of Fe, the greater concentration of Fe in chlorotic seedlings indicated that lime-chlorosis may also be due to an inactivation of Fe within the plant (i.e. by P). This hypothesis was partly confirmed by a water culture experiment which showed that a combination of relatively high pH and high external levels of P could induce severe chlorosis in seedlings of the acidic population. In contrast, it appears that the calcareous population has a more efficient mechanism for absorbing Fe and holding it in an available form, even when external concentrations of P are high. It is suggested that plants which have an efficient mechanism for the uptake of Fe at relatively high pH and are less susceptible to the detrimental effects of P have been selected for on these alkaline calcareous soils.  相似文献   

8.
  • The abundance of calcareous soils makes bicarbonate‐induced iron (Fe) deficiency a major problem for plant growth and crop yield. Therefore, Fe‐efficient plants may constitute a solution for use on calcareous soils.
  • We investigated the ability of the forage legume Sulla carnosa (Desf.) to maintain integrity of its photosynthetic apparatus under Fe deficiency conditions. Three treatments were applied: control, direct Fe deficiency and bicarbonate‐induced Fe deficiency.
  • At harvest, all organs of deficient plants showed severe growth inhibition, the effect being less pronounced under indirect Fe deficiency. Pigment analysis of fully expanded leaves revealed a reduction in concentrations of chlorophyll a, chlorophyll b and carotenoids under Fe deficiency. Electron transport rate, maximum and effective quantum yield of photosystem II (PSII), photochemical quenching (qP), non‐photochemical quenching (qN) as well as P700 activity also decreased significantly in plants exposed to direct Fe deficiency, while qN was not affected. The effects of indirect Fe deficiency on the same parameters were less pronounced in bicarbonate‐treated plants. The relative abundances of thylakoid proteins related to PSI (PsaA, Lhca1, Lhca2) and PSII (PsbA, Lhcb1) were also more affected under direct than indirect Fe deficiency.
  • We conclude that S. carnosa can maintain the integrity of its photosynthetic apparatus under bicarbonate‐induced Fe deficiency, preventing harmful effects to both photosystems under direct Fe deficiency. This suggests a high capacity of this species not only to take up Fe in the presence of bicarbonate (HCO3?) but also to preferentially translocate absorbed Fe towards leaves and prevent its inactivation.
  相似文献   

9.
This work assessed in situ, copper (Cu) uptake and phytotoxicity for durum wheat (Triticum turgidum durum L.) cropped in a range of Cu-contaminated, former vineyard soils (pH 4.2–7.8 and total Cu concentration 32–1,030 mg Cu kg−1) and identified the underlying soil chemical properties and related root-induced chemical changes in the rhizosphere. Copper concentrations in plants were significantly and positively correlated to soil Cu concentration (total and EDTA). In addition, Cu concentration in roots which was positively correlated to soil pH tended to be larger in calcareous soils than in non-calcareous soils. Symptoms of Cu phytotoxicity (interveinal chlorosis) were observed in some calcareous soils. Iron (Fe)–Cu antagonism was found in calcareous soils. Rhizosphere alkalisation in the most acidic soils was related to decreased CaCl2-extractable Cu. Conversely, water-extractable Cu increased in the rhizosphere of both non-calcareous and calcareous soils. This work suggests that plant Cu uptake and risks of Cu phytotoxicity in situ might be greater in calcareous soils due to interaction with Fe nutrition. Larger water extractability of Cu in the rhizosphere might relate to greater Cu uptake in plants exhibiting Cu phytotoxic symptoms.  相似文献   

10.
Six differently distributed Poaceae species were compared in order to identify morphological and/or physiological properties that ensure calcicole species but not calcifuge species a sufficient Fe supply on CaCO3 rich soils. When grown at a range of FeEDTA supply from deficient to adequate, the calcicole species had higher Fe productivities and relative yields at low Fe supply than the calcifuges. Specific root surface and Fe uptake requirements were lower in calcicoles than in calcifuges. Root exudation of Fe-mobilizing compounds was monitored in plants grown either with or without added FeEDTA in hydroponic culture. Under Fe deficiency, typically more than 80% of soluble root exudates of Poaceae are phytosiderophores (Marschner et al., 1989; Römheld, 1987). Maximum exudation rates of Fe mobilizing compounds were 6.6 to 11.5 μmol g?1 root dry wt 2 hr?1 in calcicoles and 0.48 to 1.64 in calcifuges. If Fe requirement is defined as mean Fe uptake rate required for 90 % of the maximal relative growth rate, the exudation rates of Fe mobilizing compounds were at least 11.7 to 31.9 times higher than Fe requirements in calcicoles and 0.38 to 5.36 times higher in calcifuges. Growth response to a precipitated versus a chelated Fe source was determined. The relative ability to grow with Fe(OH)3 precipitate was correlated with the Fe mobilization rate of the species. The present results give evidence for the importance of Fe efficiency in wild plants. Calcicoles are able to live on calcareous soils partly because they produce larger amounts of Fe mobilizing compounds and have lower tissue Fe requirements than calcifuges.  相似文献   

11.
Summary The mechanism of differential susceptibility of two rice (Oryza sativa L.) varieties to Zn deficiency was explored in 20 field trials. IR-6 rice suffered with Zn deficiency much more severely than Basmati-370. Higher Fe absorption seems to be mainly responsible. It achieved this effect by strongly inhibiting Zn absorption and by markedly increasing internal Zn requirement as IR-6 plants.No. IV in the series Micronutrient availability to cereals from calcareous soils.  相似文献   

12.
The role of the leaf apoplast in iron (Fe) uptake into the leaf symplast is insufficiently understood, particularly in relation to the supposed inactivation of Fe in leaves caused by elevated bicarbonate in calcareous soils. It has been supposed that high bicarbonate supply to roots increases the pH of the leaf apoplast which decreases the physiological availability of Fe in leaf tissues. The study reported here has been carried out with sunflower plants grown in nutrient solution and with grapevine plants grown on calcareous soil under field conditions. The data obtained clearly show that the pH of the leaf apoplastic fluid was not affected by high bicarbonate supply in the root medium (nutrient solution and field experiments). The concentrations of total, symplastic and apoplastic Fe were decreased in chlorotic leaves of both sunflower (nutrient solution experiment) and grapevine plants in which leaf expansion was slightly inhibited (field experiment). However, in grapevine showing severe inhibition of leaf growth, total Fe concentration in chlorotic leaves was the same or even higher than in green ones, indicative to the so-called `chlorosis paradox'. The findings do not support the hypothesis of Fe inactivation in the leaf apoplast as the cause of Fe deficiency chlorosis since no increase was found in the relative amount of apoplastic Fe (% of total leaf Fe) either in the leaves of sunflower or grapevine plants. It is concluded that high bicarbonate concentration in the soil solution does not decrease Fe availability in the leaf apoplast.  相似文献   

13.
Soil microorganisms may play an important role in plant Fe uptake from soils with low Fe bioavailability, but there is little direct experimental evidence to date. We grew red clover, an Fe-efficient leguminous plant, in a calcareous soil to investigate the role of soil microbial activity in plant Fe uptake. Compared with plants grown in non-sterlie (NS) grown plants, growth and Fe content of the sterile(s) grown plants was significantly inhibited, but was improved by foliar application of Fe EDTA, indicating that soil microbial activity should play an important role in plant Fe acquisition. When soil solution was incubated with phenolic root exudates from Fe-deficient red clover, a few microbial species thrived while growth of the rest was inhibited, suggesting that the Fe-deficient (-Fe) root exudates selectively influenced the rhizosphere's microbial community. Eighty six per cent of the phenolic-tolerant microbes could produce siderophore [the Fe(III) chelator] under -Fe conditions, and 71% could secrete auxin-like compounds. Interestingly, the synthetic and microbial auxins (MAs) significantly enhanced the Ferric reduction system, suggesting that MAs, in addition to siderophores, are important to plant Fe uptake. Finally, plant growth and Fe uptake in sterilized soil were significantly increased by rhizobia inoculation. Root Fe-EDTA reductase activity in the -Fe plant was significantly enhanced by rhizobia infection, and the rhizobia could produce auxin but not siderophore under Fe-limiting conditions, suggesting that the contribution of nodulating rhizobia to plant Fe uptake can be at least partially attributed to stimulation of turbo reductase activity through nodule formation and auxin production in the rhizosphere. Based on these observations, we propose as a model that root exudates from -Fe plants selectively influence the rhizosphere microbial community, and the microbes in turn favour plant Fe acquisition by producing siderophores and auxins.  相似文献   

14.
Changes of metal concentration that occur in the rhizosphere may arise from several processes including variation in the concentration of complexing ligands, pH or redox potential that can be influenced by the Fe status of the plant. The aim of this study was to assess for both acidic and calcareous, Cu-contaminated soils how Cu concentration in plants and in the rhizosphere was affected by the Fe status of a strategy I plant species. The change of soil solution pH, total solution Cu concentration and soil redox potential was monitored for 8 days in the rhizosphere of tomato (Lycopersicon esculentum L.) in response to contrasting Fe supply. The concentration of Cu in roots was enhanced under Fe deficiency in the acidic soils. Shoot Cu however did not vary with the Fe status of the plant. The plant Fe status had little effect on rhizosphere pH, redox potential or Cu concentration in solution in either acidic or calcareous soils. Marked differences in pH and solution Cu concentration were observed between rhizosphere and uncropped soils. Roots induced an increase in pH of acidic soils and a decrease in solution Cu concentration in all soils. The decrease in solution Cu concentration in acidic soils may be explained by the increase in rhizosphere pH. The proposed device provided new data on the fate of Cu in the rhizosphere and showed a positive correlation for the four soils considered together between the total Cu concentration in soil solution and root Cu concentration.  相似文献   

15.
Iron acquisition by iron‐limited cyanobacteria is typically considered to be mediated mainly by siderophores, iron‐chelating molecules released by iron‐limited cyanobacteria into the environment. In this set of experiments, iron uptake by iron‐limited cells of the cyanobacterium Anabaena flos‐aquae (L.) Bory was investigated in cells resuspended in siderophore‐free medium. Removal of siderophores decreased iron‐uptake rates by ~60% compared to siderophore‐replete conditions; however, substantial rates of iron uptake remained. In the absence of siderophores, Fe(III) uptake was much more rapid from a weaker synthetic chelator [N‐(2‐hydroxyethyl)ethylenediamine‐N,N′,N′‐triacetic acid (HEDTA); log Kcond = 28.64 for Fe(III)HEDTA(OH)?] than from a very strong chelator [N,N′‐bis(2‐hydroxybenzyl)‐ethylenediamine‐N,N′‐diacetic acid (HBED); log Kcond = 31.40 for Fe(III)HBED?], and increasing chelator:Fe(III) ratios decreased the Fe(III)‐uptake rate; these results were evident in both short‐term (4 h; absence of siderophores) and long‐term (116 h; presence of siderophores) experiments. However, free (nonchelated) Fe(III) provided the most rapid iron uptake in siderophore‐free conditions. The results of the short‐term experiments are consistent with an Fe(III)‐binding/uptake mechanism associated with the cyanobacterial outer membrane that operates independently of extracellular siderophores. Iron uptake was inhibited by temperature‐shock treatments of the cells and by metabolically compromising the cells with diphenyleneiodonium; this finding indicates that the process is dependent on active metabolism to operate and is not simply a passive Fe(III)‐binding mechanism. Overall, these results point to an important, siderophore‐independent iron‐acquisition mechanism by iron‐limited cyanobacterial cells.  相似文献   

16.
Poor growth of white lupin (Lupinus albus L.) on alkaline soils may result from its sensitivity to iron deficiency and poor nodulation. This study examined interactive effects of iron supply and high pH on the growth and nodulation of three genotypes differing in their sensitivity to iron deficiency. Three genotypes (P27486, Ultra and WTD180) were grown for 17 days in buffered solutions with Fe supply of 0.2, 2 and 20 μM. Solution pH was adjusted to 5.2, 6.5 or 7.5. Plant growth, nodulation and nutrient concentrations in plants were measured. Decreasing Fe supply decreased chlorophyll concentration in young leaves by up to 92%. Increasing pH decreased chlorophyll concentration by an average of 40% at pH 6.5 and by 47% at pH 7.5. The decrease of chlorophyll was less obvious in P27485 than in Ultra or WTD180. Shoot biomass was reduced by up to 18% by Fe deficiency, with such decrease being less for P27486. Increasing pH exacerbated the effect of Fe deficiency on shoot biomass only of Ultra. Decreasing Fe supply decreased nodule number by an average of 54%, and increasing pH decreased nodule number by 80%. P27486 formed the greatest number of nodules while WTD180 the least. P27486 had high Fe uptake and low internal requirement. Irrespective of genotype, leaf chlorosis positively correlated with cluster root formation. The results suggest that a combination of Fe deficiency and high pH impaired nodulation in L. albus, and that selection of genotypes for both tolerance of iron deficiency and good nodulation at high pH is important for a successful lupin crop on alkaline soils.  相似文献   

17.
18.
In calcareous salt-affected soils, iron availability to plants is subjected to the effects of both sodium and bicarbonate ions. Our aim was to study interactive effects of salinity and iron deficiency on iron acquisition and root acidification induced by iron deficiency in Medicago ciliaris L., a species commonly found in saline ecosystems. Four treatments were used: C, control treatment, complete medium (CM) containing 30 microM Fe; S, salt treatment, CM with 75 mM NaCl; D, deficient treatment, CM containing only 1 microM Fe; DS, interactive treatment, CM containing 1 microM Fe with 75 mM NaCl. Our study showed that plant growth and chlorophyll content were much more affected by the interactive treatment than by iron deficiency or by the salt treatment, indicating an additive effect of these constraints in DS plants. These results could be partially explained by Na accumulation in shoots as well as a limitation of nutrient uptake such as Fe and K under salt stress, under iron deficiency, and especially under their combined effect. The study also showed that root acidification was deeply diminished when iron deficiency was associated with salinity. This probably explained the decrease of Fe uptake and suggested that root proton pump activity would be inhibited by salinity.  相似文献   

19.
Aims: As a toxic metal, cadmium (Cd) affects microbial and plant metabolic processes, thereby potentially reducing the efficiency of microbe or plant‐mediated remediation of Cd‐polluted soil. The role of siderophores produced by Streptomyces tendae F4 in the uptake of Cd by bacteria and plant was investigated to gain insight into the influence of siderophores on Cd availability to micro‐organisms and plants. Methods and Results: The bacterium was cultured under siderophore‐inducing conditions in the presence of Cd. The kinetics of siderophore production and identification of the siderophores and their metal‐bound forms were performed using electrospray ionization mass spectrometry. Inductively coupled plasma spectroscopy was used to measure iron (Fe) and Cd contents in the bacterium and in sunflower plant grown in Cd‐amended soil. Siderophores significantly reduced the Cd uptake by the bacterium, while supplying it with iron. Bacterial culture filtrates containing three hydroxamate siderophores secreted by S. tendae F4 significantly promoted plant growth and enhanced uptake of Cd and Fe by the plant, relative to the control. Furthermore, application of siderophores caused slightly more Cd, but similar Fe uptake, compared with EDTA. Bioinoculation with Streptomyces caused a dramatic increase in plant Fe content, but resulted only in slight increase in plant Cd content. Conclusion: It is concluded that siderophores can help reduce toxic metal uptake in bacteria, while simultaneously facilitating the uptake of such metals by plants. Also, EDTA is not superior to hydroxamate siderophores in terms of metal solubilization for plant uptake. Significance and Impact of the Study: The study showed that microbial processes could indirectly influence the availability and amount of toxic metals taken up from the rhizosphere of plants. Furthermore, although EDTA is used for chelator‐enhanced phytoremediation, microbial siderophores would be ideal for this purpose.  相似文献   

20.
High concentrations of Fe in the roots of plants grown in calcareous soil have been found in a variety of plants, which, nevertheless, show Fe deficiency symptoms. In the present work, energy dispersive X-ray (EDX) analysis at the cellular level has been used to characterize high root Fe concentrations in maize ( Zea mays L.) grown in a calcareous soil in comparison with low root Fe concentrations under acidic soil conditions. Roots were thoroughly washed to remove adhering soil particles from the root surface as far as possible. To avoid any interference with possibly still present soil particles, the excitation beam was focused on radial walls of neighboring cells as well as on the symplast. Under alkaline conditions, high Fe concentrations in the m M range and higher accumulated in the epidermal root apoplast. Symplastic Fe was not detectable. Only traces of Fe were detectable in the apoplast of the cortex parenchyma. Under acidic conditions, apoplastic root Fe concentrations were clearly lower than under alkaline conditions, and no Fe was detectable in the root apoplast by use of EDX analysis. We conclude that, under alkaline conditions, high amounts of Fe are trapped in the epidermal root apoplast (apoplastic Fe inactivation), probably because of a high apoplastic pH and thus restricted translocation towards the root stele and to the upper plant parts. In contrast, on acidic soils Fe translocation towards the root stele and thus Fe supply to the upper plant parts was not impaired. Our findings imply that Fe deficiency on calcareous soils is not caused by restricted acquisition of Fe from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号